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Review
• Speculation: Out-of-order execution, In-order commit 

(reorder buffer+rename registers)=>precise exceptions
• Branch Prediction

– Branch History Table: 2 bits for loop accuracy
– Recently executed branches correlated with next branch?
– Branch Target Buffer: include branch address & prediction
– Predicated Execution can reduce number of branches, 

number of mispredicted branches

• Software Pipelining
– Symbolic loop unrolling (instructions from different iterations) 

to optimize pipeline with little code expansion, little overhead

• Superscalar and VLIW(“EPIC”): CPI < 1 (IPC > 1)
– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty
– # independent instructions = # functional units X latency
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Review: Instructon Level Parallelism

• High speed execution based on instruction 
level parallelism (ilp): potential of short 
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute 
multiple instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed 
microprocessor?

– Data Cache, possibly multiported, multiple levels
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Problems with conventional approach

• Limits to conventional exploitation of ILP:
1) pipelined clock rate: at some point, each 
increase in clock rate has corresponding CPI 
increase (branches, other hazards)
2) instruction fetch and decode: at some 
point, its hard to fetch and decode more 
instructions per clock cycle
3) cache hit rate: some long-running 
(scientific) programs have very large data 
sets accessed with poor locality; 
others have continuous data streams 
(multimedia) and hence poor locality



DAP Spr.‘98 ©UCB 6

25

Alternative Model:
Vector Processing

+
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VECTOR
(N operations)

• Vector processors have high-level operations that work 
on linear arrays of numbers: "vectors"
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Properties of Vector Processors

• Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

• Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over ≈ 64 elements
=> no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines
• Single vector instruction implies lots of work (≈ loop)

=> fewer instruction fetches
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Spec92fp     Operations (Millions)     Instructions (M)

Program   RISC  Vector   R / V     RISC    Vector   R / V
swim256 115 95  1.1x 115 0.8 142x
hydro2d 58 40 1.4x     58 0.8  71x

nasa7 69 41 1.7x     69 2.2  31x
su2cor 51 35 1.4x     51 1.8  29x

tomcatv 15 10 1.4x     15 1.3  11x
wave5 27 25 1.1x     27 7.2   4x
mdljdp2 32 52 0.6x     32 15.8   2x

Operation & Instruction Count: 
RISC v. Vector Processor

(from F. Quintana, U. Barcelona.)

 Vector reduces ops by 1.2X, instructions by 20X
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Styles of Vector Architectures

• memory-memory vector processors: all  vector 
operations are memory to memory

• vector-register processors: all vector operations 
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s: 

Cray, Convex, Fujitsu, Hitachi, NEC
–    We assume vector-register for rest of lectures
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Components of Vector Processor
• Vector Register: fixed length bank holding a single 

vector
– has at least 2 read and 1 write ports
– typically 8-32 vector registers, each holding 64-128 64-bit 

elements 

• Vector Functional Units (FUs): fully pipelined, start new 
operation every clock

– typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), 
integer add, logical,  shift; may have multiple of same unit

• Vector Load-Store Units (LSUs): fully pipelined unit to 
load or store a vector; may have multiple LSUs

• Scalar registers: single element for FP scalar or 
address

• Cross-bar to connect FUs , LSUs, registers
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“DLXV” Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
• MULTV V1,V2,V3 V1=V2xV3 vector x vector
• MULSV V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask
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32

Memory operations
• Load/store operations move groups of data 

between registers and memory
• Three types of addressing

– Unit stride
» Fastest

– Non-unit (constant) stride
– Indexed (gather-scatter)

» Vector equivalent of register indirect
» Good for sparse arrays of data
» Increases number of programs that vectorize
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DAXPY (Y = a * X + Y)

  LD F0,a
  ADDI R4,Rx,#512 ;last address to load 

loop: LD F2, 0(Rx)   ;load X(i)
  MULTD F2,F0,F2 ;a*X(i)
  LD F4, 0(Ry) ;load Y(i)
  ADDD F4,F2, F4 ;a*X(i) + Y(i)
  SD F4 ,0(Ry) ;store into Y(i)
  ADDI Rx,Rx,#8 ;increment index to X
  ADDI Ry,Ry,#8 ;increment index to Y
  SUB R20,R4,Rx ;compute bound
  BNZ R20,loop ;check if done

LD     F0,a ;load scalar a

LV     V1,Rx ;load vector X

MULTS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 321 (1+5*64) ops (1.8X)

578 (2+9*64) vs.
    6 instructions (96X)

64 operation vectors +       
no loop overhead

also 64X fewer pipeline 
hazards
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Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs
• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
• Cray YMP 1988 166 MHz 8 64 8  2 L, 1 S
• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4
• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8
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Vector Linpack Performance 
(MFLOPS)

  Machine Year Clock  100x100 1kx1k Peak(Procs)
• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)
• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)
• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)
• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)
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CS 252 Administrivia
• Get your photo taken by Joe Gebis! (or give URL)
• Exercises for Lectures 3 to 7

– Due Thursday Febuary 12 at 5PM homework box in 283 
Soda (building is locked at 6:45 PM)

– 4.2, 4.10, 4.19, 4.14 parts c) and d) only, B.2
– Done in pairs, but both need to understand whole 

assignment; Anyone need a partner?
– Study groups encouraged, but pairs do own work
– Turn in (copy of)photo with name on it 

(phonetic spelling, if useful)

• Select projects by next Monday! Need partner too. 
Send email to TA, me saying what and who

– Start now doing small things to get setup done
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Computers in the News
• IBM researchers announced (at ISSCC ‘98) they have 

demonstrated the world's first experimental CMOS 
microprocessor that can operate at  1000 MHz

• The chip contains 1 million transistors and uses 
0.25-micron circuit technology

• Integer only, 4 stage pipeline, + caches; 
innovations include:

– A multifunctional unit, which combines addition and rotation 
operations into a single circuit

– An innovative cache design, which combines the address 
calculation with the array access function 

– A dynamic circuit approach that reduced the number of 
stages through which signals must propagate

• Experimental only (like 4Gbit DRAM prototypes)
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Vector Surprise
• Use vectors for inner loop parallelism (no surprise)

– One dimension of array: A[0, 0], A[0, 1], A[0, 2], ... 
– think of machine as, say, 32 vector regs each with 64 elements
– 1 instruction updates 64 elements of 1 vector register

• and for outer loop parallelism! 
– 1 element from each column: A[0,0], A[1,0], A[2,0], ...
– think of machine as 64 “virtual processors” (VPs) 

each with 32 scalar registers! (≈ multithreaded processor)
– 1 instruction updates 1 scalar register in 64 VPs

• Hardware identical, just 2 compiler perspectives
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Virtial Processor Vector Model

• Vector operations are SIMD 
(single instruction multiple data)operations

• Each element is computed by a virtual 
processor (VP)

• Number of VPs given by vector length
– vector control register
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Vector Architectural State

General
Purpose

Registers

Flag
Registers

(32)

VP0 VP1 VP$vlr-1

vr0

vr1

vr31

vf0

vf1

vf31

$vdw bits

1 bit

Virtual Processors ($vlr)

vcr0

vcr1

vcr31

Control
Registers

32 bits
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Vector Implementation

• Vector register file
– Each register is an array of elements
– Size of each register determines maximum

vector length
– Vector length register determines vector length

for a particular operation

• Multiple parallel execution units = “lanes”
(sometimes called “pipelines” or “pipes”)
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34

Vector Terminology: 
4 lanes, 2 vector functional units

(Vector
Functional
Unit)
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Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards) 
• Initiation rate: rate that FU consumes vector elements 

(= number of lanes; usually 1 or  2 on Cray T-90)
• Convoy: set of vector instructions that can begin 

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead; good approximization for long vectors)

4 conveys, 1 lane, VL=64
=> 4 x 64 ≈ 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X

2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result
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DLXV Start-up Time
• Start-up time: pipeline latency time (depth of FU 

pipeline); another sources of overhead
• Operation Start-up penalty (from CRAY-1)
• Vector load/store 12
• Vector multply   7
• Vector add   6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result

1. LV     0 12          11+n (12+n-1)

2. MULV, LV 12+n 12+n+12 23+2n Load start-up

3. ADDV 24+2n 24+2n+6 29+3n Wait convoy 2

4. SV     30+3n 30+3n+12  41+4n Wait convoy 3
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Why startup time for each 
vector instruction?

• Why not overlap startup time of back-to-back 
vector instructions?

• Cray machines built from many ECL chips 
operating at high clock rates; hard to do? 

• Berkeley vector design (“T0”) didn’t know it 
wasn’t supposed to do overlap, so no startup 
times for functional units (except load)
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Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs
• Memory system must sustain (# lanes x word) /clock cycle
• Many Vector Procs. use banks (vs. simple interleaving):

1) support multiple loads/stores per cycle 
=> multiple banks & address banks independently
2) support non-sequential accesses (see soon)

• Note: No. memory banks > memory latency to avoid stalls
– m banks => m words per memory lantecy l clocks
– if m <  l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m- 1 l+m… 2 l
word: -- … 0 1 2 … m-1 -- … m
– may have 1024 banks in SRAM
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Vector Length

• What to do when vector length is not exactly 64?   
• vector-length register (VLR) controls the length of 

any vector operation, including a vector load or 
store. (cannot be > the length of vector registers)

do 10 i = 1, n

10 Y(i) = a * X(i) + Y(i)

• Don't know n until runtime! 
n > Max. Vector Length (MVL)?
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Strip Mining
• Suppose Vector Length > Max. Vector Length (MVL)?
• Strip mining: generation of code such that each vector 

operation is done for a size ≤ to the MVL
• 1st loop do short piece (n mod MVL), rest VL = MVL

   low = 1
   VL = (n mod MVL)  /*find the odd size piece*/
   do 1 j = 0,(n / MVL)  /*outer loop*/

do 10 i = low,low+VL-1  /*runs for length VL*/
Y(i) = a*X(i) + Y(i)  /*main operation*/

10 continue
low = low+VL  /*start of next vector*/
VL = MVL  /*reset the length to max*/

1 continue
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Common Vector Metrics

• R∞: MFLOPS rate on an infinite-length vector
– vector “speed of light”
– Real problems do not have unlimited vector lengths, and the 

start-up penalties encountered in real problems will be larger 
– (Rn is the MFLOPS rate for a vector of length n)

• N1/2: The vector length needed to reach one-half of R∞ 
– a good measure of the impact of start-up

• NV: The vector length needed to make vector mode 
faster than scalar mode 

– measures both start-up and speed of scalars relative to vectors, 
quality of connection of scalar unit to vector unit
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Vector Stride
• Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)

• Either B or C accesses not adjacent (800 bytes between)
• stride: distance separating elements that are to be 

merged into a single vector (caches do unit stride) 
=> LVWS (load vector with stride) instruction

• Strides => can cause bank conflicts 
(e.g., stride = 32 and 16 banks)

• Think of address per vector element
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Compiler Vectorization on Cray XMP
• Benchmark %FP %FP in vector
• ADM 23% 68%
• DYFESM 26% 95%
• FLO52  41% 100%
• MDG 28% 27%
• MG3D 31% 86%
• OCEAN 28% 58%
• QCD 14% 1%
• SPICE 16% 7% (1% overall)
• TRACK 9% 23%
• TRFD 22% 10%
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Vector Opt #1: Chaining
• Suppose:

MULV V1,V2,V3
ADDV V4,V1,V5 ; separate convoy?

• chaining: vector register (V1) is not as a single entity but 
as a group of individual registers, then  pipeline 
forwarding can work on individual elements of a vector

• Flexible chaining: allow vector to chain to any other 
active vector operation => more read/write port

•  As long as enough HW, increases convoy size
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Example Execution of Vector Code
Vector 

Memory Pipeline
Vector 

Multiply Pipeline
Vector 

Adder  Pipeline

8 lanes, vector length 32,
chaining

Scalar
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Vector Opt #2: Conditional Execution
• Suppose:

do 100 i = 1, 64

if (A(i) .ne. 0) then

A(i) = A(i) – B(i)

endif

100 continue

• vector-mask control takes a Boolean vector: when 
vector-mask register is loaded from vector test, vector 
instructions operate only on vector elements whose 
corresponding entries in the vector-mask register are 1.

•  Still requires clock even if result not stored; if still 
performs operation, what about divide by 0?
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Vector Opt #3: Sparse Matrices
• Suppose:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))

• gather (LVI) operation takes an index vector and fetches 
the vector whose elements are at the addresses given by 
adding a base address to the offsets given in the index 
vector => a nonsparse vector in a vector register 

• After these elements are operated on in dense form,  the 
sparse vector can be stored in expanded form by a 
scatter store (SVI), using the same index vector

• Can't be done by compiler since can't know Ki elements 
distinct, no dependencies; by compiler directive

• Use CVI to create index 0, 1xm, 2xm, ..., 63xm
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Sparse Matrix Example

• Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP

Clock   72 MHz 167 MHz
Cache 256 KB 0.25 KB
Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix   17 MFLOPS 125 (7.3)

(Cholesky Blocked )
• Cache: 1 address per cache block (32B to 64B)
• Vector: 1 address per element (4B)
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Applications
Limited to scientific computing?

• Multimedia Processing (compress., graphics, audio synth, image 
proc.)

• Standard benchmark kernels (Matrix Multiply, FFT, Convolution, 

Sort)

• Lossy Compression (JPEG, MPEG video and audio)

• Lossless Compression (Zero removal, RLE, Differencing, LZW)

• Cryptography (RSA, DES/IDEA, SHA/MD5)

• Speech and handwriting recognition
• Operating systems/Networking (memcpy, memset, parity, 

checksum)

• Databases (hash/join, data mining, image/video serving)

• Language run-time support (stdlib, garbage collection)

• even SPECint95
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Vector for Multimedia?

• Intel MMX: 57 new 80x86 instructions (1st since 386)
– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC

• 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits
– reuse 8 FP registers (FP and MMX cannot mix)

• ≈ short vector: load, add, store 8 8-bit operands

• Claim: overall speedup 1.5 to 2X for 2D/3D graphics, 
audio, video, speech, comm., ...

– use in drivers or added to library routines; no compiler

+
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MMX Instructions

• Move 32b, 64b
• Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

– opt. signed/unsigned saturate (set to max) if overflow

• Shifts (sll,srl, sra), And, And Not, Or, Xor 
in parallel: 8 8b, 4 16b, 2 32b

• Multiply, Multiply-Add in parallel: 4 16b
• Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches

• Pack/Unpack
– Convert 32b<–> 16b, 16b <–> 8b
– Pack saturates (set to max) if number is too large
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 Vectors and 
Variable Data Width

• Programmer thinks in terms of vectors of data 
of some width (8, 16, 32, or 64 bits)

• Good for multimedia; More elegant than 
MMX-style extensions

• Don’t have to worry about how data stored in 
hardware

– No need for explicit pack/unpack operations

• Just think of more virtual processors operating 
on narrow data

• Expand Maximum Vector Length with 
decreasing data width: 
64 x 64bit, 128 x 32 bit, 256 x 16 bit, 512 x 8 bit



DAP Spr.‘98 ©UCB 41

Mediaprocesing: 
Vectorizable? Vector Lengths?

Kernel Vector length

• Matrix transpose/multiply # vertices at once
• DCT (video, communication) image width
• FFT (audio) 256-1024
• Motion estimation (video) image width, iw/16
• Gamma correction (video) image width
• Haar transform (media mining) image width
• Median filter (image processing) image width
• Separable convolution (img. proc.) image width

(from Pradeep Dubey - IBM,
http://www.research.ibm.com/people/p/pradeep/tutor.html)
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Vector Pitfalls
• Pitfall: Concentrating on peak performance and ignoring 

start-up overhead: NV (length faster than scalar) > 100!
• Pitfall: Increasing vector performance, without 

comparable increases in scalar performance 
(Amdahl's Law)

– failure of Cray competitor from his former company

• Pitfall: Good processor vector performance without 
providing good memory bandwidth

– MMX?



DAP Spr.‘98 ©UCB 43

Vector Advantages
• Easy to get high performance; N operations:

– are independent
– use same functional unit
– access disjoint registers
– access registers in same order as previous instructions
– access contiguous memory words or known pattern
– can exploit large memory bandwidth
– hide memory latency (and any other latency)

• Scalable (get higher performance as more HW resources available)
• Compact: Describe N operations with 1 short instruction (v. VLIW)
• Predictable (real-time) performance vs. statistical performance 

(cache)
• Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N * 8b
• Mature, developed compiler technology
• Vector Disadvantage: Out of Fashion
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Vector Summary

• Alternate model accomodates long memory latency, 
doesn’t rely on caches as does Out-Of-Order, 
superscalar/VLIW designs

• Much easier for hardware: more powerful instructions, 
more predictable memory accesses, fewer harzards, 
fewer branches, fewer mispredicted branches,  ...

• What % of computation is vectorizable? 
• Is vector a good match to new apps such as 

multidemia, DSP?
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Project Overviews

• IRAM project related
• BRASS project related
• Industry suggested
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IRAM Vision Statement

Microprocessor & DRAM 
on a single chip:

– on-chip memory latency 
5-10X, bandwidth 50-100X

– improve energy efficiency 
2X-4X (no off-chip bus)

– serial I/O 5-10X v. buses
– smaller board area/volume
– adjustable memory size/width
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App #1: Intelligent PDA ( 2003?)
• Pilot PDA 

(todo,calendar, 
calculator, addresses,...)

+ Gameboy (Tetris, ...)
+ Nikon Coolpix (camera)
+ Cell Phone, Pager, GPS, 

tape recorder, 
TV remote, am/fm radio, 
garage door opener, ...

+ Wireless data (WWW)
+ Speech, vision recog.
+  Speech output for 

conversations

– Speech control of all devices 
– Vision to see surroundings, 
    scan documents, read bar codes, 
    measure room
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App #2: “Intelligent Disk”(IDISK):
Scaleable Decision Support?

  6.0 
GB/s

• 1 IRAM/disk + xbar
+ fast serial link v. 
conventional SMP

• Move function to data 
v. data to CPU 
(scan, sort, join,...)

• Network latency = 
f(SW overhead), 
not link distance

• Avoid I/O bus 
bottleneck of SMP

• Cheaper, faster, more 
scalable
(≈1/3 $, 3X perf)

…

cross bar

… …

…

IRAM IRAM

IRAMIRAM

…
… …

…

IRAM IRAM

IRAMIRAM

  75.0 
GB/s

…

…cross bar

cross bar

cross bar

cross bar
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V-IRAM-2: 0.13 µm, Fast Logic, 1GHz 
16 GFLOPS(64b)/64 GOPS(16b)/128MB

Memory Crossbar Switch
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Vector Registers

x

÷

Load/Store

8K  I cache 8K D cache

2-way 
Superscalar Vector
Processor

8 x 64 8 x 64 8 x 64 8 x 64 8 x 64

8 x 64
or

16 x 32
or

32 x 16

8 x 648 x 64

Queue
Instruction

I/O
I/O

I/O
I/O

Serial
I/O
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Ring-
based
Switch

C
P
U
+$

Tentative VIRAM-1 Floorplan

I/O

■ 0.18 µm DRAM
32 MB in 16 banks x 
256b, 128 subbanks

■ 0.25 µm, 
5 Metal Logic

■ ≈ 200 MHz MIPS, 
   16K I$, 16K D$

■ ≈ 4 200 MHz 
FP/int. vector units

■ die:      ≈ 16x16 mm
■ xtors:   ≈ 270M
■ power: ≈2 Watts

4 Vector Pipes/Lanes

Memory 
(128 Mbits / 16 MBytes)

Memory 
(128 Mbits / 16 MBytes)
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Potential IRAM CS252 Projects?
• P1: Investigating algorithms, circuits, and floorplan for 

the VIRAM-1 vector unit.
– Survey existing FPU implementations, then guess
– Concentrate on multiplier; survey existing designs
– Design of datapath with someone s low-level components
– Take T0 fixed-point vector unit layout & apply changes 

• P2: Algorithms/Benchmarks on VIRAM
– Port the NESL Language to VIRAM-1

» Guy Blelloch's NESL language works well on vector machines, and 
he has several programs with irregular parallelism

– Port the BDTI DSP Benchmarks to VIRAM-1
» VIRAM has DSP support; BDTI in Berkeley; vector better for DSP?

– Code other algorithms: viterbi, lossless compression algorithms, 
MPEG2 encoding, GSM cellphone algorithms, encryption 
algorithms, texture mapping for 3D games.

• P3: TLB design for the VIRAM-1 vector unit.
– 4 address translations per cycle? MicroTLB/lane?
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Brass Vision Statement
• The emergence of high capacity reconfigurable devices 

is igniting a revolution in general-purpose processing. It 
is now becoming possible to tailor and dedicate 
functional units and interconnect to take advantage of 
application dependent dataflow. Early research in this 
area of reconfigurable computing has shown 
encouraging results in a number of spot areas including 
cryptography, signal processing, and searching --- 
achieving 10-100x computational density and reduced 
latency over more conventional processor solutions.

• BRASS: Microprocessor & FPGA on single chip:
– use some of millions of transitors to customize HW dynamically 

to application
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Potential BRASS CS252 
Projects?

• P5: Explore energy implications of reconfigurable 
implementation of compute kernels.

– For some common kernels, collect the data activity and 
estimate the actual energy consumed on a processor and 
an FPGA implementation. 

– The goal would be to understand the source of potential 
benefits for the reconfigurable architecture and quantify 
typical effects.

• Suggested by André DeHon(amd@CS.Berkeley.edu)
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Other Projects: Database Study

• P4: Characterize Architecture Metrics for Multiple 
Commercial Databases

– About 40% of sales of servers are for data base applications, 
yet little has been published on comparing multiple 
databases on a single SMP. 

– Use the builtin hardware performance tools of either the the 
4-way SPARC SMP or the 4-way Intel Pentium II SMP to 
recreate the Kim Keeton's study across several commercial 
databases. 

– Does architectural support vary by database?

• Kim Keeton (kkeeton@cs) would be willing to help
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Petabyte Backup?

• P6: Very Large Scale Backup
– Automatic, reliable backup for large scale storage systems 

should be done at the device rather than file level.
– Designed such that one never has to do a full backup. Only 

incrementals should be necessary.
– Backup should be "consistent" and online.
– Users shouldn't have to wait for the entire restore (≈Petabyte) 

to finish, just most frequently used (≈Terabyte).
– Edward K. Lee (eklee@pa.dec.com) of DEC SRC Research labs 

would be willing to give advice
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Other Projects: Mashey/SGI

• John R. Mashey (mash@mash.engr.sgi.com)
• P7. Doing better than SPEC

– Continue to propose/analyze new benchmarks
– No new data, more correlation (product lines, cache sizes)
– Synthetic benchmarks (predict spec, measure latency)

• P8. Fixing Knuth Volume 3 & "Algorithms and Data 
Structures" courses

– Classical algorithm analysis meets modern machines
– Algorithm 1 meets algorithm 2, in presence of cache
– Evil pointers, linked lists, out-of-order machines; convert 

lists, binary trees to N-ary structures and measure impact
– Algorithms, languages, object-oriented stuff; measure old 

and new style; suggest indirect jump fast
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• P9. I/O nightmares on the way
– Disks are getting HUGE, fast, and algorithms are breaking 

(out) all over
– if you believe TeraStor, expect to see 500GB 3.5" by 2003
– unfortunately, reading a 500GB disk take 10,000 secs!
– coming disks are likely to cause trouble for most current 

filesystems, and there'd be some serious rearchitecting.
– file system evaluations/analysis at user level, and study key 

algorithms without having to invent everything.
– John R. Mashey (mash@mash.engr.sgi.com) advises again

Other Projects: Mashey/SGI
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New I/O standard
• P13. Evaluating New WinTEL I/O Standard

– "I2O" (I-to-O) is the big new I/O architecture definition from 
WiNTel, attempting to push more processing off of the main 
CPU's and onto the I/O cards. 

– Is this any faster than the "smart" IO subsystems people have 
been building for a while? 

– Will I2O open up new opportunities to move stuff off of the 
main CPU's, resulting in faster performance?

– Establish the performance benefits of I2O subsystems 
compared to traditional "smart" IO subsystems and traditional 
"not smart" IO subsystems

– Make suggestions of how to improve system performance 
further by perhaps off loading more IO processing into an IOP.

– David Douglas (douglas@East.Sun.COM) and F. Balint  
(balintf@East.Sun.COM) from Sun Microsystems willing to 
advise
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Other Projects
• P12. Networks vs. Busses

– Measure Disk controller bandwidth and latency (via read/write 
of same cached block).

– Measure Network Controller bandwidth and latency
– Prediction: Network controller has lower latency and 

bandwidth. Why? (why can't we have the best of both?)
– Jim Gray of Micrsoft (Gray@Microsoft.com) suggestion

• P14. Evaluating Embedded Processors
– Run Spec95int and other micro-benchmarks (lmbench etc) on 

an embedded processor (recommended: StrongARM SA110 
that we have available).

– Use BDTI benchmarks or other DSP kernels to compare/
analyze the performance of an embedded processor (SA110) 
and a desktop processor (Sparc/Pentium).

– Christoforos Kozyrakis (kozyraki@CS) will help
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Other Projects

• Greg Pfister of IBM (pfister@us.ibm.com) suggestions
• P10. I/O

– Many topics from  last time could be revisited in an I/O context: 
Benchmarks of I/O, efficiency of I/O, etc. 

– How good is the memory system at block streaming multiple 
multimedia streams onto disk and/or a fast network?

– How about OS overhead for lots of little transactions -- there 
certainly are imaginative ways it could be be reduced, and 
proposing/measuring the results could be a good project.

• P11. Application Performance: Messages vs. CC-NUMA
– How about an application comparison of a low-overhead 

messaging scheme (like VIA) versus a shared-memory 
implementation using CC-NUMA?

– Of course it should be based on measurement, so maybe SMP 
measurement plus some analytical modelling substitutes for 
CC-NUMA and some analytical work.


