
Page 1

CS252/Patterson
Lec 11.12/23/01

CS252
Graduate Computer Architecture

Lecture 11:
 Multiprocessor 1: Reasons, Classifications,

Performance Metrics, Applications

February 23, 2001
Prof. David A. Patterson
Computer Science 252

Spring 2001

CS252/Patterson
Lec 11.22/23/01

Review: Networking
• Clusters +: fault isolation and repair, scaling,

cost
• Clusters -: maintenance, network interface

performance, memory efficiency
• Google as cluster example:

– scaling (6000 PCs, 1 petabyte storage)
– fault isolation (2 failures per day yet available)
– repair (replace failures weekly/repair offline)
– Maintenance: 8 people for 6000 PCs

• Cell phone as portable network device
– # Handsets >> # PCs
– Univerisal mobile interface?

• Is future services built on Google-like clusters
delivered to gadgets like cell phone handset?

CS252/Patterson
Lec 11.32/23/01

Parallel Computers

• Definition: “A parallel computer is a
collection of processiong elements that
cooperate and communicate to solve large
problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989
• Questions about parallel computers:

– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted?
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?

CS252/Patterson
Lec 11.42/23/01

Parallel Processors “Religion”
• The dream of computer architects since 1950s:

replicate processors to add performance vs.
design a faster processor

• Led to innovative organization tied to particular
programming models since
“uniprocessors can’t keep going”

– e.g., uniprocessors must stop getting faster due to limit of
speed of light: 1972, … , 1989

– Borders religious fervor: you must believe!
– Fervor damped some when 1990s companies went out of

business: Thinking Machines, Kendall Square, ...

• Argument instead is the “pull” of opportunity of
scalable performance, not the “push” of
uniprocessor performance plateau?

CS252/Patterson
Lec 11.52/23/01

What level Parallelism?
• Bit level parallelism: 1970 to ~1985

– 4 bits, 8 bit, 16 bit, 32 bit microprocessors

• Instruction level parallelism (ILP):
~1985 through today

– Pipelining
– Superscalar
– VLIW
– Out-of-Order execution
– Limits to benefits of ILP?

• Process Level or Thread level parallelism;
mainstream for general purpose computing?

– Servers are parallel
– Highend Desktop dual processor PC soon??

(or just the sell the socket?)

CS252/Patterson
Lec 11.62/23/01

Why Multiprocessors?
• Microprocessors as the fastest CPUs

• Collecting several much easier than redesigning 1

• Complexity of current microprocessors
• Do we have enough ideas to sustain 1.5X/yr?
• Can we deliver such complexity on schedule?

• Slow (but steady) improvement in parallel
software (scientific apps, databases, OS)

• Emergence of embedded and server markets
driving microprocessors in addition to desktops
• Embedded functional parallelism, producer/consumer model
• Server figure of merit is tasks per hour vs. latency

Page 2

CS252/Patterson
Lec 11.72/23/01

Parallel Processing Intro
• Long term goal of the field: scale number

processors to size of budget, desired performance
• Machines today: Sun Enterprise 10000 (8/00)

– 64 400 MHz UltraSPARC® II CPUs,64 GB SDRAM memory,
868 18GB disk,tape

– $4,720,800 total
– 64 CPUs 15%,64 GB DRAM 11%, disks 55%, cabinet 16%

($10,800 per processor or ~0.2% per processor)
– Minimal E10K - 1 CPU, 1 GB DRAM, 0 disks, tape ~$286,700
– $10,800 (4%) per CPU, plus $39,600 board/4 CPUs (~8%/CPU)

• Machines today: Dell Workstation 220 (2/01)
– 866 MHz Intel Pentium® III (in Minitower)
– 0.125 GB RDRAM memory, 1 10GB disk, 12X CD, 17” monitor,

nVIDIA GeForce 2 GTS,32MB DDR Graphics card, 1yr service
– $1,600; for extra processor, add $350 (~20%)

CS252/Patterson
Lec 11.82/23/01

Whither Supercomputing?
• Linpack (dense linear algebra) for

Vector Supercomputers vs. Microprocessors
• “Attack of the Killer Micros”

– (see Chapter 1, Figure 1-10, page 22 of [CSG99])
– 100 x 100 vs. 1000 x 1000

• MPPs vs. Supercomputers when rewrite
linpack to get peak performance

– (see Chapter 1, Figure 1-11, page 24 of [CSG99])

• 1997, 500 fastest machines in the world:
319 MPPs, 73 bus-based shared memory
(SMP), 106 parallel vector processors (PVP)

– (see Chapter 1, Figure 1-12, page 24 of [CSG99])

• 2000, 381 of 500 fastest: 144 IBM SP
(~cluster), 121 Sun (bus SMP), 62 SGI
(NUMA SMP), 54 Cray (NUMA SMP)
[CSG99] = Parallel computer architecture : a hardware/

software approach, David E. Culler, Jaswinder Pal Singh,
with Anoop Gupta. San Francisco : Morgan Kaufmann, c1999.

CS252/Patterson
Lec 11.92/23/01

Popular Flynn Categories
(e.g., ~RAID level for MPPs)

• SISD (Single Instruction Single Data)
– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???; multiple processors on a single data stream

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» Flexibility
» All custom integrated circuits

– (Phrase reused by Intel marketing for media instructions ~
vector)

• MIMD (Multiple Instruction Multiple Data)
– Examples: Sun Enterprise 5000, Cray T3D, SGI Origin

» Flexible
» Use off-the-shelf micros

• MIMD current winner: Concentrate on major design
emphasis <= 128 processor MIMD machines

CS252/Patterson
Lec 11.102/23/01

Major MIMD Styles

• Centralized shared memory ("Uniform
Memory Access" time or "Shared Memory
Processor")

• Decentralized memory (memory module with
CPU)
• get more memory bandwidth, lower memory latency
• Drawback: Longer communication latency
• Drawback: Software model more complex

CS252/Patterson
Lec 11.112/23/01

Decentralized Memory versions

• Shared Memory with "Non Uniform Memory
Access" time (NUMA)

• Message passing "multicomputer" with
separate address space per processor
– Can invoke software with Remote Procedue Call (RPC)
– Often via library, such as MPI: Message Passing

Interface
– Also called "Syncrohnous communication" since

communication causes synchronization between 2
processes

CS252/Patterson
Lec 11.122/23/01

Performance Metrics:
Latency and Bandwidth

• Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Challenge is link speed of network interface vs. bisection

bandwidth of network

• Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to

overlap communication and computation
– Overhead to communicate is a problem in many machines

• Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burdern
– Examples: overlap message send with computation, prefetch

data, switch to other tasks

Page 3

CS252/Patterson
Lec 11.132/23/01

CS 252 Administrivia

• Meetings this week
• Next Wednesday guest lecture
• Flash vs. Flash paper reading
• Quiz #1 Wed March 7 5:30-8:30 306 Soda
• La Val's afterward quiz: free food and drink

CS252/Patterson
Lec 11.142/23/01

Parallel Architecture

• Parallel Architecture extends traditional
computer architecture with a communication
architecture

– abstractions (HW/SW interface)
– organizational structure to realize abstraction

efficiently

CS252/Patterson
Lec 11.152/23/01

Parallel Framework
• Layers:

– (see Chapter 1, Figure 1-13, page 27 of [CSG99])
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

CS252/Patterson
Lec 11.162/23/01

Shared Address Model Summary

• Each processor can name every physical location in
the machine

• Each process can name all data it shares with other
processes

• Data transfer via load and store
• Data size: byte, word, ... or cache blocks
• Uses virtual memory to map virtual to local or remote

physical
• Memory hierarchy model applies: now communication

moves data to local processor cache (as load moves
data from memory to cache)

– Latency, BW, scalability when communicate?

CS252/Patterson
Lec 11.172/23/01

Shared Address/Memory
Multiprocessor Model

• Communicate via Load and Store
– Oldest and most popular model

• Based on timesharing: processes on multiple
processors vs. sharing single processor

• process: a virtual address space
and ~ 1 thread of control

– Multiple processes can overlap (share), but ALL threads
share a process address space

• Writes to shared address space by one
thread are visible to reads of other threads

– Usual model: share code, private stack, some shared
heap, some private heap

CS252/Patterson
Lec 11.182/23/01

SMP Interconnect

• Processors to Memory AND to I/O
• Bus based: all memory locations equal access

time so SMP = “Symmetric MP”
– Sharing limited BW as add processors, I/O
– (see Chapter 1, Figs 1-17, page 32-33 of [CSG99])

Page 4

CS252/Patterson
Lec 11.192/23/01

Message Passing Model
• Whole computers (CPU, memory, I/O devices)

communicate as explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory

system
• Send specifies local buffer + receiving process on

remote computer
• Receive specifies sending process on remote computer

+ local buffer to place data
– Usually send includes process tag

and receive has rule on tag: match 1, match any
– Synch: when send completes, when buffer free, when request

accepted, receive wait for send
• Send+receive => memory-memory copy, where each

each supplies local address,
AND does pairwise sychronization!

CS252/Patterson
Lec 11.202/23/01

Data Parallel Model
• Operations can be performed in parallel on each

element of a large regular data structure, such as an
array

• 1 Control Processsor broadcast to many PEs (see Ch.
1, Fig. 1-25, page 45 of [CSG99])

– When computers were large, could amortize the control
portion of many replicated PEs

• Condition flag per PE so that can skip
• Data distributed in each memory
• Early 1980s VLSI => SIMD rebirth:

32 1-bit PEs + memory on a chip was the PE
• Data parallel programming languages lay out data to

processor

CS252/Patterson
Lec 11.212/23/01

Data Parallel Model
• Vector processors have similar ISAs,

but no data placement restriction
• SIMD led to Data Parallel Programming languages
• Advancing VLSI led to single chip FPUs and whole

fast µProcs (SIMD less attractive)
• SIMD programming model led to

Single Program Multiple Data (SPMD) model
– All processors execute identical program

• Data parallel programming languages still useful, do
communication all at once:
 “Bulk Synchronous” phases in which all communicate
after a global barrier

CS252/Patterson
Lec 11.222/23/01

Advantages shared-memory
communication model

• Compatibility with SMP hardware
• Ease of programming when communication patterns

are complex or vary dynamically during execution
• Ability to develop apps using familiar SMP model,

attention only on performance critical accesses
• Lower communication overhead, better use of BW

for small items, due to implicit communication and
memory mapping to implement protection in
hardware, rather than through I/O system

• HW-controlled caching to reduce remote comm. by
caching of all data, both shared and private.

CS252/Patterson
Lec 11.232/23/01

Advantages message-passing
communication model

• The hardware can be simpler (esp. vs. NUMA)
• Communication explicit => simpler to understand; in

shared memory it can be hard to know when
communicating and when not, and how costly it is

• Explicit communication focuses attention on costly
aspect of parallel computation, sometimes leading to
improved structure in multiprocessor program

• Synchronization is naturally associated with sending
messages, reducing the possibility for errors
introduced by incorrect synchronization

• Easier to use sender-initiated communication, which
may have some advantages in performance

CS252/Patterson
Lec 11.242/23/01

Communication Models
• Shared Memory

– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

» Model of choice for uniprocessors, small-scale MPs
» Ease of programming
» Lower latency
» Easier to use hardware controlled caching

• Message passing
– Processors have private memories,

communicate via messages
– Advantages:

» Less hardware, easier to design
» Focuses attention on costly non-local operations

• Can support either SW model on either HW base

Page 5

CS252/Patterson
Lec 11.252/23/01

3 Parallel Applications

• Commercial Workload
• Multiprogramming and OS Workload
• Scientific/Technical Applications

CS252/Patterson
Lec 11.262/23/01

Parallel App: Commercial Workload
• Online transaction processing workload

(OLTP) (like TPC-B or -C)
• Decision support system (DSS) (like TPC-D)
• Web index search (Altavista)

Benchmark % Time
User
Mode

% Time
Kernel

% Time
I/O time
(CPU Idle)

OLTP 71% 18% 11%

DSS (range) 82-94% 3-5% 4-13%

DSS (avg) 87% 4% 9%

Altavista > 98% < 1% <1%

CS252/Patterson
Lec 11.272/23/01

Parallel App: Multiprogramming and OS

• 2 independent copies of the compile phase of
the Andrew benchmark (parallel make 8 CPUs)

• 3 phases: compiling the benchmarks; installing
the object files in a library; removing the
object files (I/O little, lot, almost all)

User Kernel Synch.
wait

I/O
(CPU Idle)

%
instruc
tions

27% 3% 1% 69%

% time 27% 7% 2% 64%

CS252/Patterson
Lec 11.282/23/01

Parallel App: Scientific/Technical
• FFT Kernel: 1D complex number FFT

– 2 matrix transpose phases => all-to-all communication
– Sequential time for n data points: O(n log n)
– Example is 1 million point data set

• LU Kernel: dense matrix factorization
– Blocking helps cache miss rate, 16x16
– Sequential time for nxn matrix: O(n3)
– Example is 512 x 512 matrix

CS252/Patterson
Lec 11.292/23/01

Parallel App: Scientific/Technical
• Barnes App: Barnes-Hut n-body algorithm solving

a problem in galaxy evolution
– n-body algs rely on forces drop off with distance;

if far enough away, can ignore (e.g., gravity is 1/d2)
– Sequential time for n data points: O(n log n)
– Example is 16,384 bodies

• Ocean App: Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential eq.s’

– red-black Gauss-Seidel colors points in grid to consistently
update points based on previous values of adjacent neighbors

– Multigrid solve finite diff. eq. by iteration using hierarch. Grid
– Communication when boundary accessed by adjacent subgrid
– Sequential time for nxn grid: O(n2)
– Input: 130 x 130 grid points, 5 iterations

CS252/Patterson
Lec 11.302/23/01

Parallel Scientific App: Scaling
• p is # processors
• n is + data size
• Computation scales

up with n by O(),
scales down linearly
as p is increased

• Communication
– FFT all-to-all so n
– LU, Ocean at

boundary, so n1/2

– Barnes complex:
n1/2 greater distance,
x log n to maintain
bodies relationships

– All scale down 1/p1/2

App Scaling
compu-
tation

Scaling
communi
cation

Scaling
comp -
to-comm

FFT n log n/p n/p log n
LU n/p n1/2/p1/2 n1/2/p1/2

Barnes n log n/p n1/2 log n
/p1/2

n1/2/p1/2

Ocean n/p n1/2/p1/2 n1/2/p1/2

• Keep n same, but inc. p?
• Inc. n to keep comm. same w. +p?

Page 6

CS252/Patterson
Lec 11.312/23/01

Amdahl’s Law and Parallel Computers

• Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction sequetial to get 80X speedup
from 100 processors? Assume either 1 processor
or 100 fully used

80 = 1 / [(FracX/100 + (1-FracX)]
0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
FracX = (80-1)/79.2 = 0.9975
• Only 0.25% sequential!

CS252/Patterson
Lec 11.322/23/01

Small-Scale—Shared Memory

• Caches serve to:
– Increase
bandwidth versus
bus/memory

– Reduce latency of
access

– Valuable for both
private data and
shared data

• What about cache
consistency?

Time Event $ A $ B X
(memo
ory)

0 1
1 CPU A

reads X
1 1

2 CPU B
reads X

1 1 1

3 CPU A
stores 0
into X

0 1 0

CS252/Patterson
Lec 11.332/23/01

What Does Coherency Mean?

• Informally:
– “Any read must return the most recent write”
– Too strict and too difficult to implement

• Better:
– “Any write must eventually be seen by a read”
– All writes are seen in proper order (“serialization”)

• Two rules to ensure this:
– “If P writes x and P1 reads it, P’s write will be seen by

P1 if the read and write are sufficiently far apart”
– Writes to a single location are serialized:

seen in one order
» Latest write will be seen
» Otherewise could see writes in illogical order

 (could see older value after a newer value)

CS252/Patterson
Lec 11.342/23/01

Potential HW Cohernecy Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond accordingly
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes (discuss later)
– Keep track of what is being shared in 1 centralized place (logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes

CS252/Patterson
Lec 11.352/23/01

Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and

update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration

CS252/Patterson
Lec 11.362/23/01

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read

Page 7

CS252/Patterson
Lec 11.372/23/01

Snooping Cache Variations

Berkeley
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

CS252/Patterson
Lec 11.382/23/01

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and

dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses

CS252/Patterson
Lec 11.392/23/01

Snoopy-Cache State Machine-I
• State machine

for CPU requests
for each
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

CS252/Patterson
Lec 11.402/23/01

Snoopy-Cache State Machine-II
• State machine

for bus requests
 for each
cache block

• Appendix E? gives
details of bus
requests

Invalid
Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

CS252/Patterson
Lec 11.412/23/01

Place read miss
on bus

Snoopy-Cache State Machine-III
• State machine

for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

CS252/Patterson
Lec 11.422/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Page 8

CS252/Patterson
Lec 11.432/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS252/Patterson
Lec 11.442/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS252/Patterson
Lec 11.452/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS252/Patterson
Lec 11.462/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS252/Patterson
Lec 11.472/23/01

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

CS252/Patterson
Lec 11.482/23/01

Implementation Complications
• Write Races:

– Cannot update cache until bus is obtained
» Otherwise, another processor may get bus first,

and then write the same cache block!
– Two step process:

» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic:

can have multiple outstanding transactions for a block
» Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

Page 9

CS252/Patterson
Lec 11.492/23/01

Implementing Snooping Caches

• Multiple processors must be on bus, access to both
addresses and data

• Add a few new commands to perform coherency,
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags,
could interfere with CPU just to check:

– solution 1: duplicate set of tags for L1 caches just to allow
checks in parallel with CPU

– solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

CS252/Patterson
Lec 11.502/23/01

Implementing Snooping Caches

• Bus serializes writes, getting bus ensures no one else
can perform memory operation

• On a miss in a write back cache, may have the
desired copy and its dirty, so must reply

• Add extra state bit to cache to determine shared or
not

• Add 4th state (MESI)

CS252/Patterson
Lec 11.512/23/01

Fundamental Issues
• 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Performance: Latency and Bandwidth

(covered earlier)

CS252/Patterson
Lec 11.522/23/01

Fundamental Issue #1: Naming
• Naming: how to solve large problem fast

– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by
a compiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing

• Choice of naming affects replication of
data; via load in cache memory hierarchy or
via SW replication and consistency

CS252/Patterson
Lec 11.532/23/01

Fundamental Issue #1: Naming
• Global physical address space:

any processor can generate, address and access it in
a single operation

– memory can be anywhere:
virtual addr. translation handles it

• Global virtual address space: if the address space of
each process can be configured to contain all shared
data of the parallel program

• Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel program

CS252/Patterson
Lec 11.542/23/01

Fundamental Issue #2:
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address

=> additional operations to explicitly
coordinate:
e.g., write a flag, awaken a thread, interrupt
a processor

Page 10

CS252/Patterson
Lec 11.552/23/01

Summary: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS
Interconnection HW

