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Who Cares?

• DSP is a key enabling technology for many t
products

• DSP-intensive tasks are the performance bo
computer applications today

• Computational demands of DSP-intensive ta
very rapidly

• In many embedded applications, general-pur
microprocessors are not competitive with DS
processors today

• 1997 market for DSP processors: $3 billion 
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Example DSP Application

• Digital cellular phones • Satellite

• Automated inspection • Seismic

• Vehicle collision avoidance • Secure 

• Voice over Internet • Tapeles

• Motor control • Sonar

• Consumer audio • Cordles

• Voice mail • Digital c

• Navigation equipment • Modem

• Audio production • Noise c

• Videoconferencing • Medica

• Pagers • Patient 

• Music synthesis, effects • Radar
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DSP Tasks for Microprocess

• Speech and audio compression

• Filtering

• Modulation and demodulation

• Error correction coding and decoding

• Servo control

• Audio processing (e.g., surround sound, nois
equalization, sample rate conversion, echo c

• Signaling (e.g., DTMF detection)

• Speech recognition

• Signal synthesis (e.g., music, speech synthe
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What Do DSP Processors Need to

Most DSP tasks require:

• Repetitive numeric computations

• Attention to numeric fidelity  

• High memory bandwidth, mostly via array ac

• Real-time processing

Processors must perform these tasks efficiently wh

• Cost

• Power

• Memory use

• Development time
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FIR Filtering: A Motivating Pro

Each tap (M+1 taps total) nominally requires:

• Two data fetches

• Multiply

• Accumulate

• Memory write-back to update delay line

D

x
h[0]

x[n]
D

+

h[1]

D

+

h[M-1] h[M

x[n-(M-1)]x[n-1]
• • •

• • •

a “tap”
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FIR Filter on Von Neumann Arch

loop:

mov *r0,x0
mov *r1,y0
mpy x0,y0,a
add a,b
mov y0,*r2
inc r0
inc r1
inc r2
dec ctr
tst ctr
jnz loop

Problems: Bus / memory bandwidth bottleneck, con

Pro

Me
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First Generation DSP (198
Texas Instruments TMS320

• 16-bit fixed-point

• Harvard architecture

• Accumulator

• Specialized instruction 
set

• 390 ns MAC time
(228 ns today)

Data Path

Regis

AL

Ac

Data or
Program Bus
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TMS32010 FIR Filter Cod

Here X4, H4, etc. are direct (absolute) memory add

LT X4 ; Load T with x(n-4)
MPY H4 ; P = H4*X4

LTD X3 ; Load T with x(n-3); x(n-4) = x(
; Acc = Acc + P

MPY H3 ; P = H3*X3

LTD X2
MPY H2

etc.

• Two instructions per tap, but requires unrolling
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ov *r0,x0
ov *r1,y0
py x0,y0,a
dd a,b
ov y0,*r2

nc r0
nc r1
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Instruction Set

• Specialized, complex 
instructions

• Multiple operations per 
instruction

• Gen
instr

• Typi
ope

General-PuDSP Processor

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 m
m
m
a
m
i
i
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Memory Architecture

• Harvard architecture 

• 2-4 memory accesses/
cycle

• No caches—on-chip 
SRAM

DSP Processor General-Pu
• Von

arch

• Typ
cycl

• May

Processor

Memory
Program

Memory
Data Processor
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Addressing

• Dedicated address generation 
units

• Specialized addressing 
modes; e.g.:

• Autoincrement

• Modulo (circular)

• Bit-reversed (for FFT)

• Good immediate data support

• Often, 
genera

• Genera
modes

DSP Processor General-Pu
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Execution Control

• Hardware support for fast looping

• “Fast interrupts” for I/O handling

• Real-time debugging support
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Specialized Peripherals for D

• Host p

• Bit I/O

• On-ch

• Clock 

• Synchronous serial ports

• Parallel ports

• Timers

• On-chip A/D, D/A converters

• On-chip peripherals often designed for “backgrou
even when core is powered down.
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Second Generation DSPs (1
Example: Motorola DSP560

• 24-bit data, instructions

• 3 memory spaces (X, Y, P)

• Parallel moves

• Single- and multi-
instruction hardware
loops

• Modulo addressing

• 75 ns MAC (21 ns today)

P Memory

move #Xaddr,r0
move #Haddr,r4
rep #Ntaps
mac x0,y0,a x:(r0)+

• Other second-generation processors: AT&T DSP16A
ADSP-2100, Texas Instruments TMS320C50
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Low-Cost General-Purpose Processor vs.
Speed (BDTImarks™ ) 
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Third Generation DSPs (19
Examples: Motorola DSP56301, TI T

• Enhanced conventional DSP architectures

• 3.0 or 3.3 volts

• More on-chip memory

• Application-specific function units in data path or 

• More sophisticated debugging and application de

• DSP cores (Pine and Oak from DSP Group, cDS

• 20 ns MAC (10 ns today)

Architectural innovation mostly limited to adding ap
function units and miscellaneous minor refinements

• Also, multiple processors/chip (TI TMS320C80, M
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VLIW

Very long instruction word (VLIW) 
architectures are garnering increased 
attention for DSP applications.

Notable recent introductions include 
Texas Instruments’ TMS320C62xx and 
Philips’ TM1000.

Major features:

• Multiple independent operations per cycle

• Packed into a single large “instruction” 

• More regular, orthogonal, RISC-like operatio

• Large, uniform register sets

Data Path
Reg

L1
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VLIW

Advantages:

• Increased performance  

• More regular architectures

• Potentially easier to program; better co

• Scalable? 

Disadvantages:

• New kinds of programming/compiler complex

• Code size bloat

• High program memory bandwidth requ

• High power consumption
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General-Purpose Processors are Ca

“Go where the cycles are...”

General-purpose processors are increasingly addin
via a variety of mechanisms:

• Add single-instruction, multiple-data instructi
(e.g., MMX Pentium)

• Integrate a fixed-point DSP processor-like da
resources with an existing µC/µP core (e.g

• Add a DSP co-processor to an existing µC
Piccolo)

• Create an all-new, hybrid architecture (e.g., S
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The General-Purpose Processor

High-performance general-purpose processors for 
workstations are increasingly suitable for some DSP

• E.g., Intel MMX Pentium, Motorola/IBM Powe

These processors achieve excellent to outstanding 
fixed-point DSP performance via:

• Very high clock rates (200-500 MHz)

• Superscalar (“multi-issue”) architectures

• Single-cycle multiplication and arithmetic ops

• Good memory bandwidth 

• Branch prediction

• In some cases, single-instruction, multiple-da
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High-Performance General-Purpose 

Advantages:

• Strong DSP performance

• Already present in PCs

• Strong tool support for the major processors

• Cost-performance can rival that of floating-po

Disadvantages:

• Lack of execution timing predictability

• Difficulty of developing optimized DSP code

• Limited DSP-oriented tool support

• High power consumption 

• Cost-performance does not approach that of





The Evolution of DSP Processors

enge

r. update

tr. update

peration

update
Page 29 of 35
11/17/97
© 1997 Berkeley Design Technology, Inc.

Example of Optimization Chall

Vector addition on PowerPC 604e:

@vec_add_loop:

lfsu fpTemp1,4(rAAddr) # Load A data, pt

lfsu fpTemp2,4(rBAddr) # Load B data, p

fadds fpSum,fpTemp1,fpTemp2 # Perform add o

stfsu fpSum,4(rCAddr) # Store sum, ptr. 

bdnz @vec_add_loop # loop

Q: How many instruction cycles per iteration?
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MMX Pentium FIR Filter Inner

loop1:
pmaddwd mm0, COEFaddr[edi] 4 MADs (r
paddd   mm7, mm2 Complet
pmaddwd mm1, COEFaddr[edi+8] next 4 MA
paddd   mm7, mm3 Complet
movq    mm2, [esi+16] Load next 4 
movq    mm3, [esi+24] Load next 4 
paddd   mm7, mm0 Complet
pmaddwd mm2, COEFaddr[edi+16] Again, wit
paddd   mm7, mm1  (unrolle
pmaddwd mm3, COEFaddr[edi+24]   load-rela
movq    mm0, [esi+32]
movq    mm1, [esi+40]
add     edi, 32 Update coeff
add     esi, 32 Update data 
dec     ecx Decremen
jnz     loop1 Branch to to
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MMX Pentium FIR Filter Inner

Latencies:

• Multiply: 3 cycles (not 3 instructions )

Superscalar execution

• Up to two instructions/cycle

• Can pair one simple MMX instruction with an
complex MMX instruction or non-MMX intege

• Complicated pairing rules

Branch prediction

Throughput: ~2 16-bit MACs/cycle
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Processor DSP Speed
BDTImarks™
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Conclusions

• DSP processor performance has increased by a 
over the past 15 years (~40%/year)

• Processor architectures for DSP will be increasin
applications, especially communications applicati

• General-purpose processors will become viable f
applications

• Users of processors for DSP will have an expand

• Selecting processors requires a careful, applicatio
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For More Information

http://www.bdti.com Collection of BDT
DSP processor
benchmarking.

http://www.eg3.com/dsp Links to other go

Microprocessor Report For info on new

DSP Processor Fundamentals , Textbook on DS
BDTI

IEEE Spectrum , July, 1996 Article on DSP 

Embedded Systems Prog. Article on Choo
October, 1996

Or, Join BDTI... We’re hiring (se
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	loop:
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	First Generation DSP (1982): Texas Instruments TMS32010
	• 16-bit fixed-point
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	• Accumulator
	• Specialized instruction set
	• 390 ns MAC time (228 ns today)

	TMS32010 FIR Filter Code
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	• Enhanced conventional DSP architectures
	• 3.0 or 3.3 volts
	• More on-chip memory
	• Application-specific function units in data path or as co-processors
	• More sophisticated debugging and application development tools
	• DSP cores (Pine and Oak from DSP Group, cDSP from TI)
	• 20 ns MAC (10 ns today)
	Architectural innovation mostly limited to adding application-specific function units and miscell...
	• Also, multiple processors/chip (TI TMS320C80, Motorola MC68356)
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	• Packed into a single large “instruction” or “packet”

	• More regular, orthogonal, RISC-like operations
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	• New kinds of programming/compiler complexity
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