
1

CS 152
 Computer Architecture and Engineering

Introduction to Architectures for Digital Signal Processing

Nov. 12, 1997
Bob Brodersen

(http://infopad.eecs.berkeley.edu)

2

Processor Applications

• General Purpose - high performance
– Pentiums, Alpha’s, SPARC
– Used for general purpose software
– Heavy weight OS - UNIX, NT
– Workstations, PC’s

• Embedded processors and processor cores
– ARM, 486SX, Hitachi SH7000, NEC V800
– Single program
– Lightweight, often realtime OS
– DSP support
– Cellular phones, consumer electronics (e.g. CD players)

• Microcontrollers
– Extremely cost sensitive
– Small word size - 8 bit common
– Highest volume processors by far
– Automobiles, toasters, thermostats, ...

In
cr

ea
si

ng
C

os
t

Increasing
volum

e

3

The Processor Design Space

Cost

Pe
rf

or
m

an
ce

Microprocessors

Performance is
everything
& Software rules

Embedded
processors

Microcontrollers

Cost is everything

Application specific
architectures
for performance

World’s Cellular Subscribers

0

100

200

300

400

500

600

700

1993 1994 1995 1996 1997 1998 1999 2000 2001

Millions

Year

Digital

Analog

Source: Ericsson Radio Systems, Inc.

Will provide
a ubiquitous
infrastructure
for wireless
data as well

as voice

5

Multimedia I/O Architecture

Low Power Bus

Radio
Modem

Embedded
Processor

Fifo Video
Decomp

VideoAudio

FB Fifo

Graphics

Pen

Sched ECC Pact Interface

Data
Flow

SRAM

6

Embedded applications

• Future chips will be a mix
of processors, memory
and dedicated hardware
for specific algorithms
and I/O

µP

DSPC
om

s

Video Unit

custom
Memory

Uplink Radio

Downlink Radio

Graphics Out

Video I/O

Voice I/O

Pen In

E.g. Multimedia terminal electronics

7

Requirements of the Embedded Processors

• Optimized for a single program - code often in on-chip
ROM or off chip EPROM

• Minimum code size (one of the motivations initially for
Java)

• Performance obtained by optimizing datapath
• Low cost

– Lowest possible area
– Technology behind the leading edge
– High level of integration of peripherals (reduces system cost)

• Fast time to market
– Compatible architectures (e.g. ARM) allows reuseable code
– Customizable core

• Low power if application requires portability

8

Area of processor cores = Cost

Nintendo processor Cellular phones

9

Another figure of merit
Computation per unit area

Nintendo processor Cellular phones???

10

National Semiconductor - Embedded
Processor Family

• Simple architecture
• 3 stage pipeline - fetch - decode - execute
• Minimum power and size

– Short pipeline avoids branch prediction and bypass
– Versions range from 8-64 bit - choose minimum that

meets requirements

11

Code size

• If a majority of the chip is the program stored in
ROM, then code size is a critical issue

• The Piranha has 3 sized instructions - basic 2 byte,
and 2 byte plus 16 or 32 bit immediate

12

Example application (single chip system)

13

The DSP Module (DSPM)

• Vector instructions directly supported
• Pipelined datapath supprts single cycle: Multiply,

Add, Shift, Load/Store and Pointer adjustment
• Operates in parallel to processor core
• Saturation, overflow and rounding for ALU

operations
• Automatic support for cyclic buffers (modulo

arithmetic)

14

The National DSP Module Architecture

Single cycle MAC
support is typical for

DSP acceleration

Three simultaneous
addresses

Zero overhead
 repeat

X Y Z

15

The 486 “Embedded Processor”
Look familiar???

16

The “Embedded” Features of the 486 GX

• Said to be designed “for embedded battery-
operated and hand-held applications” (???)

• Fully static design (clock can stop and all state is
kept)

• “Auto Clock Freeze” stops circuits which are not
being used in a given instruction (gated clocks)

• Stop Clock (60 µW), Stop Grant - clock runs but
no program execution (40-85 mW)

• Split power supply - 2.0-3.3 Volt core, 3.3V. I/O,

17

Power = C V2 fclock

 130 mW

 350 mW

 430 mW

 290 mW

 190 mW

 540 mW

 490 mW
 730 mW

 17 mW

 23 mW

 30 mW

 20 mW

 Power

Note the clock rates

18

Characterizing programs for their energy
consumption

Process Subframe 330µW
ComputeLag 107µW

IFilterCodebook 63µW

QuantizeGains 46µW

CodebookSearch 44µW

ComputeWeightedInput 22µW

UpdateFilterState 8µW

OrthogonalizeCodebook 6µW

ThetaToCodeword 8µW

ComputeLag(...)
{
R=dotprod(res,res);
for (lag=0..127)
{

lp=getLT(lt);
G = dotprod(lp, lp);

}
}

Top four functions account for 90 % of the power
65% of power dissipation in dot-vector products

(data obtained from profiling of C++-code, weighted with
estimated instruction energy costs)

19

An architecture optimized for multiply-
accumulate

Energy/Flexibility Tradeoff’s

Arm 6 core (5V, 20 MHz):
.02 MIPS/mW

ZSP DSP Superscaler (3V, 200 MHz)
.3 MOPS/mW

Reconfigurable Dot-Vector Processor
(1.5V, 30 MHz)
5.9 MIPS/mW

* MOPS = millions of operations/sec
 = millions of MACS/sec

AddressGen AddressGen

Memory Memory

MAC MAC

Control
Processor

L CG

20

DSP Application - equalization

• The audio data streams from the source (computer) through the
digital analysis and synthesis

• Hard realtime requirement - the processing must be done at the
sample rate

21

Common DSP algorithms and applications

• Applications
– Instrumentation and measurement
– Communications
– Audio and video processing
– Graphics, image enhancement, 3-D rendering
– Navigation, radar, GPS
– Control - robotics, machine vision, guidance

• Algorithms
– Frequency domain filtering - FIR and IIR
– Frequency-time transformations - FFT
– Correlation

22

Sampled data processing

This analog circuit really is just an solution of the differential equation
calculated using the physics of electric fields and currents:

This RC low pass filter takes this time waveform (signal) and turns it into this
 filtered version

Vout(t)Vin(t)
R

C

)()(tVtV
dt

dVRC inout
out =+

To implement this digitally we need to convert this expression to discrete
time. First we need to convert from a continuous time representation of
the signal to discrete time sequences: Vout (t) => Y1 Y2 Y3 … Yn and

Vin(t) => X1 X2 X3 … Xn

23

Discrete time representation

Now what is the processing that goes on to implement the
filtering?

Using a discrete approximation to the derivative we obtain the
discrete time equivalent of the continuous time differential
equation:

∆t = tsample=1/fsample

The sampled version of Vin(t) is a sequence of numbers 6,8,4,12, … .
This then provides the input to the digital signal processing algorithm

Digital
signal

processor

11
1

−−
− =+

∆
−

nn
nn XY

t
YYRC

Y1Y2Y3 … .X1X2X3 … .

24

A computational structure

This can be rewritten as:

since the new sample is only a function of past samples it can
be computed using the following procedure:

nnnnn XYX
RC

tY
RC

tY βα +=

 ∆+

 ∆−= −−− 1111

Σ

DelayX

Xn X

β

α

Yn

αYn-1

25

Direct mapping architecture

• These calculations need to be finished after every sample
period, since Yn depends on Yn-1 and new data is
continuously coming => hard real time requirement

• In each sample period there are 2 multiply adds and one
accumulate.

• We could directly map this structure into hardware and
then the delay becomes a pipeline register and we would
need two multipliers and an adder - this is the most direct
approach, almost no control, but also no flexibility

Σ

DelayX

Xn X

β

α

Yn

αYn-1

26

Filter structures

27

• The critical hardware unit in a DSP is the multiplier - much
of the architecture is organized around allowing use of the
multiplier on every cycle

• This means providing two operands on every cycle,
through multiple data and address busses, multiple address
units and local accumulator feedback

1 2

3 D5

4

Σ

DX

Xn X

β

α

Yn

αYn-1

1 3

2

4

5

6

6

Mapping of the filter onto a DSP execution unit

28

IIR and FIR filters

• Infinite Impulse Response (IIR) filter - has a feedback loop and the
response to an impulse goes on forever

• The impulse response completely characterizes the filter response, so a
more direct (purely digital) approach is the finite impulse response
filter or FIR.

Σ

DX

X

β

α

Yn

αYn-1

1

000

h1 h2

h3

h4

h5

29

FIR filter frequency response

• FIR filters are a very general structure and form
the base of much more sophisticated processing,
e.g. adaptive filters which make possible 56 kbit
modems

15 stages 128 stages

30

Transformations result in different critical
paths for direct map architectures

D D D D

X

Σ

X

Σ

X

Σ

X

Σ

X

X

Y

h1 h2 h3 h4 h5

MAC
computations

X

Σ

X

Σ

X

Σ

X

Σ

X

X

Y

h1 h2 h3 h4 h5

D D D D

Critical path = 4 adders + multiply

Critical path = 1 adder + multiply

31

Delay Lines

• Shift register

– Very inefficient in area and power
• since shift register cells are much larger than RAM
• ALL data must move every cycle

• Delay using circular buffers - use of modulo arithmetic

X5 X4 X3 X2 X1

0 [X1]

X5

2 [X3]
1 [X2]

Read
Write

X5X6X7

3 [X4]

X1

4

0 [X6]

2 [X3]
1 [X7]

3 [X4]
4 [X5]

0 [X6]

2 [X3]
1 [X2]

3 [X4]
4 [X5]

0 [X1]

2 [X3]
1 [X2]

3 [X4]
4 [X5]

Write address = (N modulo 5) -1
Read address = N modulo 5

N=4

?

X2
X3X4

X6

N=5 N=6 N=7

X7

X1

N= time index

32

FFT support

• “Flow diagram” of FFT
algorithm - again based
on multiply adds

Ax0

x4

 => A * (x0+x4)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Bit reversed addressing - what is the pattern?
000 000
001 010
010 100
011 110

33

Address calculation unit for DSP

• Supports modulo and bit reversal
arithmetic

• Often duplicated to calculate multiple
addresses per cycle

34

Lets look at an application -
Supporting the Road Warrior of 1999

GSM
IS-54
IS-96
DCS1800
PCS-1900
DECT
PHS
PDC
etc

37

How to implement a software radio

• Convert to digital representation as close to the
antenna as possible

• Determine the best architecture to perform the DSP
(FFT’s, filters, correlators, …)

LNA and AGC

A/D
Digital
Signal

Processing

fsamp

38

Example of the digital processing -
Direct sequence spread spectrum (CDMA)

• Modulator (transmit side)
Xtbit

tchip

Spreading code
Data Input Spread output data

• Demodulator (transmit side) - a correlator is needed
to decode the data

X

tbit

tchip
A

cc

Again we have a MAC requirement,
accumulations are performed at the chip rate

39

Effficiency of direct mapping -
 CDMA digital baseband architecture

Phase Control

C
om

pa
ra

to
r

Corre la tor
De lay

Walsh
Decode

Corre la tor

Clock
Mux

Loop
Gain

P
/N

D
es

cr
am

bl
er

256 MHz
Clk

Timing Recovery

Data Recovery

RAKE
Combine r

Corre la tor
(x3)

A
na

lo
g

R
F

S
ec

tio
n

D
at

a
M

ux

Dig ital Clocks

Correlator
(x3)

Channel Es timator

Correlator
Adjacent Ce ll Scan

(Bits Out)

(De lay Locked Loop)

128 MHz 64 MHz

1 MHz

~1000 Mops using 27 mW at
1.5 volts - 30Mops/mW

40

Summary
How is DSP different?

• Essentially infinite streams of data which need to
be processed in real time

• Relatively small programs and data storage
requirements

• Intensive arithmetic processing with low amount
of control and branching (in the critical loops)

• High amount of I/O with analog interface
• Loosely coupled multiprocessor operation

41

Summary
How are DSP µP’s different

• Single cycle multiply accumulate (multiple busses and
array multipliers)

• Complex instructions for standard DSP functions (IIR and
FIR filters, convolvers)

• Specialized memory addressing
– Bit reversal (FFT)
– Modular arithmetic for circular buffers (delay lines)

• Zero overhead loops and repeat instructions
• I/O support

– Serial and parallel ports
– DMA
– A/D and D/A interface

• Limited use of data and instruction caches
• Compiler support for hazard elimination

42

Tradeoff off between high performance µP
and DSP’s

• Advantages of General Purpose µP’s
– High volume production advantages
– High level language and tool support
– Efficient implementation of non-DSP tasks
– Higher clock rates and more advanced technology

• Advantages of DSP µP’s
– Software and developpment support for signal

processing applications (filters, FFT’s, etc.)
– Real Time OS and application libraries
– Minimal support chips
– Variety of versions allow cost/performance/power

tradeoffs
– Low cost

