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Processor Applications

• General Purpose - high performance
– Pentiums, Alpha’s, SPARC
– Used for general purpose software
– Heavy weight OS - UNIX, NT
– Workstations, PC’s

• Embedded processors and processor cores
– ARM, 486SX, Hitachi SH7000, NEC V800
– Single program
– Lightweight, often realtime OS
– DSP support
– Cellular phones, consumer electronics (e.g. CD players)

• Microcontrollers
– Extremely cost sensitive
– Small word size - 8 bit common
– Highest volume processors by far
– Automobiles, toasters, thermostats, ...
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The Processor Design Space

Cost

Pe
rf

or
m

an
ce

Microprocessors

Performance is
everything
& Software rules

Embedded
processors

Microcontrollers

Cost is everything

Application specific
architectures
for performance



World’s Cellular Subscribers

0

100

200

300

400

500

600

700

1993 1994 1995 1996 1997 1998 1999 2000 2001

Millions

Year

Digital

Analog

Source: Ericsson Radio Systems, Inc.

Will provide
a ubiquitous
infrastructure
for wireless
data as well

as voice



5

Multimedia I/O Architecture
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Embedded applications

• Future chips will be a mix
of processors, memory
and dedicated hardware
for specific algorithms
and I/O
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E.g. Multimedia terminal electronics
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Requirements of the Embedded Processors

• Optimized for a single program - code often in on-chip
ROM or off chip EPROM

• Minimum code size (one of the motivations initially for
Java)

• Performance obtained by optimizing datapath
• Low cost

– Lowest possible area
– Technology behind the leading edge
– High level of integration of peripherals (reduces system cost)

• Fast time to market
– Compatible architectures  (e.g. ARM) allows reuseable code
– Customizable core

• Low power if application requires portability
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Area of processor cores = Cost

Nintendo processor Cellular phones
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Another figure of merit
Computation per unit area

Nintendo processor Cellular phones???
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National Semiconductor - Embedded
Processor  Family

• Simple architecture
• 3 stage pipeline - fetch - decode - execute
• Minimum power and size

– Short pipeline avoids branch prediction and bypass
– Versions range from 8-64 bit - choose minimum that

meets requirements
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Code size

• If a majority of the chip is the program stored in
ROM, then code size is a critical issue

• The Piranha has 3 sized instructions - basic 2 byte,
and 2 byte plus 16 or 32 bit immediate
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Example application (single chip system)
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The DSP Module (DSPM)

• Vector instructions directly supported
• Pipelined datapath supprts single cycle: Multiply,

Add, Shift, Load/Store and Pointer adjustment
•  Operates in parallel to processor core
• Saturation, overflow and rounding for ALU

operations
• Automatic support for cyclic buffers (modulo

arithmetic)
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The National DSP Module Architecture

Single cycle MAC
support is typical for

DSP acceleration

Three simultaneous
addresses

Zero overhead
 repeat

X Y Z
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The 486 “Embedded Processor”
Look familiar???
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The “Embedded” Features of the 486 GX

• Said to be designed “for embedded battery-
operated and hand-held applications” (???)

• Fully static design (clock can stop and all state is
kept)

• “Auto Clock Freeze” stops circuits which are not
being used in a given instruction (gated clocks)

• Stop Clock (60 µW), Stop Grant - clock runs but
no program execution (40-85 mW)

• Split power supply - 2.0-3.3 Volt core, 3.3V. I/O,
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Power = C V2 fclock
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Characterizing programs for their energy
consumption

Process Subframe   330µW
ComputeLag   107µW

IFilterCodebook   63µW

QuantizeGains   46µW

CodebookSearch   44µW

ComputeWeightedInput    22µW

UpdateFilterState   8µW

OrthogonalizeCodebook  6µW

ThetaToCodeword   8µW

ComputeLag(...)
{
R=dotprod(res,res);
for (lag=0..127)
{

lp=getLT(lt);
G = dotprod(lp, lp);

}
}

Top four functions account for 90 % of the power
65% of  power dissipation in dot-vector products

(data obtained from profiling of C++-code, weighted with
estimated instruction energy costs)
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An architecture optimized for multiply-
accumulate

Energy/Flexibility  Tradeoff’s

Arm 6 core (5V, 20 MHz):
.02 MIPS/mW

ZSP DSP Superscaler (3V, 200 MHz)
.3 MOPS/mW

Reconfigurable Dot-Vector Processor
(1.5V, 30 MHz)
5.9 MIPS/mW

* MOPS = millions of operations/sec
                = millions of MACS/sec

AddressGen AddressGen

Memory Memory

MAC MAC

Control
Processor

L CG
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DSP Application - equalization

• The audio data streams from the source (computer) through the
digital analysis and synthesis

• Hard realtime requirement - the processing must be done at the
sample rate
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Common DSP algorithms and applications

• Applications
– Instrumentation and measurement
– Communications
– Audio and video processing
– Graphics, image enhancement, 3-D rendering
– Navigation, radar, GPS
– Control - robotics, machine vision, guidance

• Algorithms
– Frequency domain filtering - FIR and IIR
– Frequency-time transformations - FFT
– Correlation
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Sampled data processing

This analog circuit really is just an solution of the differential equation
calculated using the physics of electric fields and currents:

This RC low pass filter takes this time waveform (signal) and turns it into this
 filtered version

Vout(t)Vin(t)
R

C

)()( tVtV
dt

dVRC inout
out =+

To implement this digitally we need to convert this expression to discrete
time. First we need to convert from a continuous time representation of
the signal to discrete time sequences: Vout (t) => Y1 Y2 Y3 …  Yn and

Vin(t) => X1 X2 X3 …  Xn
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Discrete time representation

Now what is the processing that goes on to implement the
filtering?

Using a discrete approximation to the derivative we obtain the
discrete time equivalent of the continuous time differential
equation:

∆t = tsample=1/fsample

The sampled version of Vin(t) is a sequence of numbers 6,8,4,12, … .
This then provides the input to the digital signal processing algorithm
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A computational structure

This can be rewritten as:

since the new sample is only a function of past samples it can
be computed using the following procedure:
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Direct mapping architecture

• These calculations need to be finished after every sample
period, since Yn depends on Yn-1 and new data  is
continuously coming => hard real time requirement

• In each sample period there are 2 multiply adds and one
accumulate.

• We could directly map this structure into hardware and
then the delay becomes a pipeline register and we would
need two multipliers and an adder - this is the most direct
approach, almost no control, but also no flexibility

Σ

DelayX

Xn X

β

α

Yn

αYn-1



26

Filter structures
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• The critical hardware unit in a DSP is the multiplier - much
of the architecture is organized around allowing use of the
multiplier on every cycle

• This means providing two operands on every cycle,
through multiple data and address busses, multiple address
units and local accumulator feedback

1 2

3 D5

4

Σ

DX

Xn X

β

α

Yn

αYn-1

1 3

2

4

5

6

6

Mapping of the filter onto a DSP execution unit
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IIR and FIR filters

• Infinite Impulse Response (IIR) filter - has a feedback loop and the
response to an impulse goes on forever

• The impulse response completely characterizes the filter response, so a
more direct (purely digital) approach is the finite impulse response
filter or FIR.
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FIR filter frequency response

• FIR filters are a very general structure and form
the base of much more sophisticated processing,
e.g. adaptive filters which make possible 56 kbit
modems

15 stages 128 stages
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Transformations result in different critical
paths for direct map architectures
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Delay Lines

• Shift register

– Very inefficient in area and power
• since shift register cells are much larger than RAM
• ALL data must move every cycle

• Delay using circular buffers - use of modulo arithmetic 

X5 X4 X3 X2 X1

0   [X1]

X5

2   [X3]
1   [X2]

Read
Write

X5X6X7

3   [X4]
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Write address = (N modulo 5) -1
Read address = N modulo 5

N=4

?
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N= time index
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FFT support

• “Flow diagram” of FFT
algorithm - again based
on multiply adds
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Address calculation unit for  DSP

• Supports modulo and bit reversal
arithmetic

• Often duplicated to calculate multiple
addresses per cycle
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Lets look at an application -
Supporting the Road Warrior of 1999

GSM
IS-54
IS-96
DCS1800
PCS-1900
DECT
PHS
PDC
etc
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How to implement a software radio

• Convert to digital representation as close to the
antenna as possible

•  Determine the best architecture to perform the DSP
(FFT’s, filters, correlators, … )

LNA and  AGC

A/D
Digital
Signal

Processing

fsamp
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Example of the digital processing -
Direct sequence spread spectrum (CDMA)

• Modulator (transmit side)
Xtbit

tchip

Spreading code
Data Input Spread output data

• Demodulator (transmit side) - a correlator is needed
to decode the data

X

tbit

tchip
A

cc

Again we have a MAC requirement, 
accumulations are performed at the chip rate
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Effficiency of direct mapping -
 CDMA digital baseband architecture
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Summary
How is DSP different?

• Essentially infinite streams of data which need to
be processed in real time

• Relatively small programs and data storage
requirements

• Intensive arithmetic processing with low amount
of control and branching (in the critical loops)

• High amount of I/O with analog interface
• Loosely coupled multiprocessor operation
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Summary
How are DSP µP’s different

• Single cycle multiply accumulate (multiple busses and
array multipliers)

• Complex instructions for standard DSP functions (IIR and
FIR filters, convolvers)

• Specialized memory addressing
– Bit reversal (FFT)
– Modular arithmetic for circular buffers (delay lines)

• Zero overhead loops and repeat instructions
• I/O support

– Serial and parallel ports
– DMA
– A/D and D/A interface

• Limited use of data and instruction caches
• Compiler support for hazard elimination
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Tradeoff off between high performance µP
and DSP’s

• Advantages of General Purpose µP’s
– High volume production advantages
– High level language and tool support
– Efficient implementation of non-DSP tasks
– Higher clock rates and more advanced technology

• Advantages of DSP µP’s
– Software and developpment support for signal

processing applications (filters, FFT’s, etc.)
– Real Time OS and application libraries
– Minimal support chips
– Variety of versions allow cost/performance/power

tradeoffs
– Low cost


