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Estimation problems with constrained parameter spaces arise in various
settings. In many of these problems, the observations available to the statis-
tician can be modelled as arising from the noisy realization of the image
of a random linear operator; an important special case is random design re-
gression. We derive sharp rates of estimation for arbitrary compact elliptical
parameter sets and demonstrate how they depend on the distribution of the
random linear operator. Our main result is a functional that characterizes the
minimax rate of estimation in terms of the noise level, the law of the random
operator, and elliptical norms that define the error metric and the parameter
space. This nonasymptotic result is sharp up to an explicit universal constant,
and it becomes asymptotically exact as the radius of the parameter space is
allowed to grow. We demonstrate the generality of the result by applying it to
both parametric and nonparametric regression problems.

1. Introduction. In this paper, we study the problem of estimating an unknown vector θ‹

on the basis of random linear observations corrupted by noise. More concretely, suppose that
we observe a random operator Tξ and a random vector y, which are linked via the equation

(1) y “ Tξpθ‹q `w.

This observation model involves two forms of randomness: the unobserved vector w, which
is a form of additive observation noise, and the observed operator Tξ , which is random, as
indicated by its dependence on an underlying random variable ξ, and is linear in the argument
θ‹.

While relatively simple in appearance, the observation model (1) captures a broad range
of statistical estimation problems.

EXAMPLE 1 (Linear regression). We begin with a simple but widely used model: linear
regression. The goal is to estimate the coefficients θ‹ P Rd that define the best linear predictor
x ÞÑ xx, θ‹y of some real-valued response variable Y P R. In order to do so, we observe a
collection of pxi, yiq pairs linked via the noisy observation model

yi “ xxi, θ
‹y `wi for i“ 1, . . . , n.

If we define the concatenated vector y “ py1, . . . , ynq, with an analogous definition for w, this
is a special case of our general setup with the random linear operator Tξ :Rd Ñ Rn given by

rTξpθqsi “ xxi, θy for i“ 1, . . . , n.(2)

Here, the random index corresponds to the covariate vectors so that ξ “ px1, . . . , xnq; note
that we have imposed no assumptions on the dependence structure of these covariate vec-
tors. In the classical setting, these covariates are assumed to be drawn in an i.i.d. manner;
however, our general set-up is by no means limited to this classical setting. In the sequel, we
consider various examples with interesting dependence structure, and our theory gives some
very precise insights into the effects of such dependence.
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EXAMPLE 2 (Nonparametric regression). In the preceding example, we discussed the
problem of predicting a response variable Y P R in a linear manner. Let us consider the
nonparametric generalization: here our goal is to estimate the regression function f‹pxq –

ErY |X “ xs, which need not be linear as a function of x. Given observations tpxi, yiquni“1,
we can write them in the form

yi “ f‹pxiq `wi, for i“ 1, . . . , n,

where wi “ yi ´ ErY |X “ xis are zero-mean noise variables.
Now let us suppose that f‹ belongs to some function class F contained with L2pX q,

and show how this observation model can be understand as a special case of our setup with
θ‹ P ℓ2pNq. Take some orthonormal basis tϕjujě1 of L2pX q. Any function in F can then be
expanded as f “

ř

jě1 θjϕj for some sequence θ P ℓ2pNq. Letting ξ “ px1, . . . , xnq, we can
define the operator Tξ : ℓ2pNq Ñ Rn via

θ ÞÑ rTξpθqsi –

8
ÿ

j“1

θjϕjpxiq for i“ 1, . . . , n,

so that this problem can be written in the form of our general model (1). Observe that the ran-
domness in the observation operator Tξ arises via the randomness in sampling the covariates
txiu

n
i“1.

EXAMPLE 3 (Tomographic reconstruction). The problem of tomographic reconstruction
refers to the problem of recovering an image, modeled as a real-valued function f‹ on some
compact domain X Ă R2, based on noisy integral measurements. Formally, we observe re-
sponses of the form

yi “

ż

X
hpxi, uqf‹puqdu`wi for i“ 1, . . . , n,

where h :R2 ˆ R2 Ñ R is a known window function. If we again view f‹ as belonging to
some function class F within L2pX q, then we can write this model in our general form with

rTξpvqsi “
ÿ

jě1

vj

”

ż

X
hpxi, uqϕjpuqdu

ı

, and ξ “ px1, . . . , xnq.

Here we have followed the same conversion as in Example 2, in particular re-expressing f‹ in
terms of its generalized Fourier coefficients with respect to an orthonormal family tϕjujě1.

EXAMPLE 4 (Error-in-variables). Consider the Berkson variant [6, 14] of the error-in-
variables problem in nonparametric regression. In this problem, an observed covariate x—
instead of being associated with a noisy observation of f‹pxq—is associated with a noisy
observation of the “jittered” evaluation f‹px`uq, where u P R is the random jitter. Formally,
we observe n pairs pxi, yiq of the form

yi “ f‹pxi ` uiq ` εi for i“ 1, . . . , n,

where the unobserved random jitter ui is drawn independently of the pair pxi, εiq. We can
re-write these observations as a special case of our general model with ξ “ px1, . . . , xnq, and

rTξpfqsi – Eu

“

fpxi ` uq
‰

, and wi – εi `

!

fpxi ` uiq ´ Eu

“

fpxi ` uq
‰

)

for i“ 1, . . . , n.

Note that the new noise variables wi are again zero-mean, and our assumption that Tξ is
observed means that the distribution of the jitter u is known.
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These examples (and others, as discussed below in Section 1.2) motivate our study of
the operator model (1). As we discuss in further detail later, a key advantage of writing the
observation model in this form is that it will allow us to separate three key components of
the difficulty of the problem: (i) the distribution of the random operator Tξ , as expressed via
the distribution of ξ, (ii) the distribution of the noise variable w – y ´ Tξθ

‹, and (iii) the
constraints on the unknown parameter θ‹.

1.1. Problem formulation, notation, and assumptions. With these motivating examples
in mind, we now turn to a more precise mathematical formulation of the estimation problem
introduced above.

1.1.1. Assumptions on the random variables pξ,wq. Let us start by discussing properties
of the random operator Tξ . In the examples previously introduced, the domain of the obser-
vation operator Tξ was either a subset of Rd, or more generally, a subset of the sequence
space ℓ2pNq. The bulk of our analysis focuses on the finite-dimensional setting —i.e., with
domain Rd—so that Tξ can be identified with a random matrix Rnˆd, for some pair pn,dq

of positive but finite integers. However, as we highlight in Section 3.2, simple approxima-
tion arguments can be used to leverage our finite-dimensional results to determine minimax
rates of convergence for estimating an element θ‹ of the infinite-dimensional sequence space
ℓ2pNq.

In terms of the probabilistic structure of Tξ , we assume the random element ξ lies in the
measurable space pΞ,Eq, and is drawn from a probability measure P on the same space.
Throughout we take E to be large enough such that linear functionals of Tξ are measurable.

As for the noise vector w P Rn, we assume it is drawn—conditionally on ξ—from a noise
distribution with conditional mean zero, and bounded conditional covariance. Formally, we
assume that w „ νp¨ | ξq where ν is a Borel regular conditional probability on Rn that satis-
fies the following two conditions:

(N1) For P-almost every ξ P Ξ, we have
ş

wνpdw | ξq “ 0; and
(N2) For P-almost every ξ P Ξ, we have

ż

puTwq2 νpdw | ξq ď uTΣwu, for any fixed u P Rn.

We write that the measure ν lies in the set PpΣwq when these two conditions are satisfied.
In words, Assumption (N1) requires thatw is conditionally centered, and Assumption (N2)

assumes that the conditional covariance of w is almost surely upper bounded in the semidef-
inite ordering by Σw. Let P ˆ ν denote the distribution of the tuple pξ,wq; in explicit terms,
writing pξ,wq „ P ˆ ν means that ξ „ P and w | ξ „ νp¨ | ξq. Having specified the joint law
of pξ,wq, the random variable y then satisfies the stated observation model (1).

1.1.2. Decision-theoretic formulation. In this paper, our goal to estimate θ‹ to the best
possible accuracy as measured by a fixed quadratic form. To make this rigorous, we introduce
two symmetric positive definite matricesKe andKc, which induce (respectively) the squared
norms

}θ}2Ke
– xθ,Keθy and }θ}2Kc

´1 – xθ,Kc
´1θy,

defined for any θ P Rd. We seek estimates pθ of θ‹ that have low squared estimation error
∥pθ´ θ‹∥2Ke

, as defined by the matrix Ke. In parallel, we assume that underlying parameter is
bounded in the constraint norm, so that it lies in the ellipse

Θpϱ,Kcq –

!

θ P Rd : ∥θ∥Kc
´1 ď ϱ

)
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with radius R, as defined by the matrix Kc.
With this notation in hand, the central object of study in this paper is the minimax risk

MpT,P,Σw, ϱ,Ke,Kcq – inf
pθ

sup
θ‹PΘpϱ,Kcq

νPPpΣwq

Epξ,wq„Pˆν

”

∥pθ´ θ‹∥2Ke

ı

,(3)

where the infimum ranges over all measurable functions pθ ” pθpTξ, yq that map the observed
pair pTξ, yq to Rd. Note that by straightforward rescaling arguments, one can always take one
of the three operators pΣw,Ke,Kcq to be equal to the identity. Moreover, one can “absorb”
the radius ϱ into the constraint matrixKc so that without loss of generality it is equal to 1. For
convenience in deriving results in particular problems, we have presented our main results
without making these reductions.

1.2. Examples of choices of sampling laws, constraints and error norms. As discussed
previously, our general theory accommodates various forms of the random linear operators
Tξ . As might one expect, the sampling law P for ξ changes the statistical structure of the
observations, and so influences the quality of the best possible estimates. Moreover, the in-
teraction between P and the geometry of the error norm, as defined by the matrix Ke, plays
an important role. Finally, both of these factors interact with the geometry of the constraint
set, as determined by the matrix Kc.

Below we discuss some examples of these types of interactions. To be clear, each of these
statistical settings have been considered separately in the literature previously; one benefit of
our approach is that it provides a unifying framework that includes each of these problems as
special cases.

EXAMPLE 5 (Covariate shift in linear regression). Recall the set-up for linear regression,
as introduced in Example 1. In practice, the source distribution from which the covariates x
are sampled when constructing an estimate of θ‹ need not be the same as the target distribu-
tion of covariates on which the predictor is to be deployed. This phenomenon—a discrepancy
between the source and target distributions—is known as covariate shift. It is now known to
arise in a wide variety of applications (e.g., see the papers [43, 39] and references therein for
more details).

As one concrete example, in healthcare applications, the covariate vector x P Rd might
correspond to various diagnostic measures run on a given patient, and the response y P R
could correspond to some outcome variable (e.g., blood pressure). Clinicians might use one
population of patients to develop a predictive model relating the diagnostic measures x to the
outcome y, but then be interested in making predictions for a related but distinct population
of patients.

In our setting, suppose that we use the linear model θ ÞÑ py – xθ, xy to make predictions
over a collection of covariates with distribution Q. A simple computation shows that the
mean-squared prediction error, averaging over both the noise w and random covariates x,
takes the form

E
“

ppy ´ yq2
‰

“ pθ´ θ‹qTΣQpθ´ θ‹q
l jh n

—LQppθ,θ‹q

`c, where ΣQ – EQrxb xs,

and c is a constant independent of the pair pθ, θ‹q. Thus, the excess prediction error over the
new population Q corresponds to taking Ke “ ΣQ in our general set-up. Similarly, if one
wanted to assess parameter error, then studying the minimax risk with the choice Ke “ Id
would be reasonable. Finally, the error in the original population (denoted P ) can be assessed
with the choice Ke “ ΣP – EP rxb xs.
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Among the claims in the paper of Mourtada [51] is the following elegant result: when no
constraints are imposed on θ‹, the minimax risk in the squared metric LQppθ, θ‹q “ }pθ´θ‹}2ΣQ

is equal to

inf
pθ

sup
θ‹PRd

E
”

LQppθ, θ‹q

ı

“
σ2

n
ErTrpΣ´1

n ΣQqs,(4)

where Σn denotes the sample covariance matrix p1{nq
řn

i“1 xi b xi, and the expectation is

over x1, . . . , xn
IID
„ P . Thus, the fundamental rate of estimation depends on the distribution

of the sample covariance matrix, the noise level, and the target distribution Q.
In this paper, we derive related but more general results that allow for many other choices

of the error metric and, perhaps more importantly, permit the statistician to incorporate con-
straints on the parameter θ‹. We demonstrate in Section 3.1.3 that these more general results
allow us to recover the known relation (23) via a simple limiting argument where the con-
straint radius tends to infinity.

EXAMPLE 6 (Nonparametric regression with non-uniform sampling). Consider observ-
ing covariate-target pairs tpxi, yiquni“1 where yi is modeled as being a noisy realization of
a conditional mean function; i.e., we have yi “ f‹pxiq ` wi where f‹pxq “ ErY | X “ xs,
analogously to Example 2. When f‹ is appropriately smooth and the covariates are drawn
from a uniform distribution over some compact domain, this problem has been intensively
studied, and the minimax risks are well-understood. However, when the sampling of the co-
variates xi is non-uniform, the possible rates of estimation can deteriorate drastically—see
for instance the papers [22, 23, 24, 25, 31, 2].

Using tools from the theory of reproducing kernel Hilbert spaces (RKHSs), one can formu-
late this problem as an infinite-dimensional counterpart to our model (1), where the constraint
parameters pϱ,Kcq are determined by the Hilbert radius and the eigenvalues of the integral
operator associated with the kernel. Although formally our minimax risk is defined for finite
dimensional problems, via limiting arguments, it is straightforward to obtain consequences
for the infinite-dimensional problem of the type discussed here, which discuss in Section 3.2.

EXAMPLE 7 (Covariate shift in nonparametric regression). Combining the scenarios in
Examples 5 and 6, now consider the problem of covariate shift in a nonparametric setting.
We observe samples pxi, yiq where the covariates have been drawn according to some law P ,
and our goal is to construct a predictor with low risk in the squared norm defined by some
other covariate law Q.

In our study of this setting, the constraint set is determined by the underlying function
class in a manner analogous to Example 6, and the error metric is determined by the new dis-
tribution of covariates on which the estimates must be deployed, analogously to Example 5.
Some recent work has studied general conditions on the pair pP,Qq and the corresponding
optimal rates of estimation [40, 26, 53, 45, 56, 63, 57, 27]. Among the consequences of our
work are more refined results that are instance-dependent, in the sense that we characterize
optimality for fixed pairs pP,Qq, as opposed to optimality over broad classes of pP,Qq pairs.
See Section 3.2.3 for a detailed discussion of these refined results.

The examples above share the common feature of being problems where estimating a
conditional mean function is able to be formulated within the observation model (1). Addi-
tionally, in these examples, the fundamental hardness of the problem depends on both the
structure of this function (modelled via assumptions on θ‹) as well as the distribution of the
covariates. The goal of this paper is to build a general theory for these types of observa-
tion models, which elucidates how both the structure of θ‹ as well as the covariate law P
determine the minimax rate of estimation in finite samples. In Section 3, we give concrete
consequences of our general results for these types of problems.
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1.3. Relation to prior work. Let us discuss in more detail some connections and relations
between our problem formulation and results, and various branches of the statistics literature.

Connections to random design regression. As shown by the examples discussed so far, our
general set-up includes, among other problems, many variants of random design regression.
This is a classical problem in statistics, with a large literature; see the sources [32, 61, 33] and
references therein for an overview. The recent paper [51] also studies the analogous problem
studied here when the vector θ‹ is allowed to be arbitrary; the only assumption made is that
θ‹ P Rd. In this case, it is possible to use tools from Bayesian decision theory to exhibit
the minimax optimality of the ordinary least squares (OLS) estimator [51, Theorem 1]. In
Section 3.1.3, we demonstrate how to obtain this result as a corollary of our more general
results.

Note that in applications, such as those given by the preceding examples, it is important
that there is a constraint on θ‹. For instance, in a nonparametric regression problem, the
parameter θ‹ denotes the coefficients of a series expansion corresponding to a conditional
mean function f‹pxq “ ErY | X “ xs in an appropriate orthonormal family of functions.
In this case, constraints are in fact necessary: to have consistent estimation, compactness is
essential—see the monograph [36, Theorem 5.7] for further details.

Finally, we also comment on the similarity of our results to the paper [37]. Specifically,
our main results can be compared to their Theorem 2.1. There are a few differences: first,
in the paper [37], they study “fixed design” problems, whereas our formulation allows us to
simultaneously treat both random and fixed design problems with the same analysis tools.
Secondly, even restricting to the fixed design setup, our results are stronger than theirs, in
the case of an ellispoidal constraint set. Their Theorem 2.1 shows that linear estimates only
achieve the minimax rate within ellipsoid-dependent logarithmic factors; our result, on the
other hand, demonstrates that linear estimates are order-optimal with factors which are uni-
versal—they depend on neither the dimension nor the ellipsoid under consideration. In fact,
to the best of our knowledge, our result—even specialized to fixed design—is the first to treat
observation operators and constraint sets given by matrices that do not commute. Previous
results requirde stronger assumptions to attain (near) rate-optimality.

Random design and Bayesian priors. When the the norm of the vector θ‹ is constrained,
there are relatively few minimax results in the random design setting. On the other hand, a
related Bayesian setting has been studied. In this line of work, the definition of the minimax
risk is altered so that the “worst-case” supremum over θ‹ in the constraint set is replaced with
a suitable “average”—namely the expectation over θ‹ drawn according to a prior distribution
over the constraint set.

In addition to the clear differences in the formulation, this line of work exhibits two main
qualitative differences from our paper. First, these Bayesian results have primarily been es-
tablished in the proportional asymptotics framework, in the ratio d{n is assumed to converge
towards some aspect ratio γ ą 0 as both pd,nq diverge to infinity. Secondly, by selecting “nice
priors”, it is possible to leverage certain properties—for instance, equivariance to some group
action—that can hold for both the prior and covariate law. On the other hand, our setting is
somewhat more challenging in that we make no a priori assumptions about the covariate law
and its relationship to the constraint set.

In more detail, when the covariates are drawn from a multivariate Gaussian, for certain
constraint sets, it is possible to find a prior such that the minimax and Bayesian risks coin-
cide. As one example, Dicker [17] studies the asymptotic minimax risk when the ratio d{n
is allowed to grow, and by using equivariance arguments, he obtains asymptotically minimax
procedure. Proposition 3(b) in his paper gives a prior for which the minimax and Bayesian
risks coincide. The thesis [50, Corollary 8.2] provides a matching asymptotic lower bound.
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The relation between Bayes and minimax risks in this line of work cannot be expected in
general, as the arguments repose critically on the rotation invariance of the standard multi-
variate Gaussian. Moreover, this and other classical work on random design regression using
Gaussian covariates typically hinges on special, closed-form formulae for quantities related
to the distribution of the sample covariance matrix (see, e.g., the papers [58, 12, 1]).

Fixed design results. Although we focus on minimax estimation of the unknown parameter
θ‹ in the random design setting, we note that the related fixed design setting is well studied.
In fact, in classical work, Donoho studied a very similar operator-based observation model
to the one considered here; a key difference is that in that work, the focus is on estimating a
(scalar-valued) functional of θ‹ [18].

By sufficiency arguments, our problem, when instantiated in the setting of fixed design
with Gaussian noise, is equivalent to mean estimation on an elliptical parameter set. It is
therefore related to classical work on sharp asymptotic minimax estimation in the Gaussian
sequence model [54, 30, 20, 19, 5, 28, 29]; see also the monograph [36] for a pedagogi-
cal overview of this topic. These works extend the classical line of work on estimating a
constrained (possibly multivariate) Gaussian mean [15, 9, 48, 7, 46]. We refer the reader to
references [47, 21], which contain a more thorough overview of prior work on minimax es-
timation of a parameter when a notion of ‘signal to noise ratio’ is fixed. Of course, applying
an optimal fixed design estimator cannot be expected to yield an optimal random design es-
timator in general. This is because in the fixed design formulation, the worst-case θ‹ could
adapt to a single design matrix, whereas in the random design formulation, the worst-case θ‹

must adapt to the random ensemble of design matrices induced by sampling n samples in an
IID fashion from a fixed covariate law.

2. Main results. We now turn to the presentation of our main results, which are upper
and lower bounds on the minimax rate of estimation as defined in display (3), matching up to
a constant pre-factor. These bounds are presented in Section 2.1.

2.1. General upper and lower bounds. Our general upper bounds are stated as the fol-
lowing functional of the distribution of the operator Tξ; the noise covariance Σw; the con-
straint norm, as determined by the pair pϱ,Kcq; and the estimation norm, as defined by the
operator Ke,

(5) ΦpT,P,Σw, ϱ,Ke,Kcq

– sup
Ω

!

ETr
´

Ke
1{2pΩ´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2q ď ϱ2
)

.

Our first main result is a general upper bound.

THEOREM 1 (General minimax upper bound). The minimax risk is upper bounded as

(6) MpT,P,Σw, ϱ,Ke,Kcq ď ΦpT,P,Σw, ϱ,Ke,Kcq.

See Section 4.1 for the proof.

Our second result is a complementary lower bound.

THEOREM 2 (Lower bound). The minimax risk is lower bounded as

(7) MpT,P,Σw, ϱ,Ke,Kcq ě ΦpT,P,Σw,
ϱ
2 ,Ke,Kcq ě

1

4
ΦpT,P,Σw, ϱ,Ke,Kcq.
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See Section 4.2 for the proof.

Note that the functional on the righthand side of the display (7) above matches the quan-
tity appearing in our minimax upper bound (6). Thus, in a nonasymptotic fashion, we have
determined the minimax risk for this problem up the prefactor 1{4.

Sharper lower bound constants. The constant appearing in the lower bound (7) can typically
be substantially sharpened. To describe how this can be done via our results, fix a scalar
τ P p0,1s and a symmetric positive definite matrix Ω, and let Z P Rd be vector of IID standard
Gaussians. Define the scalar

c– τ2p1 ´ Ptτ2
d
ÿ

i“1

λiZ
2
i ą 1uq,

where tλiu
d
i“1 are the the eigenvalues of the matrix p1{ϱ2qKe

1{2ΩKe
1{2. Then, we are able

to establish the following minimax lower bound,

(8) MpT,P,Σw, ϱ,Ke,Kcq ě ETr
´

Ke
1{2p

1

c
Ω´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

,

provided that the parameter τ P p0,1s and the symmetric positive definite matrix Ω is such
that TrpKc

´1{2ΩKc
´1{2q “ ϱ2.

With appropriate choices of the pair pτ,Ωq, the lower bound (8) can lead to pre-factors
that are much closer to 1, and in some cases, converge to one under various scalings. In
Section 3.1.1, we give one illustration of how the family of bounds (8) can be exploited to
obtain an improvement of this type.

Form of an optimal procedure. Inspecting the proof of Theorem 1—specifically, as a con-
sequence of Proposition 3—if the supremum on the righthand side of (5) is attained at the
matrix Ω‹, then the following estimator, in view of the lower bound (7), is near minimax-
optimal,

(9) pθpTξ, yq –
`

Ω´1
‹ ` TT

ξ Σ
´1
w Tξ

˘´1
TT
ξ Σ

´1
w y.

It is perhaps instructive to write this estimator in its “ridge” formulation

pθpTξ, yq “ argmin
ϑPRd

!

}y ´ Tξϑ}2
Σ´1

w
` }ϑ}2

Ω´1
‹

)

.

In the language of Bayesian statistics, our order-optimal procedure is a maximum a posteriori
(MAP) estimate for θ‹ when y „ N pTξθ

‹,Σwq and the parameter follows the prior distribu-
tion θ‹ „ N p0,Ω‹q. The optimal prior is identified via the choice of Ω‹ which is determined
by the functional appearing in Theorems 1 and 2. If the supremum in (5) is not attained, then
by selecting a sequence of matrices Ωk that approach the maximal value of the functional,
one can similarly argue there exists a sequence of estimators that approach the order-optimal
minimax risk.

2.2. Independent and identically distributed regression models. An important applica-
tion of our general result is for independent and identically distributed (IID) regression mod-
els of the form

(10) yi “ xθ‹,ψpxiqy ` σzi, for i“ 1, . . . , n.

Above, we assume that xi are independent and identical draws from a fixed covariate distri-
bution P , on some measurable space X , and that ψ : X Ñ Rd. The covariates txiu

n
i“1 are
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independent and the conditional distribution of z | x is an element of PpInq. The parameter
σ ą 0 indicates the noise level; it is an upper bound on the conditional standard deviation of
yi ´ xθ‹,ψpxiqy.

For the model described above, the following minimax risk of estimation provides the best
achievable performance of any estimator, when θ‹ lies in a compact ellipse and the error is
measured in the quadratic norm

(11) MIID
n

´

ψ,P,ϱ,σ2,Kc,Ke

¯

– inf
pθ

sup
θ‹PΘpϱ,Kcq

νPPpσ2Inq

E
”∥∥pθpyn1 , x

n
1 q ´ θ‹

∥∥2
Ke

ı

.

Note that this problem can be formulated as an instance of our general operator formula-
tion (1) where we take y “ py1, . . . , ynq, w “ σpz1, . . . , znq, and ξ “ px1, . . . , xnq, so that
P “ Pn. The operator Tξ is given by the nˆ d-matrix with rows ψpxiq

T. In this context the
following random matrix, which is a rescaling of the operator TT

ξ Tξ , plays an important role:

(12) Σn –
1

n

n
ÿ

i“1

ψpxiq bψpxiq.

In order to state the consequence of our more general results for this problem, let us intro-
duce a functional. We denote it by dn to indicate that it is essentially an “effective statistical
dimension” for this problem,

(13) dnpψ,P,ϱ,σ2,Ke,Kcq – supΩ

!

TrEPn

“

Ke
1{2pΣn ` Ω´1q´1Ke

1{2
‰

: Ω ą 0,TrpKc
´1{2ΩKc

´1{2q ď
nϱ2

σ2

)

.

Then an immediate corollary to Theorems 1 and 2 is the following pair of inequalities for the
IID minimax risk.1

COROLLARY 1. Under the IID regression model (10), the minimax rate of estimation as
defined in equation (11) satisfies the following inequalities,

(14)
1

4

σ2

n
dnpψ,P,ϱ,σ2,Ke,Kcq ď

σ2

n
dnpψ,P, ϱ2 , σ

2,Ke,Kcq

ď MIID
n

´

ψ,P,ϱ,σ2,Ke,Kc

¯

ď
σ2

n
dnpψ,P,ϱ,σ2,Ke,Kcq.

So as to lighten notation, in the sequel, when the feature map ψ is the identity mapping
ψpxq “ x, we drop the parameter ψ from the functional dn and the minimax rate MIID

n .

2.3. Some properties of the functional appearing in Theorems 1 and 2. As indicated by
Theorem 1 and the subsequent discussion, the extremal quantity

(15) sup
Ω

!

ETr
´

Ke
1{2pΩ´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2q ď ϱ2
)

is fundamental in that it determines our minimax risk; moreover when the supremum is at-
tained, the maximizer defines an order-optimal estimation procedure (see equation (9)). Con-
veniently, it turns out that the maximization problem implied by the display (15) is concave.

1Strictly speaking, this result follows immediately if we had defined the minimax risk over estimators which
are measurable functions of the variables tpyi,ψpxiqqu. Nonetheless, since our lower bounds use Gaussian noise,
the stated inequalities hold even when defining the minimax risk for estimators which operate on tpyi, xiqu, by a
standard sufficiency argument.
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PROPOSITION 1 (Concavity of functional). The optimization problem

(16)
maximize fpΩq – TrE

“

Ke
1{2

`

Ω´1 ` TT
ξ Σ

´1
w Tξ

˘´1
Ke

1{2
‰

subject to Ω ą 0, TrpKc
´1{2ΩKc

´1{2q ď ϱ2,

is equivalent to a convex program, with variable Ω. Formally, the constraint set above is
convex, and function f is concave over this set.

See Appendix A.1 in the supplementary material for the proof.

Note that this claim implies that, provided oracle access to the objective function f appear-
ing above, one can in principle obtain a maximizer in a computationally tractable manner, by
leveraging algorithms for convex optimization [11].

The functional (15) depends on the distribution of TT
ξ Σ

´1
w Tξ . In general, Jensen’s inequal-

ity along with the convexity of the trace of the inverse of positive matrices [8, Exercise 1.5.1]
implies that it is always lower bounded by

(17) sup
Ω

!

Tr
´

Ke
1{2pΩ´1 ` ETT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2q ď ϱ2
)

Comparing displays (15) and (17), we have simply moved the expectation over ξ into the
inverse. For certain IID regression models, as described in Section 2.2, we can give a com-
plementary upper bound. To state our result, we define

(18) dnpP,ϱ,σ2,Ke,Kcq – supΩ

!

Tr
`

Ke
1{2pEPn Σn ` Ω´1q´1Ke

1{2
˘

: Ω ą 0,TrpKc
´1{2ΩKc

´1{2q ď
nϱ2

σ2

)

.

Note that this quantity only depends on the distribution Pn through the matrix EPn Σn.

PROPOSITION 2 (Comparison of dn to dn). Define κ to be the P -essential supremum of
x ÞÑ }Kc

1{2ψpxq}2. If κă 8, then for any ϱą 0, σ ą 0, we have

dnpψ,P,ϱ,σ2,Ke,Kcq ď dnpψ,P,ϱ,σ2,Ke,Kcq ď

´

1 `
ϱ2κ2

σ2

¯

dnpψ,P,ϱ,σ2,Ke,Kcq.

Unpacking this result, when K1{2
c ψpxq is essentially bounded, we see that the functionals dn

and dn are of the same order when the signal-to-noise ratio satisfies the relation ϱ2

σ2 À 1
κ2 .

As mentioned above, the first inequality is a consequence of a generic lower bound, while
the upper bound is a consequence of a new operator inequality for random positive definite
matrices, presented as Theorem 3 in Appendix A.2 in the supplementary material.

2.4. Asymptotics for a diverging radius. In this section, we develop an asymptotic limit
relation for the minimax risk (3) as the radius ϱ of the constraint set Θpϱ,Kcq tends to in-
finity. The relation reveals that the lower bound constant 1{4 appearing in the lower bound
Theorem 2 can actually be made quite close to 1 for large radii.

COROLLARY 2. Suppose that TT
ξ Σ

´1
w Tξ is P-almost surely nonsingular. Then the mini-

max risk (3) satisfies

MpT,P,Σw, ϱ,Ke,Kcq “
`

1 ´ op1q
˘

ΦpT,P,Σw, ϱ,Ke,Kcq, as ϱÑ 8.

See Appendix A.3 in the supplement for a proof of this claim.
An immediate consequence is that for IID regression settings as in Section 2.2, we have

the following limit relation.
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COROLLARY 3. Suppose that that the empirical covariance matrix Σn from equa-
tion (12) is Pn-almost surely invertible. Then, the minimax risk for an IID observation
model (10) satisfies the relation

MIID
n

´

ψ,P,ϱ,σ2,Ke,Kc

¯

“
`

1 ´ op1q
˘ σ2

n
dn
`

ψ,P,ϱ,σ2,Ke,Kc

˘

, as ϱÑ 8.

3. Consequences of main results. In this section, we demonstrate consequences of our
main results for a variety of estimation problems. In Section 3.1, we develop consequences
of our main results for problems where the underlying parameter to be estimated is finite-
dimensional. In Section 3.2, we develop consequences of our main results for problems where
the underlying parameter is infinite-dimensional. In both cases, we are able to derive minimax
rates of estimation, which to the best of our knowledge, are not yet in the literature. Addi-
tionally, we are also able to re-derive classical as well as recent results in a unified fashion
via our main theorems.

3.1. Applications to parametric models. We begin by developing the consequences of
our main results for regression problems where the statistician is aiming to estimate a finite-
dimensional parameter. Sections 3.1.1, 3.1.2, and 3.1.3 concern IID regression settings of the
form described in Section 2.2. In Section 3.1.4, we consider a non-IID regression setting.

3.1.1. Linear regression with Gaussian covariates. As in the prior work [17], consider
a random design IID regression setting of the form presented in the display (10), but with
Gaussian data. Formally, we assume Gaussian noise, so that zi

IID
„ N p0,1q, and Gaussian

covariates, so that xi
IID
„ N p0, Idq and ψpxq “ x. Here x and z are assumed independent.

Then we define

rpn,d, ϱ,σq – inf
pθ

sup
∥θ∥2ďϱ

E
”

∥pθ´ θ∥22
ı

, and dDickerpn,d, ϱ,σq – TrE
”

pΣn ` σ2

n
d
ϱ2 Idq´1

ı

,

where the expectations are over the Gaussian covariates and noise pairs tpxi, ziquni“1. These
quantities correspond, respectively, to the minimax risk and the worst-case risk (rescaled by
n{σ2), of a certain ridge estimator [17, Corollary 1] on the sphere t}θ}2 “ ϱu.

Dicker [17, Corollary 3] proves the following limiting result. Under the proportional
asymptotics d{nÑ γ, where the limiting ratio γ lies in p0,8q, the minimax risk satisfies

lim
d{nÑγ

ˇ

ˇ

ˇ
rpn,d, ϱ,σq ´

σ2

n
dDickerpn,d, ϱ,σq

ˇ

ˇ

ˇ
“ 0,(19)

for any radius ϱą 0 and noise level σ ą 0.
Let us now demonstrate that our general theory yields a nonasymptotic counterpart of this

claim, and taking limits recovers the asymptotic relation (19).

COROLLARY 4. For linear regression over the ϱ-radius Euclidean sphere with Gaussian
covariates, the minimax risk satisfies the sandwich relation

cd
σ2

n
dDickerpn,d, ϱ,σq ď

σ2

n
dDickerpn,d,

?
cdϱ,σq ď rpn,d, ϱ,σq ď

σ2

n
dDickerpn,d, ϱ,σq,

(20a)

where

cd –

#

p1 ´ 1
2d´1qp1 ´ expp´d3{2

4 qq dě 2

1{4 d“ 1
.(20b)
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Note that since cd “ p1 ´Op1{dqq as dÑ 8, the inequalities (20a) allow us to immediately
recover Dicker’s result. It should be emphasized, however, that Corollary 4, holds for any
quadruple pn,d, ϱ,σq. In particular, it is valid in a completely nonasymptotic fashion and
with explicit constants.

We now sketch how this result follows from our main results. As calculated in Ap-
pendix B.1.1 in the supplement, our functional for this problem satisfies

(21a) dnpN p0, Idq , ϱ, σ2, Id, Idq “ dDickerpn,d, ϱ,σq.

Hence, our Corollary 1 implies the following characterization of the minimax risk,2

1

4

σ2

n
dDickerpn,d, ϱ,σq ď rpn,d, ϱ,σq ď

σ2

n
dDickerpn,d, ϱ,σ

2q.(21b)

To establish our sharper result (20a), we leverage the stronger lower bound (8). The details
of this calculation are presented in Appendix B.1.2 in the supplementary material. Note that
in Section 5.1.1, we simulate this problem and find that as suggested by Corollary 4, that,
indeed, the gap between our upper and lower bounds is tiny, even for problems with small
dimension (see Figure 1).

3.1.2. Underdetermined linear regression. Consider observing samples from a standard
linear regression model; that is, we observe pairs tpxi, yiqu according to the model (10), with
ψpxq “ x. A practical scenario in which some assumption regarding the norm of the underly-
ing parameter is necessary is when the sample covariance matrix Σn, defined in display (12)
is singular with positive Pn-probability. This occurs if n ă d, or if there is a hyperplane
H Ă Rd such that x„ P lies in H with positive probability.

In this setting, the correct dependence of the minimax risk on the geometry of the con-
straint set and the distribution of sample covariance matrix is relatively poorly understood.
For simplicity—although our results are more general than this—let us assume that error is
measured in the Euclidean norm and that it is assumed that the underlying parameter θ‹ has
Euclidean norm bounded by ϱą 0, and that the noise is independent Gaussian with variance
σ2. Then Corollary 1 demonstrates that

inf
pθ

sup
}θ}2ďϱ

Er}pθ´θ}22s —
σ2

n
dnpP,ϱ,σ2, Id, Idq “

σ2

n
sup
Ωą0

!

TrEPn

“

pΣn`Ω´1q´1
‰

:TrpΩq ď
nϱ2

σ2

)

.

Taking Ω “ n
d
ϱ2

σ2 Id, we obtain the following lower bound on the minimax risk for any covari-
ate law P ,
(22)

σ2

n TrEPn

“

pΣn ` σ2

ϱ2
d
nIdq´1

‰

— E
”

d
ÿ

i“1

σ2

n
1

λipΣnq
1tλipΣnq ě σ2

n
d
ϱ2 u

ı

l jh n

Estimation error from
large eigenvalues of Σn

`E
”

d
ÿ

i“1

ϱ2

d 1tλipΣnq ă σ2

n
d
ϱ2 u

ı

l jh n

Approximation error due
to small eigenvalues of Σn

.

The lower bound (22) is sharp in certain cases. For instance, when xi
IID
„ N p0, Idq but there

are fewer samples than the dimension, so that n ă d, it is equal to the minimax risk up to
universal constants, following the same argument as in Section 3.1.1.

Note that above, λi denotes the ith largest (nonnegative) eigenvalue of a symmetric pos-
itive semidefinite matrix. One possible interpretation of this lower bound is as follows: the

2Although Corollary 1 takes the supremum over a larger family of noise distributions, note that our lower
bounds are obtained with Gaussian noise, so that the result applies even if we restrict to Gaussian noise.
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first term indicates the estimation error incurred in directions where the effective signal-to-
noise ratio is high; on the other hand, the second term indicates the bias or approximation
error that must be incurred in directions where the effective signal-to-noise ratio is low. In
fact, the message of this lower bound is that in these directions, no procedure can do much
better than estimating 0 there. One concrete and interesting takeaway is that if Σn has an
eigenvalue equal to zero, it increases the minimax risk by essentially the same amount as if
the eigenvalue were positive and in the interval p0, σ

2

n
d
ϱ2 q.

3.1.3. Linear regression with an unrestricted parameter space. In recent work, Mour-
tada [51] characterizes the minimax risk for random design linear regression problem for
an unrestricted parameter space. Consider observing samples tpxi, yiquni“1 following the IID
model (10) with ψpxq “ x, where the covariates are drawn from some distribution P on Rd.
As argued by Mourtada (see his Proposition 1), or as can be seen by taking ϱ Ñ 8 in our
singular lower bound (22) from Section 3.1.2, if we impose no constraint on the underlying
parameter θ‹, then it is necessary to assume that the sample covariance matrix Σn is invert-
ible with probability 1 in order to obtain finite minimax risks. Theorem 1 in Mourtada’s paper
then asserts that under this condition, we have

(23) inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ´ θ‹

∥∥2
ΣP

ı

“
σ2

n
E
“

TrpΣ´1
n ΣP q

‰

,

where the expectation is over the data tpxi, yiquni“1, and ΣP – EP rxb xs is the population
covariance matrix under P .

We now show that this result, with the exact constants, is a consequence of our more
general results. We focus on establishing the lower bound, because it is well-known (and
easy to show) that the upper bound is achieved by the ordinary least squares estimator.3 Thus
for the lower bound, our results imply that

inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ´ θ‹

∥∥2
ΣP

ı

ě sup
ϱą0

"

inf
pθ

sup
}θ‹}2ďϱ

νPPpσ2Inq

E
”∥∥pθ´ θ‹

∥∥2
ΣP

ı

*

(24a)

“
σ2

n
lim
ϱÑ8

dnpP,ϱ,σ2,ΣP , Idq.(24b)

In order to obtain the relation (24b), we have used the fact that the constrained minimax
risk over the set t}θ‹}2 ď ϱu is nondecreasing in ϱ ą 0, and have applied our limit relation
in Corollary 3. A short calculation, which we defer to Appendix B.1.3 in the supplement,
demonstrates that

(25) lim
ϱÑ8

dnpP,ϱ,σ2,ΣP , Idq “ E
“

TrpΣ´1
n ΣP q

‰

.

Thus, after combining displays (24b) and (25), we have obtained the lower bound in Mour-
tada’s result (23). One consequence of this argument is that the inequality (24a) is, as may be
expected, an equality. That is, we have

inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ´ θ‹

∥∥2
ΣP

ı

“ sup
ϱą0

"

inf
pθ

sup
}θ‹}2ďϱ

νPPpσ2Inq

E
”∥∥pθ´ θ‹

∥∥2
ΣP

ı

*

.

3Alternatively, note that if we define pθϱ to be the order-optimal estimator we derive for the constraint set
t}θ‹

}
2
2 ď ϱ2u (see equation (9), with Kc “ Id, Σw “ σ2Id, and Tξ “X , where X is the design matrix.), then

it converges compactly to the ordinary least squares estimate as ϱÑ 8.
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Note that establishing this equality directly is somewhat cumbersome, as it requires essen-
tially applying a form of a min-max theorem, which in turn requires compactness and conti-
nuity arguments.

3.1.4. Regression with Markovian covariates. We consider a dataset tpxt, ytquTt“1 com-
prising of covariate-response pairs. The covariates are initialized with x0 “ 0, and then pro-
ceed via the recursion

(26) xt “
?
rt xt´1 `

?
1 ´ rt zt for t“ 1, . . . , T,

for some collection of parameters trtu
T
t“1 Ă r0,1s, and family of independent standard Gaus-

sian variates tztu
T
t“1. By construction, the samples txtu

T
t“1 form a Markov chain—a time-

varying ARp1q process with stationary distribution being the standard Gaussian law. At the
extreme rt ” 0, the sequence txiu

n
i“1 is IID, whereas for rt P p0,1q, is a dependent sequence,

and its mixing becomes slower as the parameters trtu get closer to 1. In addition to these
random covariates, suppose that we also observe responses tytu

T
t“1 from the model

(27) yt “ xtθ
‹ ` σwt, for t“ 1, . . . , T,

where σ ą 0 is a noise standard deviation, and the noise sequence twtu
T
t“1 consists of IID

standard Gaussian variates. We assume that zt and xt are independent for all t“ 1, . . . , T .
We now describe how our main results apply to this setting. Let us define a matrix M P

RTˆT which is associated to the dynamical system (26). It has entries

(28) Mss1 “

T
ÿ

t“s_s1

?
cstcs1t, where cst – p1 ´ rsq

t
ź

τ“s`1

rτ .

To give one example, in the special case that rt ” α P p0,1q for all t, then the matrix M is
similar under permutation to the matrix with entries

Mst “
?
α

|s´t|
´

?
α
s`t
.

Evidently, this matrix is a rank-one update to the covariance matrix for the underlying ARp1q

process (i.e., the Kac–Murdock–Szegö matrix [38]); it is easily checked to be symmetric
positive definite.

We now state the consequences of our main results for this problem.

COROLLARY 5. The minimax risk for the Markovian observation model described above
satisfies

(29) inf
pθ

sup
|θ‹|ďϱ

E
“

ppθ´ θ‹q2
‰

— ΦT pϱ,σq – E

„

´ 1

ϱ2
`
zTMz

σ2

¯´1
ȷ

.

See Appendix B.1.5 of the supplement for details of this calculation.
Note that in the result above, the expectation on the lefthand side is over the dataset

tpxi, yiquTi“1, under the Markovian model (26) for the covariates, and the expectation on
the righthand size is over the Gaussian vector z “ pz1, . . . , zT q „ N p0, IT q. Corollary 5 gives
one example of how our general results can even establish sharp rates for regression problems
of the form described in Section 2.2, but with additional dependence among the covariates.

Additionally, we note that with τ2 “ σ2{ϱ2, we have by simple integration that

ΦT pϱ,σq “
σ2

2

ż 8

0
exp

!

´
uτ2 `

řT
t“1 logp1 ` uλtq

2

)

du,

where tλtutPrT s denote the eigenvalues of the matrix M .
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3.2. Applications to infinite-dimensional and nonparametric models. In this section, we
derive some of the consequences of our main results for infinite-dimensional models, such
as those arising in nonparametric regression. The basic idea will be to identify an infinite
dimensional parameter space Θ, typically lying in the Hilbert space ℓ2pNq. We then find a
nested sequence of subsets

Θ1 Ă Θ2 Ă ¨ ¨ ¨ Ă Θk Ă ¨ ¨ ¨ Ă Θ,

where Θk are finite-dimensional truncations of Θ. Under regularity conditions, we can show
that the minimax risk for the k-dimensional problems converge to the minimax risk for the
infinite dimensional problem as k Ñ 8. Thus, since we have determined the minimax risk
for each subset Θk up to universal constants (importantly, constants independent of the un-
derlying dimension), we take the limit of our functional in the limit k Ñ 8 to obtain a tight
characterization of the minimax risk for the infinite-dimensional set Θ.

In the next few sections, we carry this program out in a few examples. We begin with
a study of the canonical Gaussian sequence model in Section 3.2.1. We then turn, in Sec-
tions 3.2.2 and 3.2.3, to nonparametric regression models arising from reproducing kernel
Hilbert spaces. In this setting, we are able to derive some classical results for Sobolev spaces,
derive new and sharper forms of bounds on nonparametric regression with covariate shift,
and obtain new results for random design nonparametric models with non-uniform covariate
laws.

3.2.1. Gaussian sequence model. In the canonical Gaussian sequence model, we make a
countably infinite sequence of observations of the form

(30) yi “ θ‹
i ` εizi, for i“ 1,2,3, . . .

Here the variables tziu are a sequence of IID standard Gaussian variates, and ε – tεiu in-
dicate the noise level (i.e., the standard deviation) of the entries of the observation y. It is
typically assumed that there is a nondecreasing sequence of divergent, nonnegative numbers
a– taiu and radius C ą 0 such that

θ‹ P Θpa,Cq –

!

θ P RN :
ÿ

jě1

a2jθ
2
j ďC2

)

.

The minimax risk for this problem is then defined by

M
´

ε, a,C
¯

– inf
pθ

sup
θ‹PΘpa,Cq

E
”

8
ÿ

j“1

ppθjpyq ´ θ‹
j q2

ı

,

where the expectation is over y according to the observation model (30).
Let us define a k-dimensional truncation,

Θkpa,Cq –

!

θ P Θpa,Cq : θj “ 0, for all j ą k
)

.

Evidently Θkpa,Cq may be regarded as a subset of Rk. Note that the class tΘkpa,Cqukě1

forms a nested sequence of subsets within Θ. Moreover, we can define the minimax risk for
the k-dimensional problem

Mk

´

ε, a,C
¯

– inf
pθ

sup
θ‹PΘkpa,Cq

E
”

k
ÿ

j“1

ppθjpyq ´ θ‹
j q2

ı

.
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Slightly abusing notation, above we regard y, θ‹ P Rk, where y is distributed as the first k
components of the observation model (30). Then, this sequence of minimax risks satisfies the
limit relation

(31) lim
kÑ8

Mk

´

ε, a,C
¯

“ M
´

tεju
8
j“1,Θpa,Cq

¯

.

See Appendix B.2.1 for a proof of this relation. The k-dimensional problem can be seen as a
special case of our operator model (1), with parameters T pkq,Σ

pkq
w ,Ke

pkq, ϱpkq,Kc
pkq defined

as,

(32)
T pkqpξq ” Ik, Σpkq

w “ diagpε21, . . . , ε
2
kq, Ke

pkq “ Ik,

Kc
pkq “ diag

´ 1

a21
, . . . ,

1

a2k

¯

, and, ϱpkq “C.

Computing the functional (15) for the k-dimensional problem, we find it is equal to

(33) R‹
k

´

ε, a,C
¯

– sup
τ1,...,τk

!

k
ÿ

j“1

τ2j ε
2
j

τ2j ` ε2j
:

k
ÿ

j“1

τ2j a
2
j ďC2

)

.

Hence, define the following functional of ε– tεjujě1, a– tajujě1, and C ą 0,

(34) R‹pε, a,Cq – sup
τ“tτju8

j“1

!

8
ÿ

j“1

τ2j ε
2
j

τ2j ` ε2j
:

8
ÿ

j“1

τ2j a
2
j ďC2

)

.

Then our main results, Theorems 1 and 2 imply the sandwich relation

(35)
1

4
R‹pε, a,Cq ď M

´

ε, a,C
¯

ďR‹pε, a,Cq.

See Appendix B.2.2 of the supplement for verification of this relation as a consequence of our
results. Note that this recovers a well-known result for the Gaussian sequence model [61, 36].
Some previous work [20] has shown that the lower bound constant can be slightly improved
to 1

1.25 by arguments specific to the Gaussian sequence model. Importantly, the Gaussian
sequence model is a “deterministic” operator model in the sense that the operator Tξ has
no dependence on ξ for this problem. The next few examples show some consequences of
our theory for infinite-dimensional problems where the corresponding operator Tξ is truly
random.

3.2.2. Nonparametric regression over reproducing kernel Hilbert spaces (RKHSs). In
this section, we consider a nonparametric regression model of the form

yi “ f‹pxiq `wi, for i“ 1, . . . , n.(36)

We assume that txiu
n
i“1 are IID samples covariate law P and wi being conditionally centered

with conditional variance bounded above by σ2. Equivalently, the noise variables are drawn
from a conditional distribution satisfying the noise conditions (N1) and (N2) with Σw “

σ2In.4 We will assume that f‹ lies in a reproducing kernel Hilbert space H, and has bounded
Hilbert norm ∥f‹∥H ď ϱ. The goal is to estimate f‹.

4The discussion below is unaffected by imposing additional structure on the noise, so long as the family of
possible noise distributions includes w „ N

´

0, σ2In
¯

.
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Relating the RKHS observation model (36) with the model (10). We now show that
the observation model when f‹ P H is an infinite-dimensional version of the observation
model (10), as can be made precise with RKHS theory. Indeed, fix a measure space pX ,A, νq,
and a measurable positive definite kernel k : X ˆ X Ñ R and let H denote its reproducing
kernel Hilbert space [3]. Under mild regularity assumptions5, the RKHS H can be put into
one-to-one correspondence with a mapping of ℓ2pNq. Formally, we have

H “

!

f –

8
ÿ

j“1

θj
?
µjϕj |

8
ÿ

j“1

θ2j ă 8

)

.(38)

for a nonincreasing sequence µj Ñ 0 as j Ñ 8, and for an orthonormal sequence tϕju in
L2pνq. This allows us to equivalently write the observations (36) in the form

yi “ xθ‹,Φpxiqy `wi, for i“ 1, . . . , n.(39)

Above, we have defined the sequence θ‹ – pθ‹
j q8

j“1 and “feature map” Φpxq P ℓ2pNq, by the
formulas

θ‹
j –

ş

X f
‹pxqϕjpxqdνpxq

?
µj

, and
`

Φpxq
˘

j
–

?
µjϕjpxq, for all j ě 1.

With these definitions, note that the inner product in equation (39) is taken in the sequence
space ℓ2pNq. From the display (39), we see that the RKHS observation model (36) is in fact
an infinite-dimensional version of the observation model (10). The remainder of this section
is devoted to deriving consequences of our results for this model by various truncation and
limiting arguments.

Truncation argument for RKHS minimax risks. Given the RKHS ball BHpϱq –
␣

g P H :

∥g∥H ď ϱ
(

, our goal is to characterize the minimax risk

Mnpϱ,σ2, P q – inf
f̂

sup
f‹PBHpϱq

νPPpσ2Inq

E
”∥∥f̂ ´ f‹

∥∥2
L2pνq

ı

.(40)

It should be noted here that the covariates are drawn from P and the error is measured in
L2pνq. In classical work on estimation over RKHSs, it is typical to assume that P “ ν.
However, we develop in this section and in Section 3.2.3 some interesting consequences
of our theory when P ‰ ν, and so this generality is important for our discussion.

To apply our results to this setting, we need to define certain finite-dimensional truncations.
We start by defining

Hk –

!

f –

8
ÿ

j“1

θj
?
µjϕj | θj “ 0, for all j ą k

)

.

5The elliptical representation (38) is available in great generality. Indeed, a sufficient condition is for the map
x ÞÑ

a

kpx,xq to lie in L2pνq. It can be shown [59, see Lemma 2.3] that in this case, H compactly embeds into
L2pνq and that there is a series expansion

kpx,x1
q “

8
ÿ

j“1

µjϕjpxqϕjpx1
q, for any x,x1

P X .(37)

Here tµju
8
j“1 denotes a summable sequence of non-negative eigenvalues, whereas the sequence tϕju

8
j“1 is

an orthonormal family of functions X Ñ R that lie in L2pνq. Finally, the series converges absolutely, for each
x,x1

P X . Note that the infinite-dimensional series representation (38) of H follows from the series expansion of
the underlying kernel (37); see Cucker and Smale [16] for details.
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We then define the minimax risk over the the ball BHpϱq restricted to Hk,

Mpkq
n pϱ,σ2, P q – inf

f̂
sup

f‹PBHpϱqXHk

νPPpσ2Inq

E
”∥∥f̂ ´ f‹

∥∥2
L2pνq

ı

.(41)

In analogy to the limit relation (31) for the Gaussian sequence model, we can show that

(42) lim
kÑ8

Mpkq
n pϱ,σ2, P q “ Mnpϱ,σ2, P q.

See Appendix B.2.3 of the supplement for a proof of this relation. The k-dimensional prob-
lem associated with the risk (41) can be seen, using the representation (39), as a special case
of our IID observation model (10), with parameters, P,ϱ,σ and
(43)
ψpxq “ Φkpxq –

`?
µjϕjpxq

˘k

j“1
, Ke “Mk – diagpµ1, . . . , µkq, and Kc “ Ik.

Let us define the k ˆ k empirical covariance matrix

Σpkq
n –

1

n

n
ÿ

i“1

Φkpxiq b Φkpxiq.

Then the using (43), we see that the functional (13) for the k-dimensional problem is equal
to

(44) dpkq
n – sup

Ωą0

!

TrEPn

“

M
1{2
k pΣpkq

n ` Ω´1q´1M
1{2
k

‰

:TrpΩq ď
nϱ2

σ2

)

Characterizations of RKHS minimax risks of estimation. We now state the consequence of
our results for the rate of estimation (40).

COROLLARY 6. Define d‹
n “ limsupkÑ8 d

pkq
n , where the sequence td

pkq
n ukě1 is defined

in display (44). Then the RKHS minimax risk satisfies satisfies the inequalities,

(45)
1

4

σ2

n
d‹
n ď Mnpϱ,σ2, P q ď

σ2

n
d‹
n.

Note that this result is an immediate consequence of Theorems 1 and 2, together with the
limit relation (42).

We comment that Corollary 6 can also be written in a more appealing form. Indeed, al-
though we do not make use of it here, we comment that there is an “extrinsic” representation
of the rate description provided in this corollary. To define it, let us introduce

Sν – Ex„νrkpx, ¨q bH kpx, ¨qs and Sn –
1

n

n
ÿ

i“1

kpxi, ¨q bH kpxi, ¨q,

which are two positive self-adjoint operators H Ñ H. Then, we have

(46) Mnpϱ,σ2, P q —
σ2

n
sup
Ωě0

TrHpΩq“1

TrHEPn

”

Sν Ω1{2pΩ1{2SnΩ1{2 ` σ2

nϱ2 IHq´1Ω1{2
ı

.

Let us now further simplify the characterization (45) in the classical situation where the
noise level dominates the Hilbert radius, we have P “ ν, and the map x ÞÑ kpx,xq is P -
essentially bounded by a finite number κ under P .
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COROLLARY 7. Suppose that P “ ν and x ÞÑ kpx,xq is P -essentially bounded by κ P

p0,8q. If σ2 ě κ2ϱ2, then the RKHS minimax risk satisfies

(47) Mnpϱ,σ2, P q —
σ2

n
kn,

where kn ” knpσ,ϱq – maxtk :
řk

j“1
1
µj

ď
nϱ2

σ2 u.

See Appendix B.2.4 of the supplement for a proof of this claim.
We note that Corollaries 6 and 7 establish the nonasymptotic minimax risk of estimation

for the RKHS ball of radius ρ, apart from universal constants, in a fairly general fashion. The
latter claim permits easier calculation, at the expense of some slightly stronger assumptions.
One advantage to Corollary 6 is that it holds for any configuration of the noise level and
the Hilbert radius, in contrat to the prior work on the minimax rates for RKHS balls which
typically requires that the signal-to-noise ratio is sufficiently small.

Interestingly, we note that our characterizations—even the loosened characterization (47)—
does not need the kernel to satisfy an additional eigenvalue decay condition. Indeed, our re-
sults hold even if the kernel eigenvalues do not satisfy the requirement of a regular kernel as
proposed in prior work [64]. To emphasize this point, we now provide one concrete example
of an irregular kernel for which Corollary 7 provides, to our knowledge, a new result.

EXAMPLE 8 (Irregular kernel). Suppose that P “ ν and that the kernel eigenvalues sat-
isfy µjpαq “ 1

pj`1q logαpj`1q
for some αą 1. It is easily verified that the corresponding kernel

eigenvalues violates the regularity condition in the paper [64], since an elementary calcu-
lation shows for J sufficiently large, we have

ř

jąJ
µj

JµJ
Á logpJq, which diverges as J Ñ 8.

Nonetheless, our result—specifically Corollary 7—establishes the optimal rate of estimation.
Assuming that x ÞÑ

ř

j µjϕ
2
j pxq is P -almost surely less than κ P p0,8q and σ2 ě κ2ϱ2, the

minimax rate for this kernel satsifies

inf
f̂

sup
}f‹}Hαďϱ

E }f̂ ´ f‹}2L2pP q —R

d

σ2

n logαpnϱ2{σ2q

where Hα denotes an RKHS corresponding to kernel eigenvalues µjpαq. The relation above
follows from a straightforward calculation which shows that the quantity kn appearing in
Corollary 7 is of the order

b

nϱ2

σ2 logαpnϱ2{σ2q
. To our knowledge, the minimax rate for kernels

having eigenvalues of this type was not previously known in the literature.

For a more classical example, we now record yet another consequence of Corollary 7.

EXAMPLE 9 (Minimax rate for nonparametric regression on a Sobolev space). Suppose
that P “ ν is the uniform distribution on r0,1sd and Hβ is the order β-Sobolev space with
β ą d{2. It is classical that µj — j´2β{d for the kernel eigenvalues associated with this setup.

Thus, calculating kn in Corollary 7, we find kn — p σ2

ϱ2nq
´

d
2β`d , and consequently

inf
f̂

sup
}f‹}Hβ

ďϱ
E }f̂ ´ f‹}2L2pP q — ϱ2

´ σ2

ϱ2n

¯

2β
2β`d

,

provided that σ2 Á ϱ2. The above relation recovers a classical result [35, 60].
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3.2.3. Kernel regression under covariate shift. We now discuss one important case in
which we have P ‰ ν in the RKHS model (36). In the setting of covariate shift, the
model (36) comprises of covariates xi drawn from a source distribution P that is differ-
ent from the target distribution Q of covariates on which estimates of the regression function
are to be deployed. In this setting, then we take ν “Q and P ‰Q.

For any such pair, following the argument given previously in Section 3.2, we find that

(48) inf
f̂

sup
f‹PBHpϱq

E
”∥∥f̂ ´ f‹

∥∥2
L2pQq

ı

—
σ2

n
limsup
kÑ8

dpkq
n ,

where the quantity dpkq
n is defined as in display (44). Above, the expectation on the lefthand

side is over the noise and the covariates drawn from P as described by the model (36). Note
that the eigenvalues tµjujě1 here correspond to the diagonalization of the integral kernel
operator under the target distribution Q.

Let us now compare to past work due to Ma et al. [45], who studied the covariate shift prob-
lem in RKHSs. In contrast to this work, our result is source-target distribution-dependent:
it characterizes, apart from universal constants, the minimax risk for any kernel, any radius,
any noise level, and any covariate shift pair pP,Qq. By contrast, the results in the paper [45]
consider a more restrictive setup in which pair pP,Qq satisfy an absolute continuity condi-
tion (Q! P ), and moreover, the likelihood ratio is P -essentially bounded, meaning that there
exists some B P r1,8q such that

(49)
dQ

dP
pxq ďB, for P -almost every x.

Let d8pP,Qq denote the P -essential supremum of the likelihood ratio dQ{dP when Q !

P and d8pP,Qq “ `8 otherwise. “Uniform” results, where minimax risks of estimation
are studied over families of covariate shifts P relative to Q where d8pP,Qq ď B for some
parameter B can be derived as a corollary to the sharper rate description (48).

To give one simple and concrete illustration of this, we will show how one can derive
Theorem 2 in the paper [45]. By Jensen’s inequality, we have

dpkq
n ě sup

Ωą0

!

TrpEPn M
´1{2
k Σpkq

n M
´1{2
k ` Ω´1q´1 :TrpM´1

k Ωq ď
nϱ2

σ2

)

.(50)

If P satisfies d8pP,Qq ďB, then it follows that we have the ordering

(51) EPn M
´1{2
k Σpkq

n M
´1{2
k ě

1

B
Ik.

Moreover, this lower bound can be achieved by a shift P whenever the zero sets of the eigen-
functions ϕj in L2pQq of the integral operator associated with the kernel k have nontrivial
intersection. Equivalently, when there exists

(52) x0 P
č

jě1

ϕ´1
j pt0uq,

then the bound (51) is achieved by the distribution Px0
– 1

BQ `

´

1 ´ 1
B

¯

δx0
. This choice

is evidently a B-bounded shift relative to Q. To give an example where the zero set condi-
tion (52) holds, note that in the case of where the kernel k is associated with the periodic
β-order Sobolev class on r0,1s and Q is the uniform law on r0,1s, one can take x0 “ 0 as the
eigenfunctions are sinusoids.
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Now, combining relations (48) and (50) with the choice of P “ Px0
given above, we have

sup
P :d8pP,QqďB

inf
f̂

sup
f‹PBHpϱq

E
”∥∥f̂ ´ f‹

∥∥2
L2pQq

ı

Á
σ2

n
sup
ωą0

!

8
ÿ

j“1

Bωj

ωj `B
:

8
ÿ

j“1

ωj

λj
“
nϱ2

σ2

)

— ϱ2 sup
λ

!

8
ÿ

j“1

σ2B

nϱ2
^ λjµj : λj ě 0,

8
ÿ

j“1

λj “ 1
)

.(53)

Suppose, following the paper [45], we additionally impose a regularity condition on the decay
of the eigenvalues µj of kernel integral operator inL2pQq. Namely, that there exists a constant
c P p0,8q such that

(54) sup
δą0

ř

jądpδq µj

δ2dpδq
ď c, where dpδq – inftj ě 1 : µj ď δ2u.

Under this condition, we can further lower bound (53), up to universal constants, by

(55) ϱ2 inf
δą0

!

δ2 `
σ2B

ϱ2n
dpδq

)

.

The details of this calculation can be found in Appendix B.2.6 of the supplement. Note that
by establishing the lower bound (55), we have recovered Theorem 2 from the paper [45]. We
remark that—as seen from the steps taken to arrive at this lower bound—our more general
determination of the minimax rate (48) is sharper in that it holds for a fixed pair pP,Qq rather
than uniformly over the larger class tP : d8pP,Qq ďBu. Moreover, our result, as compared
to the work [45], requires fewer regularity assumptions on the underlying kernel and its di-
agonalization in the target Hilbert space L2pQq. In fact, as demonstrated in Appendix B.2.6,
the regularity condition (54) is not necessary for us to establish the lower bound (55).

4. Proofs of Theorems 1 and 2. In this section, we present the proofs of our main
results. In Section 4.1, we provide the proof of our minimax upper bound (cf. Theorem 1).
In Section 4.2, we provide the proof of our minimax lower bound. Some calculations and
routine verifications are deferred to Appendix C in the supplement.

4.1. Proof of Theorem 1. In this section, we develop an upper bound on the minimax
risk. In order to do so, so, we define the risk function

rppθ, θ‹q – sup
νPPpΣwq

Epξ,wq„Pˆν E
”∥∥pθpTξ, Tξθ

‹ `wq ´ θ‹
∥∥2
Ke

ı

.

defined for any measurable estimator pθ of pTξ, yq, and any θ‹ P Θpϱ,Kcq. Evidently, the
minimax risk we are bounding is then expressible as

(56) MpT,P,Σw, ϱ,Ke,Kcq “ inf
pθ

sup
θ‹PΘpϱ,Kcq

rppθ, θ‹q.

In order to derive an upper bound, we restrict our focus to estimators that are conditionally
linear. Formally, we consider the class of procedures

(57) pθCpTξ, yq –CpTξqTT
ξ Σ

´1
w y,

where C is a Rdˆd-valued measurable function of Tξ . Our strategy involves the following
three steps:

(i) First, we compute the supremum risk over the parameter set Θpϱ,Kcq and all ν P PpΣwq.
(ii) Second, compute the minimizer of the supremum risk in the choice of C in (57).
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(iii) Finally, by using the curvature of the supremum risk and appealing to a min-max theo-
rem, we put the pieces together to determine the final minimax risk.

The following subsections are devoted to the details associated with each of these three steps.
In all cases, we defer routine calculations and verification to Appendix C.1 of the supplement.

4.1.1. Supremum risk of estimator pθC . Starting with the definition (57), for any matrix
C , we have

pθC ´ θ‹ “ pCpTξqTT
ξ Σ

´1
w Tξ ´ Idqθ‹ `CpTξqTT

ξ Σ
´1
w w.

Therefore, the risk rppθC , θ
‹q associated with pθC can be bounded as

rppθC , θ
‹q – sup

νPPpΣwq

E
”

∥pθCpX,yq ´ θ‹∥2Ke

ı

“ Tr

"

Ke
1{2Eξ

”

pCpTξqTT
ξ Σ

´1
w Tξ ´ Idqθ‹ b θ‹pCpTξqTT

ξ Σ
´1
w Tξ ´ IdqT

`CpTξqTT
ξ Σ

´1
w TξCpTξqT

ı

Ke
1{2

*

.(58)

The equality above uses the property (N2) of distributions ν P PpΣwq; note that it is achieved
by the Gaussian distribution ν “ N p0,Σwq.

4.1.2. Curvature and minimizers of the functional rppθC , θ
‹q. We begin by observing that

the function rppθC , ¨q : Θpϱ,Kcq Ñ R` can be replaced by an equivalent mapping—which,
with a slight abuse of notation we denote by the same symbol r— on the space of symmetric
positive definite matrices of the form

Kpϱ,Kcq –

!

Ω ě 0 | TrpKc
´1{2ΩKc

´1{2q ď ϱ2
)

.

We define (in a sense, this is can be regarded as an extension to the set Kpϱ,Kcq)

(59) rppθC ,Ωq – Tr
!

Ke
1{2Eξ

”

pCpTξqTT
ξ Σ

´1
w Tξ ´ IdqΩpCpTξqTT

ξ Σ
´1
w Tξ ´ IdqT

`CpTξqTT
ξ Σ

´1
w TξCpTξqT

ı

Ke
1{2

)

.

Note that rppθC , θ
‹q “ rppθC , θ

‹ b θ‹q for θ‹ P Θpϱ,Kcq. We claim that the suprema over
Θpϱ,Kcq and Kpϱ,Kcq are the same.

LEMMA 1. The suprema of the risk functional r taken over either the set Θpϱ,Kcq or
the set Kpϱ,Kcq are equal—that is, we have

sup
θ‹PΘpϱ,Kcq

rppθC , θ
‹q “ sup

ΩPKpϱ,Kcq

rppθC ,Ωq,

for every conditionally linear estimator pθC of the form (57).

See Appendix C.1.1 of the supplement for the proof of this claim. Briefly, the argument un-
derlying this claim shows that the risk functional is affine in Ω and the set Kpϱ,Kcq can be
viewed as the closed convex hull of rank-one outer products θ‹ b θ‹.

Our next result characterizes some properties of the mapping pC,Kq ÞÑ rppθC ,Kq.
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LEMMA 2. Over the set of measurable functions C and matrices Ω P Kpϱ,Kcq, the map-
ping pC,Ωq ÞÑ rppθC ,Ωq is affine in Ω and convex in C .

See Appendix C.1.2 for the proof of this claim.

Our next claim determines the minimizer of rp¨,Ωq over estimators pθC of the form (57),
provided that Ω is strictly positive definite.

PROPOSITION 3. Let Ω be a symmetric positive definite matrix. Then

(60) inf
C
rppθC ,Ωq “ Tr

!

Ke
1{2EξpΩ´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
)

Moreover, the infimum is attained with the choice CpTξq “ pΩ´1 ` TT
ξ Σ

´1
w Tξq´1.

See Appendix C.1.3 for the proof.

4.1.3. Proof of Theorem 1. We now piece together the previous lemmas to establish our
main upper bound, as claimed in Theorem 1. In view of the relation (56) and the bound (58),
we find that

MpT,P,Σw, ϱ,Ke,Kcq ď inf
C

sup
θ‹PΘpϱ,Kcq

rppθC , θ
‹q(61a)

“ inf
C

sup
ΩPKpϱ,Kcq

rppθC ,Ωq(61b)

“ sup
ΩPKpϱ,Kcq

inf
C
rppθC ,Ωq(61c)

“ sup
Ωą0

TrpKc
´1Ωqďϱ2

ETr
´

Ke
1{2pΩ´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

.(61d)

To clarify, in the first display (61a) and below, the infimum over C denotes an infimum over
all Rdˆd-valued measurable functions of Tξ . In display (61b), we have applied Lemma 1. Re-
lation (61c) follows from the generalized Ky Fan min-max theorem [10, Theorem A] together
with Lemma 2. Note that the set Kpϱ,Kcq is evidently a compact convex subset of Rdˆd. The
final equality (61d) is essentially an application of Proposition 3; see Appendix C.1.4 for the
details of this verification.

4.2. Proof of lower bound, Theorem 2. In this section, we prove our lower bound on the
minimax risk. In order to do so, we focus on lower bounding the Gaussian minimax risk

MGpT,P,Σw, ϱ,Ke,Kcq – inf
pθ

sup
θ‹PΘpϱ,Kcq

Epξ,wq„PˆNp0,Σwq

”

∥pθpTξ, Tξθ
‹ `wq ´ θ‹∥2Ke

ı

.

Evidently, the Gaussian minimax risk lower bounds the general minimax risk, so that we have
MG ď M. In Section 4.2.1, we reduce this Gaussian minimax risk to yet another Gaussian
observation model. A minimax lower bound for this auxiliary problem is then presented as
Proposition 4 in Section 4.2.2. This result is the bulk of the proof of the lower bound, and it
quickly allows us to establish our main result, Theorem 2. In Section 4.2.3, we then complete
the proof of Proposition 4.
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4.2.1. Reduction to an alternate observation model. To establish the lower bound, we
first show that the minimax risk associated with our estimation problem is equivalent to an-
other, perhaps simpler, minimax risk.

An auxiliary observation model. This observation model is defined by a random quadruple
pr,V,Λ,Υq. The triple pr,V,Λq comprises a random integer r, a random orthogonal matrix
V P Rdˆr satisfying V TV “ Ir , and a random, r ˆ r diagonal positive definite matrix Λ.
Conditional on pr,V,Λq, the observation Υ is a Gaussian random variable, satisfying the
equation

(62) Υ “ V V Tη‹ ` V Λ´1{2z, where z „ N p0, Irq .

Above, the random vector z is drawn from the multivariate Gaussian with identity covariance
in Rr; it is independent of pr,V,Λq. If ω – pr,V,Λq is distributed according to Q, we denote
the minimax risk for this observation model as

MG
redpQ,Kq – inf

pη
sup

ηPΘpKq

Epω,Υq

”

∥pηpω,Υq ´ η∥22
ı

.

Above, the expectation indexed by pω,Υq is over ω „ Q and Υ as in (62). The infimum is
over measurable functions of pω,Υq. The set ΘpKq is a shorthand for the set Θp1,Kq “

t}θ}K ď 1u.

Reduction to the new observation model. We formally reduce the minimax risk MG to the
reduction MG

red, as follows.

LEMMA 3. Let rP denote the distribution of the triple prpξq, Vξ,Λξq under P, where rpξq

is the (finite) rank of Qξ “ Ke
´1{2TT

ξ Σ
´1
w TξKe

´1{2, and Qξ “ VξΛξV
T
ξ denotes the diago-

nalization of this positive definite matrix. Then, for any pT,P,Σw, ϱ,Kc,Keq, we have

MGpT,P,Σw, ϱ,Kc,Keq “ MG
redprP, ϱ2Ke

1{2KcKe
1{2q.

See Appendix C.2.1 of the supplement for a proof of this claim.

4.2.2. Lower bounding the minimax risk. We now focus on lower bounding MG
red. The

following result is a formal statement of the lower bound for the “reduced” minimax risk.

PROPOSITION 4. For any τ P p0,1s and any Π ą 0 such that TrpK´1{2ΠK´1{2q ď 1,
we have

(63) MG
redpQ,Kq ě ETr

´

p 1
cpτ,Πq

Π´1 ` V ΛV Tq´1
¯

,

where the constant cpτ,Πq is defined in Lemma 6. Moreover, we have the lower bounds

MG
redpQ,Kq ě sup

Π

!

ETr
´

pΠ´1 ` V ΛV Tq´1
¯

: Π ą 0, TrpK´1{2ΠK´1{2q ď 1{4
)

(64a)

ě
1

4
sup
Π

!

ETr
´

pΠ´1 ` V ΛV Tq´1
¯

: Π ą 0, TrpK´1{2ΠK´1{2q ď 1
)

.(64b)
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Proof of Theorem 2. We take the claim of Proposition 4 as given for the moment, and use
it to derive our minimax lower bound. As mentioned, we may restrict to Gaussian noise to
establish the lower bound; formally, we have M ě MG. Additionally, the reduction given in
Lemma 3 combined with the stronger lower bound (64a) in Proposition 4 gives us

MpT,P,Σw, ϱ,Ke,Kcq

ě supΠ

!

ETr
´

pΠ´1 `Ke
´1{2TT

ξ Σ
´1
w TξKe

´1{2q´1
¯

: Π ą 0,TrpKe
´1{2ΠKe

´1{2Kc
´1q ď

ϱ2

4

)

.

Now define the matrix Ω “Ke
´1{2ΠKe

´1{2. Then, the quantity on the righthand side is equal
to

sup
Ω

!

ETr
´

Ke
1{2pΩ´1 ` TT

ξ Σ
´1
w Tξq´1Ke

1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2q ď
ϱ2

4

)

,

which furnishes the first inequality in Theorem 2. With similar manipulations to the weaker
lower bound (64b) in Proposition (4), or by arguing directly from the display above, the sec-
ond inequality in Theorem 2 follows. In order to establish the more detailed lower bound (8),
we repeat the argument above but use (63).

4.2.3. Proof of Proposition 4. The lower bound proceeds in five steps:

(i) We first lower bound the minimax risk in terms of the expected conditional Bayesian risk
over any prior on the parameter set ΘpKq.

(ii) We then demonstrate that, conditionally, there is a family of auxiliary Bayesian estima-
tion problems, indexed by a parameter λ ą 0, which are all no harder than the Bayesian
estimation problem implied by the conditional Bayesian risk.

(iii) We compute, in closed form, the Bayesian risk for any prior and any parameter λ ą 0.
We are able to show that the Bayesian risk is a functional of the Fisher information of the
marginal distribution of the observed data under the prior and sampling model.

(iv) For each λ ą 0, we then calculate a lower bound on the Fisher information for a prior
obtained by conditioning a Gaussian distribution with mean zero and covariance Π to the
parameter space.

(v) We put the pieces together: optimizing over all covariance operators Π, and the family of
“easier” problems (i.e., optimizing over λą 0), we obtain our claimed lower bound.

Next, we present the details of the steps outlined above. Extended calculations and routine
verification are deferred to Appendix C.2 of the supplement.

Step 1: Reduction to conditional Bayesian risk. We begin by lower bounding the minimax
risk via the Bayes risk. Owing to the standard relation between minimax and Bayesian risks,
we have for any prior π on ΘpKq that

(65)

MG
redpQ,Kq “ inf

pη
sup

ηPΘpKq

Epω,Υq

”

∥pηpω,Υq´η∥22
ı

ě inf
pη
Eη„πEpω,Υq

“

∥pη´η∥22
‰

—Bpπq.

The quantity Bpπq appearing above is the Bayesian risk when the parameter η is drawn from
the prior π. The following observation is key for the lower bound. After moving to Bayesian
risks, we can condition on the “design”, denoted by the random tuple ω “ pr,V,Λq, and
consider the conditional Bayesian risk. Formally, we have

Bpπq “ inf
pη
Eη„πEpω,Υq„Dη

”∥∥
pη ´ η

∥∥2
2

ı

ě Eω„Q

„

inf
pηω

Eη„πEΥ

∥∥
pηωpΥq ´ η

∥∥2
2

ȷ

.(66)
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Above, the inequality follows by observing that if the function pη : pω,Υq ÞÑ pη P Rd is mea-
surable, then pηωpΥq – pηpω,Υq is a measurable of Υ. Note that the infimum on the righthand
side is restricted to those maps which are measurable function of ω; note that they may de-
pend on ω, and therefore we have included a subscript depending on ω to indicate this.6 To
lighten notation in the subsequent discussion, we define the conditional Bayesian risk under
π and for a realization of the random variable ω “ ω0,

Bpπ | ω0q – inf
pη
Eη„πEz„Np0,Ir0q

”∥∥
pηpV0V

T
0 η ` V0Λ

´1{2
0 zq ´ η

∥∥2
2

ı

, where ω0 “ pr0, V0,Λ0q.

Using this definition, along with the two inequalities (65) and (66), we have demonstrated

(67) MG
redpQ,Kq ě Eω„Q

“

Bpπ | ωq
‰

, for any prior π on ΘpKq.

Therefore, it suffices for us to lower bound Bpπ | ωq.

Step 2: Reduction to a family of easier problems. In this step, we fix a parameter λ ą 0,
which will index yet another auxiliary Bayesian estimation problem. The intuition will be that
as λÑ 0`, we are “approaching” the difficulty of the original Bayesian estimation problem.

Formally, fix ω “ pr,V,Λq. Throughout we will let VK : Rd Ñ ranpV qK denote the pro-
jection of an element η P Rd to the orthogonal complement of the closed subspace ranpV q.
We now consider the observation, where for an independent random Gaussian variable
z „ N p0, Idq

(68) Υλ “ pV V T ` λVKq
l jh n

—Xλ

η ` V Λ´1{2w`
?
λVKz “Xλη ` pV Λ´1V T ` λVKq1{2w1,

where the last equality holds in distribution. Define Σλ – V Λ´1V T `λVK; evidently Σλ is a
symmetric positive definite matrix for any λą 0. Then, Υλ has distribution N pXλη,Σλq. We
remark that the observation Υλ is more convenient than Υ as its covariance is nonsingular
and moreover its mean is a nonsingular linear transformation of η—note that neither of these
properties hold for Υ.

Our goal is to show that the observation Υλ is more “informative” than Υ. To do this, we
now define the (conditional) Bayesian risk for Υλ,

Bλpπ | ωq – inf
pη

!

Bλppη,π | ωq – E
“

∥pηpΥλq ´ η∥22
‰

)

.

The main claim is that this provides a lower bound on our original conditional Bayesian risk.

LEMMA 4. For any ω and λą 0, we have

Bpπ | ωq ěBλpπ | ωq.

See Appendix C.2.2 for a proof of this claim.

Step 3: Calculation of Bayesian risk Bλpπ | ωq, for a fixed prior π and parameter λą 0. To
compute the Bayesian risk for a fixed prior π and parameter λ ą 0, we develop a variant of
Tweedie’s formula (also sometimes referred to as Brown’s identity, when applied to Bayesian
risks) [62, 55, 13].

6In some cases, this inequality may hold with equality. However, to be clear, in general the inequality arises
since if tpηωuω is a family of measurable functions (of Υ) for each ω in the support of Q, it is not necessarily the
case that pηpω,Υq – pηωpΥq is measurable.
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To state the result, we need to introduce some notation. We define the marginal and con-
ditional densities of Υλ—disregarding normalization constants—as,

ppyq –

ż

ppy | ηqπpdηq where ppy | ηq – exp
´

´
1

2
}y ´Xλη}2

Σ´1
λ

¯

.

Finally we define the Fisher information of the marginal distribution of Υλ, which is given
by

I pΥλq – Er∇ log ppΥλq b ∇ log ppΥλqs.

With this notation in hand, we can now state our formula for the Bayesian risk under the prior
π and for parameter λą 0.

LEMMA 5. Fix ω “ pr,V,Λq. Define Xλ – V V T ` λVK and Σλ – V Λ´1V T ` λVK.
Fix prior π, and parameter λą 0. Then the conditional Bayesian risk is given by

Bλpπ | ωq “ Tr
´

X´1
λ Σλ

“

Σ´1
λ ´ I pΥλq

‰

ΣλX
´1
λ

¯

.

See Appendix C.2.3 for a proof of this claim.

Step 4: Lower bound on Fisher information for conditioned Gaussian prior. Consider a
prior π which is absolutely continuous with respect to Lebesgue measure on Rd. Further-
more, suppose that its Lebesgue density fπ – dπ

dη has logarithmic gradient almost every-
where. Define

I pπq –

ż

∇ log fπpηq b ∇ log fπpηqdπpηq.

Recall also that the Fisher information associated with a Gaussian distribution N pµ,Πq for
nonsingular Π is given by Π´1 [42, Example 6.3]. Therefore, applying well-known results
for the Fisher information [65, eqn. (8) and Corollary 1]

(69) I pΥλq ď pXλI pπq
´1Xλ ` Σλq´1.

Next, we select a prior distribution and calculate the Fisher information I pΥλq for the
marginal density under this prior. For a parameter τ P p0,1s and symmetric positive definite
covariance matrix Π, we define the probability measures

(70) πGτ,Π “ N
`

0, τ2Π
˘

and πτ,Π “ πGτ,Π
`

¨ | ΘpKq
˘

.

In other words, πτ,Π denotes the probability measure N
`

0, τ2Π
˘

conditioned on the con-
straint set. Formally, it is defined by the relation,

πτ,ΠpAq –
πGτ,Π

`

AX ΘpKq
˘

πGτ,Π
`

ΘpKq
˘ ,

for any event A. For these priors, we have the following claim.

LEMMA 6. Let τ P p0,1s and Π be a symmetric positive definite matrix satisfying the
relation TrpΠ1{2K´1Π1{2q ď 1. Then the Fisher information of the conditioned prior πτ,Π
satisfies the inequality

I pπτ,Πq
´1

ě cpτ,ΠqΠ,

where cpτ,Πq “ τ2p1 ´ πGτ,ΠpΘpKqcqq ą 0.

See Appendix C.2.4 for the proof of this claim.
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Step 5: Putting the pieces together. Combining Lemmas 4 and 5 along with the inequal-
ity (69) and Lemma 6, we find that for any τ P p0,1s and symmetric positive definite matrix
Π satisfying TrpΠ1{2K´1Π1{2q ď 1, that

Bpπ | ωq ě sup
λą0

Tr
´

X´1
λ Σλ

“

Σ´1
λ ´ pcpτ,ΠqXλΠXλ ` Σλq´1

‰

ΣλX
´1
λ

¯

“ sup
λą0

Tr
´

p 1
cpτ,Πq

Π´1 `XλΣ
´1
λ Xλq´1

¯

.

Above, we used the relation ApA´1 ´ pB `Aq´1qA “ pA´1 `B´1q´1, valid for any pair
pA,Bq of symmetric positive definite matrices. Our particular choice of matrices wasA“ Σλ

and B “Xλ. Note that

XλΣ
´1
λ Xλ “ V ΛV T ` λVK.

Therefore, by continuity, we have
(71)
Bpπ | ωq ě lim

λÑ0`
Tr

´

p 1
cpτ,Πq

Π´1 ` V ΛV T ` λVKq´1
¯

“ Tr
´

p 1
cpτ,Πq

Π´1 ` V ΛV Tq´1
¯

.

Taking the expectation over ω, and applying our minimax lower bound (67), we have estab-
lished lower bound (63). Note that since cpτ,Πq P p0,1s, we evidently have from the above
display that

Bpπ | ωq ě cpτ,ΠqTr
´

pΠ´1 ` V ΛV Tq´1
¯

.

Let us define the constant

cℓpKq – inf
Πą0

TrpΠK´1qď1

sup
τPp0,1s

cpτ,Πq.

Then combining the conditional lower bound (71) with our minimax lower bound (67), we
obtain

MG
redpQ,Kq ě sup

Π

!

ETr
´

pΠ´1 ` V ΛV Tq´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2q ď cℓpKq

)

“ sup
Π

!

ETr
´

p 1
cℓpKq

Π´1 ` V ΛV Tq´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2q ď 1
)

ě cℓpKq sup
Π

!

ETr
´

pΠ´1 ` V ΛV Tq´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2q ď 1
)

.

To complete the proof, we simply need to lower bound the constant cℓpKq universally.

LEMMA 7. The constant cℓpKq is lower bounded, for any symmetric positive definite K ,
as

cℓpKq ě
1

4
.

See Appendix C.2.5 for a proof of this claim.

5. Discussion. In this work, we determined the minimax risk of estimation for observa-
tion models of the form (1), where one observes the image of a unknown parameter under a
random linear operator with additive noise. Our results reveal the dependence of the rate of
convergence on the covariate law, the parameter space, the error metric, and the noise level.
We conclude our paper by presenting some simulation results; see Section 5.1
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Finally, we note that in this work we studied minimax risks of convergence in expectation.
This is convenient, as it requires relatively minor assumptions of the distribution of Tξ . On
the other hand, for the setting of random design regression, high-probability results, such as
those obtained in the papers [4, 49, 34, 41, 52], typically require stronger assumptions such
as the sub-Gaussianity of the covariate distribution. Nonetheless, high-probability guarantees
provide a complementary perspective on the problem we consider. Indeed, when the covariate
law can be considered “heavy-tailed,” it may be more relevant to develop robust estimators
that have low risk with high probability. We refer to the survey article [44] for a overview of
work in this direction.

5.1. Some illustrative simulations. We conclude our paper by presenting the results of
some simulations reveal how changes in the distribution of the random operator Tξ can lead
to dramatic changes in the overall minimax risk.

In this section, we present simulation results to illustrate the behavior of the functionals
appearing in our main results for two versions of random design linear regression. In Sec-
tion 5.1.1, we present simulation results for a multivariate, random design linear regression
setting with IID covariates. Concretely, we provide two different covariate laws, where the
minimax error for the same parameter space differs by at least two orders of magnitude. We
emphasize this difference in entirely due to the covariate law; the noise, observation model,
error metric, and parameter space are fixed in this comparison.

Additionally, in Section 5.1.2, we present simulation results for a univariate regression
setting where the covariates are sampled from a Markov chain. In both cases, the functional is
able to capture the dependence of the minimax rate of estimation on the underlying covariate
distribution.

5.1.1. Higher-order effects in IID random design linear regression. For random design
linear regression, higher order properties of the covariate distribution over the covariates can
have striking effects on the minimax risk. In order to illustrate this phenomenon, we consider
the regression model (10) with feature map ψpxq “ x, and parameter vector θ‹ constrained to
a ball in the Euclidean norm. We then construct a family of distributions over the covariates
that are all zero-mean with identity covariance, but differ in interesting ways in terms of their
higher-order moment properties. More precisely, we let δ0 denote the Dirac measure with
unit mass at 0, and for a mixture weight λ P r0,1s, we consider covariates generated from the
probability distribution

(72) Pλ – λδ0 ` p1 ´ λqN

ˆ

0,
1

1 ´ λ
Id

˙

.

By construction, all members of the ensemble have the same behavior with respect to their
first and second moments,

(73) EPλ
rxs “ 0 and CovPλ

pxq “ EPλ
rxb xs “ Id, for all λ P r0,1s.

In the special case λ“ 0, the distribution Pλ corresponds to the standard Gaussian law on Rd,
whereas it becomes an increasingly ill-behaved Gaussian mixture distribution as λÑ 1´.

Following the argument in Section 3.1.1, in this case, the minimax risk is upper and lower
bounded as
(74)
σ2

n
EPn

λ
rTrppΣn` cdσ2d

nϱ2 Idq´1qs ď MIID
n

´

Pλ, ϱ, σ
2, Id, Id

¯

ď
σ2

n
EPn

λ
rTrppΣn` σ2d

nϱ2 Idq´1qs.

Above, the lower bound constant cd is defined in display (20b).



30

To understand the effect of the covariate law, we fix the signal-to-noise ratio such that ϱ
σ “

τ , for τ P t1,10u. Note that after renormalizing the minimax risk by ϱ2, it only depends on τ
(and not on the particular choices of pϱ,σq). Similarly, this invariance relation holds for the
functionals appearing on the left- and righthand sides of the display (74)—after normalization
by 1{ϱ2, they no longer depend on pϱ,σq except via the ratio τ “

ϱ
σ . Additionally, we fix the

aspect ratio γ “ d
n .7By varying γ P r0.05,4s we are able to illustrate the behavior of the

minimax risk, as characterized by our functional, for problems which are both under- and
overdetermined.

Having fixed the SNR at τ and aspect ratio at γ, we can somewhat simplify the dis-
play (74), by introducing the following quantities which only depend on the parameters τ, γ
and the sample size n and the mixture parameter λ,

mnpλ, τ, γq –

MIID
n

´

Pλ, τσ,σ
2, Irγns, Irγns

¯

τ2σ2
,(75a)

unpλ, τ, γq –
1

τ2n
EPn

λ
rTrppΣn `

rγns

nτ2 Irγnsq
´1qs,(75b)

ℓnpλ, τ, γq –
1

τ2n
EPn

λ
rTrppΣn `

cdrγns

nτ2 Irγnsq
´1qs.(75c)

Then, the relations (74), can be equivalently expressed as

ℓnpλ, τ, γq ď mnpλ, τ, γq ď unpλ, τ, γq,

and moreover this holds for all λ P r0,1s, τ ą 0, γ ą 0. In our simulation, we use Monte Carlo
simulation with 50 trials to estimate the upper and lower bound functionals ℓn and un.

In our simulations, we take λ P t0,0.9,0.99u and vary γ P r0.05,4s. The results of these
simulations are presented in Figure 1; see the caption for a detailed description and commen-
tary. The general pattern should be clear: the covariate law can have a dramatic impact on
the overall rate of estimation, even when restricting some moments such as we have with the
relations (73).

5.1.2. Mixing time effects in Markovian linear regression. Covariates need not be drawn
in an IID manner, and any dependencies can be expected to affect the minimax risk. Here we
illustrate this general phenomena via some simulations for the Markov regression example
as outlined in Section 3.1.4. We seek to study a wide range of possible mixing conditions for
the Markovian covariate model. In order to do so, we consider covariates generated from the
Markovian model (26) with

rt “
ψpt´ 1q

ψptq
,

where ψ : NYt0u Ñ R` is a nondecreasing function satisfying ψp0q “ 1 and limtÑ8ψptq “

8. With this choice, it is easily checked that, marginally

xt „ N

ˆ

0,1 ´
1

ψptq

˙

.

Therefore, xt Ñ N p0,1q in distribution as t Ñ 8, and the rate of convergence is of order
1{ψptq.

We now illustrate how the minimax rate, as determined in Corollary 5, for this problem
behaves for different choices of the function ψ and the signal-to-noise ratio (SNR). As in

7Specifically, we take d“ rγns.
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(a) n“ 128, τ “ 1
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(b) n“ 128, τ “ 10
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(c) n“ 512, τ “ 1
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(d) n“ 512, τ “ 10

Fig 1. Simulations of random design regression for three covariate laws, Pλ as defined in
equation (72) with λ P t0,0.9,0.99u. For a given choice of the mixture weight λ and signal-
to-noise ratio (SNR) τ , we plot the lower bound ℓnpλ, τ, γq and upper bound unpλ, τ, γq as γ
varies between 0.05 and 4. The normalized minimax risk mn is then guaranteed to lie in the
region whose upper and lower envelopes are given by un and ℓn, respectively. To facilitate
interpretation of these figures, we have shaded this region to highlight where we can guaran-
tee the minimax risk mn must lie. The quantities un, ℓn,mn are all defined in display (75). In
panels (1a) and (1b), we set the sample size n “ 128, and set the SNR as τ “ 1,10, respec-
tively. In panels (1c) and (1d), we set the sample size n“ 512, and set the SNR as τ “ 1,10,
respectively. The plots above demonstrate that as λ increases, the minimax risks are much
worse. Numerically, in the setting where n“ 512 and τ “ 10—as depicted in panel (1d)—our
upper and lower bounds guarantee that the minimax risk for the isotropic ensemble (depicted
with λ “ 0 above) can be over 806 times larger than the minimax risk for the ensemble with
λ “ 0.99. It should be noted that in this comparison the first and second moments of the
ensemble are held fixed (see equation (73)), and hence the differences between the lines plot-
ted in any given panel can only be explained by differences in higher-order moments within
the ensemble tPλu. The figures also demonstrate that the gap between our upper and lower
bounds is fairly small, particularly whenever dą 5.
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(b) τ “ 10

Fig 2. Simulations for five distributions of Markovian covariates. In panel (2a), we set the
SNR parameter as τ “ 1, and in panel (2b), we set the SNR parameter as τ “ 10. As the
scaling function ψ grows more slowly, the chain converges to its stationary distribution more
slowly, and the minimax rate decays more slowly, as indicated by the displayed behavior of
our functional T ÞÑ ΦT pτq.

Section 5.1.1, we normalize the minimax risk by the squared radius so that it only depends
on τ “

ϱ
σ . The quantity we then plot is

ΦT pτq –
ΦT pτ,1q

τ2
,

where ΦT pϱ,σq is the functional appearing in Corollary 5.
In the simulation, we consider the following choices of scaling function ψ,

5t, t` 1, 1 ` logpt` 1q, and 1 ` log
`

1 ` logpt` 1q
˘

.

With the choice ψptq “ 5t, the underlying Markov chain converges geometrically to the stan-
dard Normal law. On the other hand, the choice ψptq “ logp1` logp1` tqq `1 exhibits much
slower convergence—the variational distance between the law of xt and N p0,1q is of order
Op1{plog log tqq.

We simulate each of these chains, computing the normalized functional ΦT pτq over the
course of 5000 Monte Carlo trials. The sample size T is varied between 10 and 3162. In the
simulation we also include the choice rt ” 0, which corresponds to IID covariates. The results
of the simulation are presented in Figure 2; see the caption for more details and commentary.
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