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AbstractÑ Recent work [1], [2], [3] has shown promising
results in learning from demonstrations for the manipulation
of deformable objects. Their approach Þnds a non-rigid regis-
tration between points in the demonstration scene and points
in the test scene. This registration is then extrapolated and
applied to the gripper motions in the demonstration scene to
obtain the gripper motions for the test scene. If more than one
demonstration is available, a quality score for the non-rigid
registration is used to determine the best matching training
scene. For many manipulation tasks, however, the gripperÕs
direction of approach with respect to the objectsÕ surface
normals is important in order to succeed at the task. This prior
work only registers points across scenes and does not register
the surface normals, often leading to warps between scenes that
are inappropriate for transfer of manipulation primitives. The
main contributions of this paper are (i) An algorithm for non-
rigid registration that considers both points and normals, and
(ii) An evaluation of this registration approach in the context
of learning from demonstrations for robotic manipulation. Our
experiments, which consider an insertion task in simulation and
also knot-tying and towel-folding executions in a PR2, show
that incorporating normals results in improved performance
and qualitatively better grasps.

I. I NTRODUCTION

Learning from demonstrations has the potential to simplify
equipping a robot with new skills by simply having the robot
watch a human perform the task. The critical challenge in
learning from demonstrations is the ability to generalize the
motions that were successful in the demonstration context to
motions that will be successful in the new environments the
robot is faced with.

Recent work [1], [2], [3] has shown that existing ap-
proaches for non-rigid registration can be successful at
recovering how demonstration and test environments relate
to each other. In particular, their line of work uses thin
plate spline robust point-matching (TPS-RPM), proposed by
Chui and Rangarajan [4], to register demonstration scene
onto test scene, and then extrapolates this registration to
transfer the demonstrated gripper or tool trajectory onto
the test scene. Their experiments have shown good success
rate for tasks such as knot-tying (where generalization is
over conÞgurations of the rope), picking up plates (where
generalization is over the shape of the plate), and screwing
on bottle-caps (where generalization is over bottle and cap
shapes). Success in these domains depends heavily on the
quality of the registration.
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Fig. 1: We evaluate and compare non-rigid registration
methods used in trajectory transfer for an insertion task. The
yellow grid visualizes the registration warp of the scene with
respect to the demonstration scene. (a) The demonstration
consists on inserting a needle, which is simulated as a box,
into a hole in a pad. A PR2 grasps the needle, which initially
lies at the left pad, and then rotates and moves it to the right
to insert it through the hole in the right pad. (b) When TPS-
RPM is used for non-rigid point registration, the warp of the
registration is a shear, which impedes the robot from properly
inserting the box. (c) However, when using TPSN-RPM, our
non-rigid point and normal registration algorithm, the warp
correctly bends at the grasp point and insertion hole, which
allows the robot to accurately insert the box.

However, registration with TPS-RPM has its limitations.
Consider, for example, the scene shown in Figure 1. Fig-
ure 1a shows the demonstration scene. Figure 1b shows a
similar scene, but the pads have been shifted. The yellow grid
visualizes the warping function found through TPS-RPM.
The found warping function is not well aligned with the
pads. The reason that such a misaligned warp was found is
that TPS-RPM tries to Þnd a function that has low bending
energy (i.e., is close to afÞne) while also having small error
on the points that are being registered (in this case the
corners of the pad, and the corners of the rectangular hole in
the pad). For manipulation purposes, however, alignment is
really important. A suture needle, for example, might have
to be inserted orthogonally to the pad, and any ßattening
otherwise straightening out of the pads would typically have
to happen aligned with the pad. Intuitively what is missing
from TPS-RPM is a term in the objective that ensures the
registration matches up the normals. Indeed, including such
a term in the registration results in the more desirable warp
shown in Figure 1c.

There is a long history in the non-rigid registration lit-
erature that considers the incorporation of normals when
Þnding a warping function for a given, Þxed registration
between scenes. This work includes [5], [6], [7]. However, no



existing work has considered the problem of jointly Þnding
the registration and the warping function, while considering
normals (i.e., the extension of TPS-RPM, or a TPS-RPM-like
algorithm, to include normals).

The main contributions of this paper are: (i) We describe
TPSN-RPM, which extends TPS-RPM to include normals in
the objective; (ii) We experimentally study the advantage of
TPSN-RPM over TPS-RPM in the context of learning from
demonstrations for robotic manipulation.

II. RELATED WORK

The two main areas of related work are non-rigid regis-
tration and learning from demonstrations.

Besl et al. [8] uses feature-based matching methods for
registering point clouds. Chui and Rangarajan [4] provide a
method for registering one point cloud onto another, namely
TPS-RPM. There has been some recent work in using surface
normals to Þnd a better registration between point clouds.
Makadia et al. propose an algorithm [9] which uses the
correlations of the two extented Gaussian images (EGI) in
the Fourier domain and applies several iterations of Iterative
Closest Points (ICP). The algorithm uses normals to generate
orientation histograms. These orientation histograms are then
used to estimate the initial rotation of the target cloud
from the source cloud. Rusinkiewicz et al. [10] design an
algorithm that is a modiÞcation of ICP. They use normal-
space-directed sampling to affect ICP. This turns out to
improve convergence for nearly-ßat meshes and scenes that
involve small features, such as inscribed surfaces.

In the non-rigid registration literature, normals have been
incorporated when Þnding a warping function but they
assume a Þxed and known registration. Bookstein and
Green [7] approximate the normals by adding points along
the normal direction very close to the normal site. Mardia
et al. [5], [6] use a kriging framework in which they can
represent the normals exactly. The form of our thin plate
spline with normals follows from this work. The difference
between their work and ours is that we consider the case of
unknown correspondences.

In the Þeld of learning from demonstrations, also known as
programming by demonstrations, expert demonstrations are
generalized to new scenarios [11], [12], [13]. In particular,
Calinon et al. [14], [15] developed a method for learning to
perform manipulation tasks in different starting scenes. Their
approach learns a mixture of Gaussians to represent the joint
distribution of the robot trajectory and the environment state
across multiple demonstrations, and then infer the trajectory
for the new environment state conditioned on that state. They
assume access to a featurization of the environment, so their
approach is not directly applicable in tasks without a Þxed
environment representation.

In contrast, the approach of Schulman el al. [1] to learning
from demonstrations can work directly with point clouds
from the environmentÕs scene. They Þrst Þnd a non-rigid
registration that maps points of the demonstration scene to
points of the new scene, and then extrapolate the registration
function to the gripper motions to get new gripper motions

for the new scene. Trajectory optimization [16] can then be
used to Þnd a feasible trajectory in which the grippers follow
these new gripper motions. Schulman et al. [2] also applies
this approach for a simpliÞed suturing scenario. They had to
artiÞcially add points along the normals of the pads they were
suturing in order to get a registration that would produce
the correct angle of attack for the robotÕs end-effector. In
this paper, however, we can incorporate this directly by
mapping normals between both scenes. Lee et al. [3] extends
Schulman et al.Õs approach by jointly optimizing the non-
rigid registration and the trajectory optimization in a single
optimization.

III. B ACKGROUND

In this section we review the TPS-RPM algorithm for non-
rigid point registration [17] and Schulman et al.Õs approach
to learning from demonstrations for robotic manipulation [1].
The idea of this approach is to Þrst Þnd a warping function
that maps points in the demonstration scene to points in a
new scene and then apply that function to the end-effector
motion. This has the effect that the resulting end-effector
motion incorporates variations in the new scene, which is
important in manipulation tasks.

A. Non-Rigid Point Registration

Consider the case in which the demonstration scene con-
sists of N points X = [ x1 . . . xN ]! and the test scene
consists ofN " points Y = [ y1 . . . yN ! ]! . The non-rigid
registration problem is to Þnd a functionf : RD ! RD

that maps pointsX to points Y for some dimensionD.
In this paper we consider problems in 2 and 3 dimensions.
To Þnd a smooth mapping, we restrict the functionf to be
a thin plate spline (TPS). We Þrst present the problem for
the case in which the correspondences between the points
are known and then we present the more general case of
unknown correspondences.

1) Non-Rigid Point Registration with Known Correspon-
dences: Assume thatN = N " and that there are one-to-
one known correspondences between pointsx i andy i . The
registration problem can be formalized as an optimization
problem,

min
f

N!

i =1

||y i " f (x i )||22 + ! ||f ||2TPS, (1)

where the regularizer||f ||2TPS is the TPS energy function,

||f ||2TPS =
"

dx ||D2f (x )||2F , (2)

which is a measure of the curvature of the functionf .
The parameter! controls the trade-off between matching
correspondence points and the smoothness of the spline.

The minimizer f in Equation (1) can be expressed
as an afÞne transformation deÞned byB and c, plus a
weighted sum of basis functions" (á) centered around the
data points [18],

f (x ) =
!

i

ai " (x " x i ) + B ! x + c, (3)



whereai is constrained by
#

i ad
i xd

i = 0 and
#

i ad
i = 0 for

each dimensiond = 1 , ..., D . As shown in [19], Equation (1)
can be efÞciently solved analytically.

2) Non-Rigid Point Registration with Unknown Corre-
spondences:When the correspondences between the points
are unknown, we need to Þnd a correspondence matrixM ,
whose elementsmij indicates if pointx i corresponds to
point y j . If we allow for fuzzy correspondences,M is a
doubly-stochastic matrix where each termmij , in the interval
[0, 1], indicates the degree of correspondence between point
x i andy j . An extraN +1 th row and an extraN "+1 th column
is added toM to handle outliers. Chui and Rangarajan
formulate this problem as a joint optimization [17],

min
f, M

E(f, M ; T, #) + ! ||f ||2TPS

subject to
N +1!

i =1

mij = 1 ,
N ! +1!

j =1

mij = 1 , mij # 0, (4)

where

E(f, M ; T, #) =
N!

i =1

N !
!

j =1

mij ||y j " f (x i )||22

+ T
N!

i =1

N !
!

j =1

mij logmij " #
N!

i =1

N !
!

j =1

mij .

(5)

The parameterT is referred to as a temperature and it
controls the fuziness of the correspondences, with a lower
temperature specifying correspondences that are less fuzzy
and more binary. The parameter# prevents all the points
from being assigned to outliers.

This optimization problem can be solved via coordinate
descent, iterating between optimizing forM and forf . Since
the objective is non-convex, the solution is only guaranteed
to be locally optimal. Minimizing with respect toM , gives
the update

mij $ exp
$

"
1
T

||y j " f (x i )||2
%

, (6)

which needs to be followed by iterated row and column
normalization. Given these correspondences,f can be min-
imized by solving for the optimal thin plate spline,

f = arg min
f

N!

i =1

w i ||øy i " f (x i )||22 + ! ||f ||2TPS, (7)

where

w i =
N !
!

j =1

mij , øy i =

# N !

j =1 mij y j

w i
. (8)

The TPS-RPM algorithm consists of embedding the co-
ordinate descent procedure in deterministic annealing. The
algorithm alternates between estimating correspondences and
Þtting the optimal thin plate spline based on these esti-
mated correspondences, while also gradually reducing the
temperatureT. The TPS-RPM algorithm is summarized in
Algorithm 1.

Algorithm 1 TPS-RPM

1: procedure TPS-RPM(T0, Tf , ! 0, ! f )
2: f % identity transformation
3: T % T0, ! % ! 0

4: repeat
5: repeat
6: Update point correspondencesM using (6)
7: Update transformationf using (7)
8: until convergence
9: decreaseT and !

10: until T < T f , ! < ! f

11: end procedure

B. Learning from Demonstrations with Thin Plate Splines

In Schulman et al.Õs work on learning from demonstra-
tions [1], a demonstration consists of a point cloudX of
the demonstration scene and an end-effector trajectory. At
test time, a point cloudY of the test scene is observed
and the TPS-RPM algorithm is used to Þrst Þnd a non-
rigid registrationf that maps points from the demonstration
scene to the new test scene. Then, the registration function
is applied to the demonstration trajectory to get a new
end-effector trajectory. This trajectory does not incorporate
collision avoidance and joint limits, so trajectory optimiza-
tion [16] is then used to Þnd a feasible joint angle trajectory.
The hope is that the resulting trajectory will incorporate
variations in the environment and thus succeed in performing
the desired manipulation. In practice, this method has been
shown to be effective at generalizing expert demonstrations
to new, unseen scene conÞgurations.

IV. N ON-RIGID POINT AND NORMAL REGISTRATION

As we saw in Section III-A, a thin plate spline can be used
to map pointsX in the demonstration scene to pointsY in
the test scene. In object manipulation tasks, the direction in
which the end-effector approaches the object with respect
to its surface normals is often important. For this reason,
we want the registration function to also register normals
from the demonstration scene to the test scene. Assume the
demonstration scene hasK normalsU = [ u1 á á áuK ]! each
of them situated at respective sitesS = [ s1 á á ásK ]! in space,
and the test scene hasK " normalsV = [ v1 á á ávK ! ]! at
respective sitesT = [ t 1 á á át K ! ]! . The normal sites do not
need to conincide with any of the points in the scene. In
here we address the non-rigid point and normal registration
problem which consists of Þnding a registration functionf :
RD ! RD that maps pointsX to pointsY and also maps
normalsU at sitesS to normalsV at sitesT .

A. Non-Rigid Point and Normal Registration with Known
Correspondences

Since normals are differential quantities, a transformation
f can be applied to a normalu at positions by multiplying
the normal byJs

f , the Jacobian off at s:

v = Js
f u . (9)



The point and normal registration can be formalized as an
optimization problem,

min
f

N!

i =1

||y i " f (x i )||22 +
K!

k=1

||v k " 1
! k

Jsk
f uk ||22 + ! ||f ||2TPS,

(10)
where$k is a normalization coefÞcient that will be explained
at the end of this section.

Mardia [5] showed that the minimizerf in Equation (10)
can be expressed with the same terms as the thin plate spline
of Section III-A, plus a weighted sum of derivative terms of
the basis functions,

f (x ) =
N!

i =1

ai " (x " x i ) "
K!

k=1

÷ak u !
k & " (x " sk )+ B ! x + c,

(11)
where ai and ÷ai are now constrained by

#
i ad

i xd
i +#

k ÷ad
k ud

k = 0 and
#

i ad
i = 0 for each dimensiond. The

basis function is of the form" (r ) = ||r ||2" , with 1 < % < 2
in order for the function to accomodate the derivative terms.
The thin plate spline of Section III-A cannot always be used
because it is not differentiable at zero in 3 dimensions. For
this work, we use%= 1 .5, which corresponds tof being a
cubic spline. In the literature, the term Ôthin plate splineÕ is
used for any spline that minimizes the TPS energy function
of Equation (2), so we follow that convention and refer
to this cubic spline as a thin plate spline or, to be more
speciÞc, a thin plate spline with normals (TPSN). As before,
Equation (10) can also be efÞciently solved analytically. See
the Appendix for an explicit formulation of this optimization
as a least-squares problem in matrix form.

It is easy to show that if two normal vectorsu andv are
normalized, then the norm of their difference is related to
the angle& between them,

||v " u ||22 = 2(1 " cos&), (12)

with the cost being zero when the normals perfectly match.
In the case of the normals cost of Equation (10),v k can
be normalized but the warped normalJsk

f uk cannot since
the JacobianJsk

f depends on the registration function being
optimized. However, we can estimate a normalization coefÞ-
cient $k by Þrst Þnding a registration function÷f that solves
a similar problem and then,

$k = ||Jsk
÷f

uk ||2. (13)

The problem that Þnds the registration function÷f could be
point registration without the normals information, or the
problem from the previous iteration when this optimization
is embedded in some iterative procedure as will be the case
in Section IV-B.

B. Non-Rigid Point and Normal Registration with Unknown
Correspondences

In the case of unknown correspondences, we now also
need to Þnd normals correspondences and these are deÞned
by a correspondence matrixQ in the same way that the point
correspondences are deÞned byM .

Assuming that the points match the normal sites,X = S,
a na¬õve approach would be to Þrst use TPS-RPM to Þnd
point correspondencesM and then use these for normal
correspondences. However, besides the required assumption,
this approach would Þnd bad registration functions when
normals donÕt have the same correspondences as their re-
spective points. Consider the case in which a point from
the demonstration scene corresponds well to a point from
the test scene after using TPS-RPM, but the normals that
lie at those sites differ by a lot. The Þtted spline in this
case is forced to match these normals and thus resulting in
a poor warping function. In addition, this na¬õve procedure
would not change the registration, which is what would
be desired, as the normals in this na¬õve procedure donÕt
affect the registration. Section V-A will illustrate this with
2-dimensional toy examples.

Similar to TPS-RPM, we Þnd a registration functionf and
points and normals correspondencesM andQ by solving the
following optimization problem,

min
f, M ,Q

E(f, M ; T, #) + ' ÷E(f, Q; ÷T , ÷#) + ! ||f ||2TPS

subject to
N +1!

i =1

mij = 1 ,
N ! +1!

j =1

mij = 1 , mij # 0

K +1!

k=1

qkl = 1 ,
K ! +1!

l =1

qkl = 1 , qkl # 0,

(14)

where

÷E(f, Q; ÷T , ÷#) =
K!

k=1

K !
!

l =1

qkl ||v l " 1
! k

Jsk
f uk ||22

+ ÷T
K!

k=1

K !
!

l =1

qkl log
qkl

( kl
" ÷#

K!

k=1

K !
!

l =1

qkl .

(15)

Here,qkl are the terms ofQ, ( kl is a prior probability that
normals correspond to each other,' is a parameter that trades
off matching the normals, and÷T and ÷# are analogous toT
and# but for normals correspondences.

The probability( kl provides a prior that thekth source
normal should match to thelth target normal. In our case,
the prior takes the form,

( kl $ exp
$

"
1
T

||t l " f (sk )||2
%

, (16)

where we use the same tempertureT that was used for the
points. This prior discourages similar normals whose sites
are far apart to correspond to each other.

Coordinate descent is used to Þnd a locally optimal
registration function and correspondences. Minimizing with
respect toM gives the same update of Equation (6). Mini-
mizing with respect toQ gives the update

qkl $ ( kl exp
$

"
1
÷T

||v l " 1
! k

Jsk
f uk ||2

%
, (17)



which needs to be followed by iterated row and column
normalization.

Given these correspondences,f can be minimized by
solving for the optimal thin plate spline,

f = arg min
f

N!

i =1

w i ||øy i " f (x i )||22

+ '
K!

k=1

÷wk ||øvk " 1
! k

Jsk
f uk )||22 + ! ||f ||2TPS, (18)

where

÷wk =
K !
!

l =1

qkl , øvk =
# K !

l =1 qkl v l

÷wk
. (19)

We embed the coordinate descent procedure in deter-
ministic annealing. The resulting algorithm is presented in
Algorithm 2, which we name TPSN-RPM: thin plate spline
with normals robust point-matching. The algorithm takes
in initial and Þnal values for the parametersT, !, ÷T , ' and
returns a registration functionf that maps points and normals
from the demonstration scene to the test scene.

Algorithm 2 TPSN-RPM

1: procedure TPSN-RPM(T0, Tf , ! 0, ! f , ÷T0, ÷Tf , ' 0, ' f )
2: f % identity transformation
3: T % T0, ! % ! 0

4: ÷T % ÷T0, ' % ' 0

5: repeat
6: repeat
7: $k % || Jsk

f uk ||2 (13)
8: Update point correspondencesM using (6)
9: Update normal correspondencesQ using (17)

10: Update transformationf using (18)
11: until convergence
12: decreaseT, ! and ÷T, increase'
13: until T < T f , ! < ! f , ÷T < ÷Tf , ' > ' f

14: return f
15: end procedure

V. EXPERIMENTS AND RESULTS

We illustrate our algorithm in the registration of 2-
dimensional shapes and in learning from demonstrations for
manipulation tasks in simulation and executions with a PR2.

A. 2-dimensional Toy Examples

We qualitatively compare TPS-RPM and our algorithm
TPSN-RPM for the registration of 2-dimensional shapes. The
Þrst example consists of a deformed vase and the second
one consists of a square and circle whose position change
relative to each other. The setup and the registrations of these
examples are shown in Figure 2.

The points for the source and target points were chosen
to be on the shape outlines. For the straight segments, the
points were chosen such that they are evenly spaced within
a distance of 2.5 units in the segment. The normal sites were

(a) (b) (c)

Fig. 3: Demonstration for a simpliÞed needle insertion task.
(a) The robot picks up the needle from the left pad. (b) The
robot moves the needle into position to the target hole while
dragging a thread. (c) The robot inserts the needle into the
hole in the right pad.

chosen to be between adjacent points and its directions to be
perpendicular to the edge in which they lie.

Notice that in the case of the deformed vase, the number
of points and normals differ between the source and target. A
reasonable registration should correspond the shape corners
to each other. For the vase example, this means that a
reasonable correspondence wouldnÕt be one-to-one.

For a fair comparison, the same Þnal temperatureT and
bending energy parameter! were used on both algorithms.
The remaining parameters were found using grid search and
choosing the ones that achieved the lowest energy on their
respective objectives.

We can see that, unlike TPS-RPM, our algorithm TPSN-
RPM was able to Þnd a registration in which the corners
match each other. Furthermore, the bending energy of the
warp found by TPSN-RPM is lower. Notice that in TPSN-
RPM, the normal lenghts are also matched to each other,
which has the side effect of minimizing warp scaling in
the direction of these normals, which might be desirable for
manipulation tasks.

B. Insertion Task with a Simulated PR2

We applied our registration algorithm for a learning from
demonstration task involving autonomous insertion with a
PR2 in a simpliÞed simulation setting. The task involves
the robot placing a needle into a hole in a pad. The needle
is modeled as a box and the hole is slightly bigger than
the box. We gave the robot asingle demonstrationof this
task. In the demonstration, the gripper Þrst picks up the box
on the left, then rotates the box upside down as it moves
from left to right, and then places the box in the hole at
the right. The demonstration can be seen in Figure 3. The
demonstration trajectory was programatically generated by
specifying waypoints for the gripperÕs pose and interpolating
them. We used points and normals around the initial position
of the box and the target hole, as seen in Figure 4.

At test time, the robot generalized from the demonstration
to execute the task in a new scene. Success was measured
based on whether or not the robot was able to successfully
place the box in the hole. The test scenes involved displace-
ment of the target pad along an axis towards the robot, from
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Fig. 2: Non-rigid registration of a deformed vase and rigid shapes using TPS-RPM and TPSN-RPM. The source points are
denoted with red plus signs and the normals with red solid lines. The target points are denoted with blue circles and the
normals with blue dashed lines. The warping of the space is visualized with the grid in the background. Points at the shape
corners are drawn slightly bigger. Notice that in both examples, TPSN-RPM Þnds a registration in which the corners match
each other while TPS-RPM fails to achieve this. In addition, TPSN-RPM aligns the normals for both point sets and Þnds a
warping with a smaller bending energy.

Fig. 4: The points and normals used in the simpliÞed
insertion task. The normals are at sites that coincide with
the points and the normals are perpendicular to its adjacent
faces. There are two or three orthogonal normals at each site.

0cm to 20cm offset. Hyperparameters were determined by
performing a grid search for each offset and algorithm.

We compare the success of TPS-RPM, TPSN-RPM, and
two variations of these for the insertion task. The Þrst
variation consists of Þrst Þnding point correspondences using
TPS-RPM and then using those for normal correspondences
to Þt a TPSN. The second variation, which we call TPS-
RPMA, consists of approximating the normals by adding
artiÞcial points along the direction of the normals and then
using TPS-RPM with the original and artiÞcial points. This
latter method was used by [7] and [2]. The results are
summarized in Figure 5 and Table I.

Our algorithm TPSN-RPM outperformed all the other
methods achieving 100% success rate for all offsets. At
high offsets, the shearing resulting in registration by TPS-
RPM caused the robot to insert the box improperly and
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Fig. 5: Insertion success rate for various offset distances
using TPS-RPM, TPS-RPM followed by TPSN, TPS-RPMA
and our method TPSN-RPM.

thus fail at the task. The two variations was able to do
better than TPS-RPM for intermediate offsets. Using TPS-
RPM for correspondences followed by TPSN failed to
Þnd correct correspondences between normals because point
correspondences do not neccessarily imply correct normal
correspondences. TPS-RPMA wasnÕt as good as TPSN-RPM
because while the latter Þts the angle of normals, TPS-RPMA
Þts exact points in the direction of normals.

There is a tradeoff between success rate and average
registration time. TPSN-RPM on average takes the most time
to register. This is because the running time of these RPM



(a) Rope-tying using TPS-RPM (b) Rope-tying using TPSN-RPM

(c) Towel-folding using TPS-RPM (d) Towel-folding using TPSN-RPM

Fig. 6: Sequential executions of a PR2 tying overhand knots and folding towels on a curved surface. The demonstrations
(not shown) were performed on a ßat surface and the grippers approached the table in a direction roughly perpendicular
to the table. Note that even though both approaches were able to succesfully complete the task, the grippersÕ approach
direction are qualitatively different. When using TPS-RPM, the grippersÕ approach direction is vertical as in the demon-
stration, but when using TPSN-RPM, the direction is perpendicular to the new curvature of the table. For videos, see
http://rll.berkeley.edu/icra2015tpsn/ .

Algorithm
Mean

Success Rate

Mean and
Standard Deviation
Registration Time

TPS-RPM (Algorithm 1) 50.8% 0.040 ± 0.004s
TPS-RPM and TPSN 65.8% 0.046 ± 0.005s

TPS-RPMA 60% 0.522 ± 0.021s
TPSN-RPM (Algorithm 2) 100% 0.743 ± 0.035s

TABLE I: Success rates of a simulated insertion through a
pad using a different approaches for non-rigid registration.
The TPS-RPM algorithm jointly Þnds a point registration and
a transformation function that map points. The TPS-RPM
and TPSN approach Þrst uses TPS-RPM and then uses the
point registration in order to Þt a transformation function
that map points and normals. The TPS-RPMA approach
tries to register normals by having additional artiÞcial points
in the direction of the normals and then uses TPS-RPM
with the original and artiÞcial points to Þnd a registration
and transformation function that maps these points. Our
algorithm, TPSN-RPM, jointly Þnd a point registration, a
normal registration, and a transformation function that map
points and normals.

algorithms are cubic in the number of variables and TPSN-
RPM has additional weight variables÷ak for the normal basis.
However, since the normals provide surface information that
would otherwise be provided by dense points, less points
could be used in exchange of some normals and thus TPSN-
RPM could have a comparable number of variables.

C. Knot-tying and towel-folding with a PR2

We also applied learning from demonstrations for knot-
tying and towel-folding executions with a PR2. For the knot-
tying task, we used the library of demonstrations containing
148 demonstrations collected by Schulman et al. [1]. For the
towel-folding task, we used a library of 3 demonstrations,
one for each segment of the task (fold in half, fold one third,
and fold the last third). In both of these demonstrations, the

demonstrations were recorded using kinesthetic teaching for
the trajectory and a RGBD camera for the points clouds. The
demonstration scenes consisted of a red rope and towel on
a green ßat table.

The points were those of the object, which were extracted
with a red Þlter. The normal sites were table points that
were within5cm of any object point. The table points were
extracted with a green Þlter. The surface normal at each of
those sites was computed using principal component analysis
(PCA) with a window radius of5cm. The rope and towel
points were downsampled using a voxel size of5cm and
2.5cm respectively and the table normals were downsampled
using a voxel size of5cm for both tasks.

The test scenes consisted of rope and towel in a different
conÞguration on a green curved table. The shape of the
curved table is the top of a sinusoid with an amplitude of
22.86cm and a half period of91.44cm. The autonomous
executions of both tasks using TPS-RPM and TPSN-RPM
are shown in Figure 6. Videos of these executions can also
be seen athttp://rll.berkeley.edu/icra2015tpsn/ .
Both methods were able to succeed at knot-tying and towel
folding. Despite of this, we can see that the grippersÕ
approach direction to the table is qualitatively better and
perpendicular to the curved table when TPSN-RPM is used.
In other tasks in which normals are more important, such as
in surgical suturing, TPSN-RPM could improve the insertion
of a needle into suturing pads.

VI. CONCLUSION AND FUTURE WORK

We presented TPSN-RPM which extends TPS-RPM to
include normals in the objective. We introduced a second
correspondence matrix to keep track of correspondence be-
tween normals, and the transformation update now solves an
optimization problem that considers normals.

For various manipulation tasks, the robot gripperÕs direc-
tion of approach with respect to the objectsÕs surface normals
is important to succeed at the task. We showed that our
method results in improved performance for a simulated

http://rll.berkeley.edu/icra2015tpsn/
http://rll.berkeley.edu/icra2015tpsn/


insertion task and in qualitatively better grasps for knot-tying
and towel-folding tasks when executed in a PR2.

In the future, we would like to apply our method in real-
world tasks in which normal information is critical for the
success of the task, such as in surgical suturing. In addition,
we would like to investigate effective ways to choose normals
since only some normals might be important for a given task.
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APPENDIX

[Thin Plate Spines with Normals]
The thin plate splines with normals, in its general form,

solves the optimization problem,

min
f

N!

i =1

||y i " f (x i )||22 + '
K!

k=1

||v k " Jsk
f uk ||22 + ! ||f ||2TPS.

(20)
The constant$k of Equation (10) can easily be incor-

porated intouk . The minimizerf can be expressed as in
Equation (11).

Let

! =
&
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'
D =
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'
, (21)

where

(! 00) ij = " (x i " x j )

= ||x i " x j ||3

(! 01) ij = " (u !
j & )" (x i " sj )

= 3 ||sj " x i ||u !
j (sj " x i )

(! 11) ij = " (u !
i & )(u !

j & )" (si " sj )

= " 3||si " sj ||(u !
i u j )

"
3

||si " sj ||
(u !

i (si " sj ))( u !
j (si " sj )) . (22)

The optimization problem of Equation (20) can be rewrit-
ten as a constrained least squares problem,

min
f

||Y " [! 00 ! 01]A " XB " 1c! ||2F

+ ' ||V " [! !
01 ! 11]A " UB ||2F

+ Tr ( A ! KA )

subject to D ! A = 04# 3, (23)

where A are the weights of the basis functions,A =
[a1 . . . aN ÷a1 . . . ÷aK ]! and the bending energy matrixK is
given by

K = (( I " P)! (I " P))$ 1 (24)

P = D (D ! D )$ 1D ! . (25)
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