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Abstracf Recent work [1], [2], [3] has shown promising , ,
results in learning from demonstrations for the manipulation
of deformable objects. Their approach bPnds a non-rigid regis-
tration between points in the demonstration scene and points — r’ A \ ‘—4}
in the test scene. This registration is then extrapolated and Essrad

applied to the gripper motions in the demonstration scene to ‘

obtain the gripper motions for the test scene. If more than one 3
demonstration is available, a quality score for the non-rigid

registration is used to determine the best matching training (a) Demonstratior(b) Test scene usinfr) Test scene using
scene. For many manipulation tasks, however, the~gripper(~)s scene TPS-RPM TPSN-RPM

direction of approach with respect to the objectsO surface _. ) _ . .
normals is important in order to succeed at the task. This prior  Fig- 1. We evaluate and compare non-rigid registration
work only registers points across scenes and does not register methods used in trajectory transfer for an insertion task. The

the surface normals, often leading to warps between scenes that yellow grid visualizes the registration warp of the scene with
are inappropriate for transfer of manipulation primitives. The respect to the demonstration scene. (a) The demonstration

main contributions of this paper are (i) An algorithm for non- : . . L
rigid registration that considers both points and normals, and consists on inserting a needle, which is simulated as a box,

(i) An evaluation of this registration approach in the context i_nto a hole in a pad. A PR2 grasps the needle, W_hiCh initia_\lly
of learning from demonstrations for robotic manipulation. Our  lies at the left pad, and then rotates and moves it to the right

experiments, which consider an insertion task in simulation and  to insert it through the hole in the right pad. (b) When TPS-
also knot-tying and towel-folding executions in a PR2, show Rp\ js used for non-rigid point registration, the warp of the
glne:jt (llr:g?irtg%:/itll;gber;?gpwgrlzsgess.,uIts in improved performance registration is a shear, which impedes thg robot from properly
inserting the box. (c) However, when using TPSN-RPM, our
non-rigid point and normal registration algorithm, the warp
correctly bends at the grasp point and insertion hole, which
Learning from demonstrations has the potential to simplifgllows the robot to accurately insert the box.
equipping a robot with new skills by simply having the robot
watch a human perform the task. The critical challenge in However, registration with TPS-RPM has its limitations.
|earning from demonstrations is the ablllty to generalize th@onsider’ for examp|e’ the scene shown in Figure 1. F|g_
motions that were successful in the demonstration context {@e 1a shows the demonstration scene. Figure 1b shows a
motions that will be successful in the new environments thgimilar scene, but the pads have been shifted. The yellow grid
robot is faced with. visualizes the warping function found through TPS-RPM.
Recent work [1], [2], [3] has shown that existing ap-The found warping function is not well aligned with the
proaches for non-rigid registration can be successful ghds. The reason that such a misaligned warp was found is
recovering how demonstration and test environments relafigat TPS-RPM tries to bnd a function that has low bending
to each other. In particular, their line of work uses thirenergy (i.e., is close to afbne) while also having small error
plate spline robust point-matching (TPS-RPM), proposed byn the points that are being registered (in this case the
Chui and Rangarajan [4], to register demonstration scem@rners of the pad, and the corners of the rectangular hole in
onto test scene, and then extrapolates this registration t§e pad). For manipulation purposes, however, alignment is
transfer the demonstrated gripper or tool trajectory ontgeally important. A suture needle, for example, might have
the test scene. Their experiments have shown good successe inserted orthogonally to the pad, and any Rattening
rate for tasks such as knot-tying (where generalization istherwise straightening out of the pads would typically have
over conbgurations of the rope), picking up plates (wher@ happen aligned with the pad. Intuitively what is missing
generalization is over the shape of the plate), and screwifghm TPS-RPM is a term in the objective that ensures the
on bottle-caps (where generalization is over bottle and capgistration matches up the normals. Indeed, including such
shapes). Success in these domains depends heavily on gherm in the registration results in the more desirable warp
quality of the registration. shown in Figure 1c.
There is a long history in the non-rigid registration lit-
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I. INTRODUCTION



existing work has considered the problem of jointly Pndindor the new scene. Trajectory optimization [16] can then be
the registration and the warping function, while consideringised to bnd a feasible trajectory in which the grippers follow
normals (i.e., the extension of TPS-RPM, or a TPS-RPM-likéhese new gripper motions. Schulman et al. [2] also applies
algorithm, to include normals). this approach for a simplibed suturing scenario. They had to

The main contributions of this paper are: (i) We describartipcially add points along the normals of the pads they were
TPSN-RPM, which extends TPS-RPM to include normals isuturing in order to get a registration that would produce
the objective; (i) We experimentally study the advantage ahe correct angle of attack for the robotOs end-effector. In
TPSN-RPM over TPS-RPM in the context of learning fronthis paper, however, we can incorporate this directly by
demonstrations for robotic manipulation. mapping normals between both scenes. Lee et al. [3] extends
Schulman et al.Os approach by jointly optimizing the non-
rigid registration and the trajectory optimization in a single

The two main areas of related work are non-rigid regiseptimization.
tration and learning from demonstrations.

Besl et al. [8] uses feature-based matching methods for
registering point clouds. Chui and Rangarajan [4] provide a In this section we review the TPS-RPM algorithm for non-
method for registering one point cloud onto another, namefgid point registration [17] and Schulman et al.Os approach
TPS-RPM. There has been some recent work in using surfa@learning from demonstrations for robotic manipulation [1].
normals to Pnd a better registration between point cloud$he idea of this approach is to Prst bnd a warping function
Makadia et al. propose an algorithm [9] which uses th&hat maps points in the demonstration scene to points in a
correlations of the two extented Gaussian images (EGI) ieW scene and then apply that function to the end-effector
the Fourier domain and applies several iterations of Iteratiy@otion. This has the effect that the resulting end-effector
Closest Points (ICP). The algorithm uses normals to generdtotion incorporates variations in the new scene, which is
orientation histograms. These orientation histograms are thRPortant in manipulation tasks.
used to estimate the initia_l rc_)tat_ion of the target_clou%_ Non-Rigid Point Registration
from the source cloud. Rusinkiewicz et al. [10] design an Consider the case in which the demonstration scene con-
algorithm that is a modibcation of ICP. They use normal-. ) o |
space-directed sampling to affect ICP. This turns out §/Sts of N points X = [fl"'XN]' a?d the test scene
improve convergence for nearly-Rat meshes and scenes fhgpsists ofN " points ¥ = [y, ...yn'T . The non-rigid

H H H . D D
involve small features, such as inscribed surfaces. :ﬁg;str:]a;osn porici)qtzlge(mt(;s t;ﬂ?:g iofrur;(;tr'gg ’ di?nen.sioRrD
In the non-rigid registration literature, normals have bee PSP b i

incorporated when bnding a warping function but the;‘;[] this paper we consider problems in 2 and 3 dimensions.

assume a bxed and known registration. Bookstein and bnd a smooth mapping, we restrict the functioto be

Green [7] approximate the normals by adding points alon thin plagﬁ aﬁ::nﬁ t(:]'PS).r:Ne Drr]s(,jt Eresert])t :\r,:/e pnrotl:r)llem f;;
the normal direction very close to the normal site. Mardi € case c € correspondences betwee € points

et al. [5], [6] use a kriging framework in which they can'® known and then we present the more general case of
: nknown correspondences.
represent the normals exactly. The form of our thin platg

spline with normals follows from this work. The difference 1) Non-Rigid Point Registration with Known Correspon-

. ) . dences: Assume thatN = N and that there are one-to-
between their work and ours is that we consider the case 0 .

one known correspondences between pamtandy;. The
unknown correspondences.

In the beld of learning from demonstrations, also known argglstratlon problem can be formalized as an optimization

programming by demonstrations, expert demonstrations a%oblem,
generalized to new scenarios [11], [12], [13]. In particular, N . 5 5
Calinon et al. [14], [15] developed a method for learning to minflyi " FO)llz + HIf [l7es 1)
perform manipulation tasks in different starting scenes. Their i=1
approach learns a mixture of Gaussians to represent the jowlhere the regularizeltf ||§PS is the TPS energy function,
distribution of the robot trajectory and the environment state
across multiple demonstrations, and then infer the trajectory If IFps = dx[[D?f (x)]IZ, 2)
for the new environment state conditioned on that state. They =~ )
assume access to a featurization of the environment, so théfich is a measure of the curvature of the functibn
approach is not directly applicable in tasks without a bxedn€ parametet controls the trade-off between matching
environment representation. correspon_dgn_ce pom.ts and thg smoothness of the spline.
In contrast, the approach of Schulman el al. [1] to learning "€ Minimizer f in Equation (1) can be expressed
from demonstrations can work directly with point clouds?S @n afPne transformation debned Byand c, plus a
from the environmentOs scene. They brst bnd a non-rigi§ighted sum of basis functions(§ centered around the
registration that maps points of the demonstration scene $§t@ points [18], |
points of the new scene, and then extrapolate the registration f(x)=  a"(x" xi)+ B'x+c, 3)
function to the gripper motions to get new gripper motions

Il. RELATED WORK
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wherea; is constrained bj/i caixd =0 and” ;ad =0 for Algorithm 1 TPS-RPM
each dimensiod = 1,...,D. As shown in [19], Equation (1) 1. procedure TPS-RPM{o, T, !0, !¢)
can be efbciently solved analytically. 2 f % identity transformation

2) Non-Rigid Point Registration with Unknown Corre- 3: T%To, ! % !o
spondencesWhen the correspondences between the pointg: repeat

are unknown, we need to Pnd a correspondence mislkrix s repeat

whose elementsn; indicates if pointx; corresponds to ¢: Update point correspondenclk using (6)
point y;. If we allow for fuzzy correspondenced] is a 7: Update transformatioh using (7)
doubly-stochastic matrix where each temm , in the interval g until convergence

[0, 1], indicates the degree of correspondence between poing: decreasd and!

x; andy; . An extraN +1th row and an extr&l "+1th column 10 until T <Te,1<!
is added toM to handle outliers. Chui and Rangarajanii: end procedure
formulate this problem as a joint optimization [17],

min E(f, M;T. 8+ LI |13es
f M ’ B. Learning from Demonstrations with Thin Plate Splines
subject to LAt my = 1,N " my =1,m; #0, (4 In Schulman et aI.O; work on learning frpm demonstra-
- i=1 tions [1], a demonstratlon consists of a point cIo_deof
the demonstration scene and an end-effector trajectory. At
where test time, a point cloudy of the test scene is observed
IN N and the TPS-RPM algorithm is used to Prst bnd a non-
E(f, M;T,# = mi [ly; " £ (xi)ll3 rigid registrationf that maps points from the demonstration
i=1j=1 scene to the new test scene. Then, the registration function
IN N IN N is applied to the demonstration trajectory to get a new
+T mj logm; " # mjj . end-effector trajectory. This trajectory does not incorporate
i=1j=1 i=1 j=1 collision avoidance and joint limits, so trajectory optimiza-

®)  tion [16] is then used to bnd a feasible joint angle trajectory.

The parameteil is referred to as a temperature and ifThe hope is that the resulting trajectory will incorporate
controls the fuziness of the correspondences, with a lowgariations in the environment and thus succeed in performing
temperature specifying correspondences that are less fuzhg desired manipulation. In practice, this method has been
and more binary. The paramet#rprevents all the points shown to be effective at generalizing expert demonstrations
from being assigned to outliers. to new, unseen scene conbgurations.

This optimization problem can be solved via coordinate
descent, iterating between optimizing fdr and forf . Since
the objective is non-convex, the solution is only guaranteed As we saw in Section IlI-A, a thin plate spline can be used
to be locally optimal. Minimizing with respect tM , gives to map pointsX in the demonstration scene to poirdsin
the update the test scene. In object manipulation tasks, the direction in

$ 1 % which the end-effector approaches the object with respect
m; $ exp " T||yj " x)|I? (6) to its surface normals is often important. For this reason,
we want the registration function to also register normals
which needs to be followed by iterated row and columfrom the demonstration scene to the test scene. Assume the
normalization. Given these correspondendesan be min- demonstration scene h&s normalsU = [uidddx ] each
imized by solving for the optimal thin plate spline, of them situated at respective si®s [s; 4ask | in space,
IN and the test scene has" normalsV = [v; 44| at
f=argmin  wi|lg " f(xi)l3+ !If 3, (7) respective sited =[t;&4at:]' . The normal sites do not
Foia need to conincide with any of the points in the scene. In
where here we address the non-rigid point and normal registration
N # N _— problem which consists of Pnding a registration function
Wi me g = it Yi _ @) RP I RP that maps point to pointsY and also maps
i ij o i . .
i=1 Wi normalsU at sitesS to normalsV at sitesT .

IV. NON-RIGID POINT AND NORMAL REGISTRATION

The TPS-RPM algorithm consists of embedding the coA. Non-Rigid Point and Normal Registration with Known
ordinate descent procedure in deterministic annealing. Ti®orrespondences

algorithm alternates between estimating correspondences an%ince normals are differential quantities, a transformation

btting the optimal thin plate_ spline based on thesg esY- can be applied to a normal at positions by multiplying
mated correspondences, while also gradually reducing tlﬂ;?e normal byd$, the Jacobian of ats:
fo :

temperaturelT. The TPS-RPM algorithm is summarized in
Algorithm 1. v =J7u. 9)



The point and normal registration can be formalized as an Assuming that the points match the normal siéss S,

optimization problem, a nadve approach would be to brst use TPS-RPM to bnd
IN 1K point correspondenceld! and then use these for normal
min llyi " £ (x)II5+ V" A3%ull3+ ! If [12ps cqrrespondences. However, beS|de_s the_requwed assumption,
LI k=1 . this approach would bnd bad registration functions when

(10) normals donOt have the same correspondences as their re-
where$y is a normalization coefbcient that will be explainedspective points. Consider the case in which a point from
at the end of this section. the demonstration scene corresponds well to a point from

Mardia [5] showed that the minimizér in Equation (10) the test scene after using TPS-RPM, but the normals that
can be expressed with the same terms as the thin plate splike at those sites differ by a lot. The btted spline in this
of Section IlI-A, plus a weighted sum of derivative terms ofcase is forced to match these normals and thus resulting in

the basis functions, a poor warping function. In addition, this #xe procedure
IN 1K would not change the registration, which is what would
f(x)= a"(x" x;)" akUL&" (x" s¢)+ B' x+c, be desired, as the normals in thiséme procedure donOt
i=1 k=1 affect the registration. Section V-A will illustrate this with
. (11)  2-dimensional toy examples.
where a; and & gre now constrained by ; afx{ + Similar to TPS-RPM, we bnd a registration functiomnd

dyd = d = - : _ ,
k®Ug =0 and ;& =0 for eacgl dimensiord. The  5ints and normals correspondendésandQ by solving the
basis function is of the formi(r) = ||r||¢ , with 1<% < 2 following optimization problem,

in order for the function to accomodate the derivative terms.
The thin plate spline of Section IlI-A cannot always be used min E(f, M;T,#H+ " "B, Q;T. A+ !|If |35
because it is not differentiable at zero in 3 dimensions. For "™ '?

this work, we usé%= 1.5, which corresponds tb being a . L N+
cubic spline. In the literature, the term Othin plate spline® iSubject to L 1, oMy = 1.mj #0
used for any spline that minimizes the TPS energy function =t J:%
of Equation (2), so we follow that convention and refer L K
to this cubic spline as a thin plate spline or, to be more 9a =1, 94 =1,0¢ # 0,
specibc, a thin plate spline with normals (TPSN). As before, k=1 =1 (14)
Equation (10) can also be efbciently solved analytically. See
the Appendix for an explicit formulation of this optimization where
as a least-squares problem in matrix form. KK
It is easy to show that if two normal vectossandv are BE(f, ;T H= V" L% U2

normalized, then the norm of their difference is related to k=1 I=1 -
the angle& between them, KK a K K

v ull3=2(1" coss) (2) HE e R A
with the cost being zero when the normals perfectly match. (15)

In the case of the normals cost of Equation (1@), can Here,gq are the terms oD, (. is a prior probability that

: ) ;
be normalized but the warped norma*ux cannot since normals correspond to each otheis a parameter that trades

the Jacobiad{* depends on the registration function beingOff matching the normals, an® and# are analogous t@
optimized. However, we can estimate a normalization coefb- '

; . . ) o nd# for normal rr ndences.
cient$y by brst bnding a registration functidnthat solves and# but fo ormais correspo de.ces
o The probability( provides a prior that th&th source
a similar problem and then,

normal should match to thih target normal. In our case,

$ = ||Jf5:_k ugll. (13) the prior takes the form,
$ %
The problem that Pnds the registration functidreould be (v $exp " Tlllt' " (sl (16)

point registration without the normals information, or the

problem from the previous iteration when this optimizationynere we use the same tempertdirehat was used for the
is embedded in some iterative procedure as will be the caggints. This prior discourages similar normals whose sites

in Section IV-B. are far apart to correspond to each other.
B. Non-Rigid Point and Normal Registration with Unknown Coordinate descent is used to Pnd a locally optimal
Correspondences registration function and correspondences. Minimizing with

In the case of unknown correspondences. we no aIsEeSpeCt toM gives the same update of Equation (6). Mini-
u W P » W W rﬁiz&ng with respect tdQ gives the update

need to Pnd normals correspondences and these are debne
by a correspondence mati@ in the same way that the point
correspondences are debnedNby

1 %
G $ (wexp " ?”VI "EI Ul 17)



which needs to be followed by iterated row and colum
normalization.

Given these correspondencds,can be minimized by
solving for the optimal thin plate spline,

!N
f=argmin  willgi " f (x5

o (@) (b) ©
+ wi o " I u)ll+ LIfll3es  (18)  Fig. 3: Demonstration for a simpliped needle insertion task.
k=1 (a) The robot picks up the needle from the left pad. (b) The
where robot moves the needle into position to the target hole while

K # dragging a thread. (c) The robot inserts the needle into the
H - V . .

Wi = Oa, B = l—;vfkl | (19) hole in the right pad.
1=1

We embed the coordinate descent procedure in deterﬁ be b di . dits direct b
ministic annealing. The resulting algorithm is presented iff10Sen dt_o Ie etV\;]eenda Ja_centhpor:nt; anl_ Its directions to be
Algorithm 2, which we name TPSN-RPM: thin plate splineperpen icular to the edge in which they lie.

with normals robust point-matching. The algorithm takes No_tice that in the case of the deformed vase, the number
in initial and Pnal values for the parametdrs!, T,' and of points and normals differ between the source and target. A

returns a registration functidnthat maps points and normals reasonable registration should correspond t_he shape corners
from the demonstration scene to the test scene. to each other. For the vase examNpIe, this means that a
reasonable correspondence wouldnOt be one-to-one.
Algorithm 2 TPSN-RPM For a fair comparison, the same bnal temperaiurand
. o, bending energy parametérwere used on both algorithms.

;: pro{f:e%urize-rnZtS,\:;:nzxg—ngl;ifo’r: ol ToTe. 0 r) The remaining parameters were found using grid search and

3 T 9% T, ! 32) » choosmg the ones that achieved the lowest energy on their

A + 0% T-o’ : % ,'O respective objectives.

) ' We can see that, unlike TPS-RPM, our algorithm TPSN-

5: repeat
6
7
8
9

repeat RPM was able to bnd a registration in W_hich the corners

$i % [| 9% Ul (13) match each other. Furthermpre, the bendlng energy of the
Update |choint correspondench using (6) warp found by TPSN-RPM is lower. Notice that in TPSN-

Update normal correspondend@susing (17) RPM, the normal lenghts are also matched to each other,
which has the side effect of minimizing warp scaling in

10: .Update transformatioh using (18) the direction of these normals, which might be desirable for
11: until convergence . )

L manipulation tasks.
12: decreasd, ! andT, increase

13 until T<T¢,!1<! ¢, T<TF, > ¢

14 return f

15: end procedure We applied our registration algorithm for a learning from

demonstration task involving autonomous insertion with a

PR2 in a simpliped simulation setting. The task involves

V. EXPERIMENTS AND RESULTS the robot placing a needle into a hole in a pad. The needle

We illustrate our algorithm in the registration of 2-iS modeled as a box and the hole is slightly bigger than

dimensional shapes and in learning from demonstrations € Pox. We gave the robot single demonstratiomf this

manipulation tasks in simulation and executions with a PR32Sk. In the demonstration, the gripper brst picks up the box
on the left, then rotates the box upside down as it moves

A. 2-dimensional Toy Examples from left to right, and then places the box in the hole at
We qualitatively compare TPS-RPM and our algorithnthe right. The demonstration can be seen in Figure 3. The
TPSN-RPM for the registration of 2-dimensional shapes. Thédemonstration trajectory was progrgmatically generated by
Prst example consists of a deformed vase and the secaspecifying waypoints for the gripperOs pose and interpolating
one consists of a square and circle whose position chantfeem. We used points and normals around the initial position
relative to each other. The setup and the registrations of thegkthe box and the target hole, as seen in Figure 4.
examples are shown in Figure 2. At test time, the robot generalized from the demonstration
The points for the source and target points were choséa execute the task in a new scene. Success was measured
to be on the shape outlines. For the straight segments, thased on whether or not the robot was able to successfully
points were chosen such that they are evenly spaced withptace the box in the hole. The test scenes involved displace-
a distance of 2.5 units in the segment. The normal sites wemgent of the target pad along an axis towards the robot, from

B. Insertion Task with a Simulated PR2
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(e) Source points and normals (f) Target points and normals (g9) TPS-RPM

Fig. 2: Non-rigid registration of a deformed vase and rigid shapes using TPS-RPM and TPSN-RPM. The source points are
denoted with red plus signs and the normals with red solid lines. The target points are denoted with blue circles and the
normals with blue dashed lines. The warping of the space is visualized with the grid in the background. Points at the shape
corners are drawn slightly bigger. Notice that in both examples, TPSN-RPM Pnds a registration in which the corners match
each other while TPS-RPM fails to achieve this. In addition, TPSN-RPM aligns the normals for both point sets and bnds a
warping with a smaller bending energy.

(h) TPSN-RPM
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Fig. 4: The points and normals used in the simpliped ' : Lo
insertion task. The normals are at sites that coincide with o TPSRPM O
. R . . 02l | -- TPS-RPMandTPS . L
the points and the normals are perpendicular to its adjacent TPS-RPMA S T S
faces. There are two or three orthogonal normals at each site. — TPSN-RPM T
005 5 10 TS 20
offset (cm)

Ocm to 20cm offset. Hyperparameters were determined bfig. 5: Insertion success rate for various offset distances

performing a grid search for each offset and algorithm.  ysing TPS-RPM, TPS-RPM followed by TPSN, TPS-RPMA
We compare the success of TPS-RPM, TPSN-RPM, arghd our method TPSN-RPM.

two variations of these for the insertion task. The brst

variation consists of brst bnding point correspondences using

TPS-RPM and then using those for normal correspondencgsus fail at the task. The two variations was able to do

to bt a TPSN. The second variation, which we call TPSpetter than TPS-RPM for intermediate offsets. Using TPS-

RPMA, consists of approximating the normals by addinRPM for correspondences followed by TPSN failed to

artibcial points along the direction of the normals and thepnd correct correspondences between normals because point

using TPS-RPM with the original and artibcial points. Thisorrespondences do not neccessarily imply correct normal

latter method was used by [7] and [2]. The results areorrespondences. TPS-RPMA wasnOt as good as TPSN-RPM

summarized in Figure 5 and Table I. because while the latter bts the angle of normals, TPS-RPMA
Our algorithm TPSN-RPM outperformed all the otherbts exact points in the direction of normals.

methods achieving 100% success rate for all offsets. At There is a tradeoff between success rate and average

high offsets, the shearing resulting in registration by TPSegistration time. TPSN-RPM on average takes the most time

RPM caused the robot to insert the box improperly antb register. This is because the running time of these RPM



(a) Rope-tying using TPS-RPM (b) Rope-tying using TPSN-RPM

(c) Towel-folding using TPS-RPM (d) Towel-folding using TPSN-RPM

Fig. 6: Sequential executions of a PR2 tying overhand knots and folding towels on a curved surface. The demonstrations
(not shown) were performed on a Rat surface and the grippers approached the table in a direction roughly perpendicular
to the table. Note that even though both approaches were able to succesfully complete the task, the grippers® approach
direction are qualitatively different. When using TPS-RPM, the grippersO approach direction is vertical as in the demon-
stration, but when using TPSN-RPM, the direction is perpendicular to the new curvature of the table. For videos, see
http://rll.berkeley.edu/icra2015tpsn/

Mean and demonstrations were recorded using kinesthetic teaching for
Algorithm Mean Standard Deviation . .
Success Ratd "R ictration Time the trajectory and a RGBD camera for the points clouds. The
. demonstration scenes consisted of a red rope and towel on
TPS-RPM (Algorithm 1) 50.8% 0.040+ 0.004s Rat tabl
TPS-RPM and TPSN 65.8% 0.046+ 0.005s a green lal table. _ .
TPS-RPMA 60% 0.522+ 0.021s The points were those of the object, which were extracted
TPSN-RPM (Algorithm 2)|  100% 0.743% 0.035s with a red Plter. The normal sites were table points that

TABLE I: Success rates of a simulated insertion through ere within5cm of any object point. The table points were

pad using a different approaches for non-rigid registratior?XtraCt?d with a green DIter._The -sur-face normal at each O.f

The TPS-RPM algorithm jointly Pnds a point registration an ose sites was computed using principal component analysis
CA) with a window radius obcm. The rope and towel

a transformation function that map points. The TPS-RPM A q led Usi [ si ; d
and TPSN approach brst uses TPS-RPM and then uses én S were downsampled USINg a VOXel siz€ an
.5cm respectively and the table normals were downsampled

point registration in order to bt a transformation functiorf~ | si 6cm for both task

that map points and normals. The TPS-RPMA approaclﬁs_'lf]r? a VOXel siz€ obem ord ?c as S.d i diff

tries to register normals by having additional artibcial points € test_ scenes consisted of rope and towel in a different
nbguration on a green curved table. The shape of the

in the direction of the normals and then uses TPS-RP d table is th ¢ : id with litude of
with the original and artibcial points to bnd a registratior?urve table is the top ol a sinusol with an amplitude o
.86cm and a half period oB1.44cm. The autonomous

and transformation function that maps these points. O . f both K ing TPS-RPM and TPSN-RPM
algorithm, TPSN-RPM, jointly bnd a point registration, aSXecutions of both tasks using ) and i
re shown in Figure 6. Videos of these executions can also

normal registration, and a transformation function that maE i
e seen alttp://rll.berkeley.edu/icra2015tpsn/

oints and normals. . ’

P Both methods were able to succeed at knot-tying and towel
folding. Despite of this, we can see that the grippersO
N’;}pproach direction to the table is qualitatively better and

algorithms are cubic in the number of variables and TPS erpendicular to the curved table when TPSN-RPM is used
RPM has additional weight variableg for the normal basis. berp . . ) '
In other tasks in which normals are more important, such as

However, since the ”0""?'5 provide surface_|nformat|on t.thIl surgical suturing, TPSN-RPM could improve the insertion
would otherwise be provided by dense points, less poin . .
a needle into suturing pads.

could be used in exchange of some normals and thus TPSN-
RPM could have a comparable number of variables. VI. CONCLUSION AND FUTURE WORK

We presented TPSN-RPM which extends TPS-RPM to
include normals in the objective. We introduced a second

We also applied learning from demonstrations for knoteorrespondence matrix to keep track of correspondence be-
tying and towel-folding executions with a PR2. For the knottween normals, and the transformation update now solves an
tying task, we used the library of demonstrations containingptimization problem that considers normals.
148 demonstrations collected by Schulman et al. [1]. For the For various manipulation tasks, the robot gripperOs direc-
towel-folding task, we used a library of 3 demonstrationsjon of approach with respect to the objectsOs surface normals
one for each segment of the task (fold in half, fold one thirdis important to succeed at the task. We showed that our
and fold the last third). In both of these demonstrations, th@ethod results in improved performance for a simulated

C. Knot-tying and towel-folding with a PR2


http://rll.berkeley.edu/icra2015tpsn/
http://rll.berkeley.edu/icra2015tpsn/

insertion task and in qualitatively better grasps for knot-tyin@L7] H. Chui and A. Rangarajan, OA new point matching algorithm for
and towel—folding tasks when executed in a PR2. non-rigid registration,@omputer Vision and Image Understanding

In the future, we would like to apply our method in real-
world tasks in which normal information is critical for the [8

vol. 89, no. 2-3, pp. 114b141, 2003.

] J. Duchon, OSinnes minimizing rotation-invariant semi-norms in
sobolev spaces,O iB@onstructive Theory of Functions of Several

Success Of the taSk, SUCh as in Surgical suturing. |n addition, Variab|es ser. Lecture Notes in Mathematics’ W. Schempp and
we would like to investigate effective ways to choose normals K. Zeller, Eds. Springer Berlin Heidelberg, 1977, vol. 571, pp.

since only some normals might be important for a given taslhg]

85D100. [Online]. Available: http://dx.doi.org/10.1007/BFb0086566
G. Wahba,Spline Models for Observational Data Philadelphia:

Society for Industrial and Applied Mathematics, 1990.
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[Thin Plate Spines with Normals]
The thin plate splines with normals, in its general form,
solves the optimization problem,
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