Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Wolfram Burgard
Motivation

- Estimating the state of a dynamical system is a fundamental problem
- The Recursive Bayes Filter is an effective approach to estimate the belief about the state of a dynamical system
 - How to represent this belief?
 - How to maximize it?
- Particle filters are a way to efficiently represent an arbitrary (non-Gaussian) distribution
- Basic principle
 - Set of state hypotheses (“particles”)
 - Survival-of-the-fittest
Bayes Filters

\[\text{Bel}(x_t) = P(x_t \mid u_1, z_1, \ldots, u_t, z_t) \]

Bayes

\[\begin{align*}
\text{Bel}(x_t) &= \eta \ P(z_t \mid x_t, u_1, z_1, \ldots, u_t) P(x_t \mid u_1, z_1, \ldots, u_t) \\
&= \eta \ P(z_t \mid x_t) P(x_t \mid u_1, z_1, \ldots, u_t) \\
&= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1} \\
&= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1} \\
&= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \, dx_{t-1} \\
&= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \, dx_{t-1}
\end{align*} \]

Markov

\[z = \text{observation} \]
\[u = \text{action} \]
\[x = \text{state} \]
Probabilistic Localization

\[Bel(x | z, u) = \alpha p(z | x) \int_{x'} p(x | u, x') Bel(x') dx' \]
Function Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval

- How to draw samples from a function/distribution?
Let us assume that $f(x) < a$ for all x

- Sample x from a uniform distribution
- Sample c from $[0, a]$
- if $f(x) > c$ keep the sample otherwise reject the sample

Rejection Sampling
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f.
- Using an importance weight w, we can account for the “differences between g and f”.
- $w = f / g$
- f is called target.
- g is called proposal.
- Pre-condition: $f(x) > 0 \ \Rightarrow \ g(x) > 0$
Particle Filter Representation

- Set of weighted samples

\[S = \{ \langle s[i], w[i] \rangle \mid i = 1, \ldots, N \} \]

State hypothesis \hspace{2cm} \text{Importance weight}

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x) \]
Importance Sampling with Resampling: Landmark Detection Example
Distributions
Distributions

Wanted: samples distributed according to
\[p(x \mid z_1, z_2, z_3) \]
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.
Importance Sampling

Target distribution \(f: p(x \mid z_1, z_2, \ldots, z_n) = \frac{\prod_{k} p(z_k \mid x) \ p(x)}{p(z_1, z_2, \ldots, z_n)} \)

Sampling distribution \(g: p(x \mid z_l) = \frac{p(z_l \mid x) p(x)}{p(z_l)} \)

Importance weights \(w: \frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, \ldots, z_n)} \)
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filter Localization

\[
Bel(x | z, u) = \alpha p(z | x) \int_{x'} p(x | u, x') Bel(x') dx'
\]

1. Draw \(x'\) from \(Bel(x)\)
2. Draw \(x\) from \(p(x | u, x')\)
3. Importance factor for \(x\) : \(w = \alpha p(z | x)\)
4. Re-sample
Rejection Sampling

- Let us assume that \(f(x) < a \) for all \(x \)
- Sample \(x \) from a uniform distribution
- Sample \(c \) from \([0,a]\)
- if \(f(x) > c \) keep the sample
 otherwise reject the sample
Importance Sampling Principle

- We can even use a different distribution \(g \) to generate samples from \(f \).
- Using an importance weight \(w \), we can account for the “differences between \(g \) and \(f \)”.
- \(w = \frac{f}{g} \)
- \(f \) is called target
- \(g \) is called proposal
- Pre-condition: \(f(x) > 0 \Rightarrow g(x) > 0 \)
Particle Filters
Sensor Information: Importance Sampling

\[\text{Bel}(x) \leftarrow \alpha p(z \mid x) \text{Bel}^{-}(x) \]

\[w \leftarrow \frac{\alpha p(z \mid x) \text{Bel}^{-}(x)}{\text{Bel}^{-}(x)} = \alpha p(z \mid x) \]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha p(z \mid x) Bel^-(x) \]

\[w \leftarrow \frac{\alpha p(z \mid x) Bel^-(x)}{Bel^-(x)} = \alpha p(z \mid x) \]
Robot Motion

$$Bel^-(x) \leftarrow \int p(x | u, x') Bel(x') \, dx'$$
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[
 \text{weight} = \frac{\text{target distribution}}{\text{proposal distribution}}
 \]

- Resampling: “Replace unlikely samples by more likely ones”
Particle Filter Algorithm

1. Algorithm `particle_filter(S_{t-1}, u_t, z_t)`:

2. \(S_t = \emptyset, \quad \eta = 0 \)

3. For \(i = 1, \ldots, n \)
 - *Generate new samples*

4. Sample index \(j(i) \) from the discrete distribution given by \(w_{t-1} \)

5. Sample \(x_t^i \) from \(p(x_t | x_{t-1}, u_t) \) using \(x_{t-1}^{j(i)} \) and \(u_t \)

6. \(w_t^i = p(z_t | x_t^i) \)
 - *Compute importance weight*

7. \(\eta = \eta + w_t^i \)
 - *Update normalization factor*

8. \(S_t = S_t \cup \{ < x_t^i, w_t^i > \} \)
 - *Add to new particle set*

9. For \(i = 1, \ldots, n \)
10. \(w_t^i = w_t^i / \eta \)
 - *Normalize weights*
Particle Filter Algorithm

\[
Bel(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1}) \ dx_{t-1}
\]

- Draw \(x_{t-1}^i \) from \(Bel(x_{t-1}) \)
- Draw \(x_t^i \) from \(p(x_t \mid x_{t-1}^i, u_t) \)
- Importance factor for \(x_t^i \):

\[
w_t^i = \frac{\text{target distribution}}{\text{proposal distribution}} = \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1}) / \ p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1}) \propto p(z_t \mid x_t)
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$
- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm **systematic_resampling**(S,n):

2. \(S' = \emptyset, \ c_1 = \omega^1 \)

3. **For** \(i = 2 \ldots n \)**

4. \(c_i = c_{i-1} + \omega^i \)

5. \(u_1 \sim U[0,n^{-1}], i = 1 \) **Generate cdf**

6. **For** \(j = 1 \ldots n \)**

7. **While** (\(u_j > c_i \)) **Draw samples** …

8. \(i = i + 1 \) **Skip until next threshold reached**

9. \(S' = S' \cup \left\{ < x^i, n^{-1} > \right\} \) **Insert**

10. \(u_{j+1} = u_j + n^{-1} \) **Increment threshold**

11. **Return** \(S' \)

Also called **stochastic universal sampling**
Particle Filters for Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)
Motion Model
Proximity Sensor Model (Reminder)

Laser sensor

Sonar sensor
Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot.

- The set of weighted particles approximates the posterior belief about the robot’s pose (target distribution).
Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights
Why is resampling needed?

- We only have a finite number of particles
- Without resampling: The filter is likely to loose track of the “good” hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space
Sample-based Localization (Sonar)
Using Ceiling Maps for Localization

[Dellaert et al. 99]
Vision-based Localization

\[P(z|x) \]

\[h(x) \]
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot

- How can we deal with localization errors (i.e., the kidnapped robot problem)?
Approaches

- Randomly insert a fixed number of samples with randomly chosen poses
- This corresponds to the assumption that the robot can be teleported at any point in time to an arbitrary location
- Alternatively, insert such samples inversely proportional to the average likelihood of the observations (the lower this likelihood, the higher the probability that the current estimate is wrong).
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Proposal to draw new samples
- Weights are computed to account for the difference between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter
Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood model (likelihood of the observations).
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
- This leads to one of the most popular approaches to mobile robot localization.