
Prioritized Sweeping: Reinforcement Learning withLess Data and Less Real TimeAndrew W. MooreChristopher G. AtkesonMIT Arti�cial Intelligence Laboratory545 Technology Square, Cambridge, MA 02139AbstractWe present a new algorithm, Prioritized Sweeping, for e�cient prediction and control of stochas-tic Markov systems. Incremental learning methods such as Temporal Di�erencing and Q-learning have fast real time performance. Classical methods are slower, but more accurate,because they make full use of the observations. Prioritized Sweeping aims for the best of bothworlds. It uses all previous experiences both to prioritize important dynamic programmingsweeps and to guide the exploration of state-space. We compare Prioritized Sweeping withother reinforcement learning schemes for a number of di�erent stochastic optimal control prob-lems. It successfully solves large state-space real time problems with which other methods havedi�culty.
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1 IntroductionThis paper introduces a memory-based technique, prioritized sweeping, which can be used both forMarkov prediction and reinforcement learning. Current, model-free, learning algorithms performwell relative to real time. Classical methods such as matrix inversion and dynamic programmingperform well relative to the number of observations. Prioritized sweeping seeks to achieve the bestof both worlds. Its closest relation from conventional AI is the search scheduling technique of theA? algorithm (Nilsson 1971). It is a \memory-based" method (Stan�ll and Waltz 1986) in that itderives much of its power from explicitly remembering all real-world experiences. Closely relatedresearch is being performed by Peng and Williams (1992) into a similar algorithm to prioritizedsweeping, which they call Dyna-Q-queue.We begin by providing a review of the problems and techniques in Markov prediction andcontrol. More thorough reviews may be found in Sutton (1988), Barto et al. (1989), Sutton (1990),Kaelbling (1990) and Barto et al. (1991).A discrete, �nite Markov system has S states. Time passes as a series of discrete clock ticks,and on each tick the state may change. The probability of possible successor states is a functiononly of the current system state. The entire system can thus be speci�ed by S and a table oftransition probabilities. q11 q12 � � � q1Sq21 q22 � � � q2S... ... ...qS1 qS2 � � � qSS (1)where qij denotes the probability that, given we are in state i, we will be in state j on the nexttime step. The table must satisfy PSj=1 qij = 1 for every i.Figure 1 shows an example with six states corresponding to the six cells. With the exception ofthe rightmost states, on each time step the system moves at random to a neighbor. For example,state 1 moves directly to state 3 with probability 12 , and thus q13 = 12 .The state-space of a Markov system is partitioned into two subsets: the non-terminal statesNONTERMS, and the terminal states TERMS. Once a terminal state is entered, it is never left1
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Figure 1: A six state Markov system.
(k 2 TERMS)qkk = 1). In the example, the two rightmost states are terminal.A Markov system is de�ned as absorbing if from every non-terminal state it is possible toeventually enter a terminal state. We restrict our attention to absorbing Markov systems.Let us �rst consider questions such as \starting in state i, what is the probability of eventualabsorption by terminal state k?". Write this value as �ik. All the absorption probabilities forterminal state k can be computed by solving the following set of linear equations. Assume that thenon-terminal states are indexed by 1;2; . . . ; Snt where Snt is the number of non-terminals.�1k = q1k + q11�1k + q12�2k + . . . + q1Snt�Sntk�2k = q2k + q21�2k + q22�2k + . . . + q2Snt�Sntk... ... ...�Sntk = qSntk + qSnt1�1k + qSnt2�2k + . . . + qSntSnt�Sntk (2)When the transition probabilities fqijg are known it is thus an easy matter to compute the eventualabsorption probabilities. Machine learning can be applied to the case in which the transitionprobabilities are not known in advance, and all we may do instead is watch a series of statetransitions. Such a series is normally arranged into a set of trials|each trial starts in some stateand then continues until the system enters a terminal state. In our example, the learner might be2



shown 3 ! 4 ! 3 ! 1 ! 2 ! 4 ! 63 ! 51 ! 2 ! 1 ! 3 ! 5... (3)Learning approaches to this problem have been widely studied. A recent contribution of greatrelevance is an elegant algorithm called Temporal Di�erencing (Sutton 1988).1.1 The Temporal Di�erencing algorithm reviewedWe describe the discrete state-space case of the temporal di�erencing algorithm. TD can, how-ever, also be applied to systems with continuous state-spaces in which long term probabilities arerepresented by parametric function approximators such as neural networks (Tesauro 1991).The prediction process runs in a series of epochs. Each epoch ends when a terminal state isentered. Assume we have passed through states i1; i2; . . . in; in+1 so far in the current epoch. n isour age within the epoch and t is our global age. in!in+1 is the most recently observed transition.Let �̂ik [t] be the estimated value of �ik after the system has been running for t state transitionobservations. Then the TD algorithm for discrete state-spaces updates these estimates accordingto the following rule:for each i 2 NONTERMS(the set of non-terminal states)for each k 2 TERMS(the set of terminal states)�̂ik [t+ 1] = �̂ik [t] + � ��̂in+1k [t]� �̂ink [t]� nXj=1�j�nXi(ij) (4)where � is a learning rate parameter 0 < � < 1, where � is a memory constant 0 � � � 1 andwhere Xi(ij) = 8><>: 1 if ij = i0 otherwise (5)In practice there is a computational trick which requires considerably less computation than thealgorithm of Equation (4) but which computes the same values (Sutton 1988). The TD algorithm3



then requires O(St) computation steps per real observation, where St is the number of termi-nal states. Convergence proofs exist for several formulations of the TD algorithm (Sutton 1988;Dayan 1992).1.2 The classical approachThe classical method proceeds by building a maximum likelihood model of the state transitions.qij is estimated by q̂ij = Number of observations i! jNumber of occasions in state i (6)After t+1 observations the new absorption probability estimates are computed to satisfy, for eachterminal state k, the Snt � Snt linear system�̂ik [t + 1] = q̂ik + Xj2succs(i)\NONTERMS q̂ij �̂jk [t+ 1] (7)where succs(i) is the set of all states which have been observed as immediate successors of i andNONTERMS is the set of non-terminal states. It is clear that if the q̂ik estimates were correct thenthe solution of Equation (7) would be the solution of Equation (2).Notice that the values �̂ik [t + 1] depend only on the values of q̂ik after t+1 observations|theyare not de�ned in terms of the previous absorption probability estimates �̂ik [t]. However, it ise�cient to solve Equation (7) iteratively. Let f�ikg be a set of intermediate iteration variablescontaining intermediate estimates of �̂ik [t + 1]. What initial estimates should be used to start theiteration? An excellent answer is to use the previous absorption probability estimates �̂ik [t].The complete algorithm, performed once after every real-world observation, is shown in Figure 2.The transformation on the �ik's can be shown to be a contraction mapping as de�ned in Section 3.1of Bertsekas and Tsitsiklis (1989), and thus, as the same reference proves, convergence to a solutionsatisfying Equation (7) is guaranteed. If, according to the estimated transitions, all states can reacha terminal state, then this solution is unique. The inner loop (\for each k 2 TERMS � � �") is referredto as a probability backup operation, and requires O(St�succs) basic operations, where �succs is themean number of observed stochastic successors. 4



1. for each i 2 NONTERMS, for each k 2 TERMS;�ik := �̂ik [t]2. repeat2.1 �max := 02.2 for each i 2 NONTERMSfor each k 2 TERMS�new = q̂ik + Xj2succs(i) q̂ij�jk� := j �new � �ik j�ik := �new�max := max(�max;�)until �max < �3. for each i 2 NONTERMS, for each k 2 TERMS�̂ik [t + 1] := �ikFigure 2: Stochastic prediction with full Gauss-Seidel iteration.
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Gauss-Seidel is an expensive algorithm, requiring O(Snt) backups per real-world observation forthe inner loop 2:2 alone. The absorption predictions before the most recent observation, �̂ik [t], nor-mally provide an excellent initial approximation, and only a very few iterations are required. How-ever, when an \interesting" observation is encountered, for example a previously never-experiencedtransition to a terminal state, many iterations, perhaps more than Snt, are needed for convergence.2 Prioritized SweepingPrioritized sweeping is designed to perform the same task as Gauss-Seidel iteration while usingcareful bookkeeping to concentrate all computational e�ort on the most \interesting" parts of thesystem. It operates in a similar computational regime as the Dyna architecture (Sutton 1990), inwhich a �xed, but non-trivial, amount of computation is allowed between each real-world observa-tion. Peng and Williams (1992) are exploring a closely related approach to prioritized sweeping,developed from Dyna and Q-learning (Watkins 1989).Prioritized sweeping uses the � value from the probability update step 2.2 in the previousalgorithm to determine which other updates are likely to be \interesting"|if the step produces alarge change in the state's absorption probabilities then it is interesting because it is likely thatthe absorption probabilities of the predecessors of the state will change given an opportunity. If,on the other hand, the step produces a small change then we will assume that there is less urgencyto process the predecessors. The predecessors of a state i are all those states i0 which have, at leastonce in the history of the system, performed a one-step transition i0 ! i.If we have just changed the absorption probabilities of i by �, then the maximum possibleone-processing-step change in predecessor i0 caused by our change in i is q̂i0i�. This value is thepriority P of the predecessor i0, and if i0 is not currently on the priority queue it is placed there atpriority P . If it is already on the queue, but at lower priority, then it is promoted.After each real-world observation i ! j, the transition probability estimate q̂ij is updatedalong with the probabilities of transition to all other previously observed successors of i. Thenstate i is promoted to the top of the priority queue so that its absorption probabilities are updated6



immediately. Next, we continue to process further states from the top of the queue. Each statethat is processed may result in the addition or promotion of its predecessors within the queue. Thisloop continues for a preset number of processing steps or until the queue empties.Thus if a real world observation is interesting, all its predecessors and their earlier ancestorsquickly �nd themselves near the top of the priority queue. On the other hand, if the real worldobservation is unsurprising, then the processing immediately proceeds to other, more importantareas of state-space which had been under consideration on the previous time step. These otherareas may be di�erent from those in which the system currently �nds itself.Let us look at the formal algorithm in Figure 3. On entry we assume the most recent statetransition was from irecent. We drop the [t] su�x from the �̂ik [t] notation.The decision of when we are allowed further processing, at the start of Step 2, could be im-plemented in many ways. In our subsequent experiments the rule is simply that a maximum of �backups are permitted per real-world observation.There are many possible priority queue implementations, including a heap (Knuth 1973), whichwas used in all experiments in this paper. The cost of the algorithm isO (�St(�succs + �predsPQCOST(Snt))) (8)basic operations, where at most � states are processed from the priority queue and PQCOST(N) isthe cost of accessing a priority queue of length N . For the heap implementation this is log2N .States are only added to the queue if their priorities are above a tiny threshold �. This is avalue close to the machine oating-point precision. Stopping criteria are fraught with danger, butin this paper we discuss such dangers no further except to note that in our experiments they havecaused no problem.Prioritized sweeping is a heuristic, and in this paper no formal proof of convergence, or conver-gence rate, is given. We expect to be able to prove convergence using techniques from asynchronousDynamic Programming (Bertsekas and Tsitsiklis 1989) and variants of the Temporal Di�erencinganalysis of Dayan (1992). Later, this paper gives some empirical experiments in which convergenceis relatively fast. 7



1. Promote state irecent to top of priority queue.2. While we are allowed further processing and priority queue not empty2.1 Remove the top state from the priority queue. Call it i2.2 �max = 02.3 for each k 2 TERMS�new = q̂ik + Xj2succs(i)\NONTERMS q̂ij �̂jk� := j �new � �̂ik j�̂ik := �new�max := max(�max;�)2.4 for each i0 2 preds(i)P := q̂i0i�maxIf P > � (a tiny threshold) and if (i0 is not onqueue or P exceeds the current priority of i0) thenpromote i0 to new priority P .Figure 3: The prioritized sweeping algorithm.
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The memory requirements of learning the S � S transition probability matrix, where S is thenumber of states, may initially appear prohibitive, especially since we intend to operate with morethan 10,000 states. However, we need only allocate memory for the experiences the system actuallyhas, and for a wide class of physical systems there is not enough time in the lifetime of the systemto run out of memory.Similarly, the average number of successors and predecessors of states in the estimated transitionmatrix can be assumed << S. A simple justi�cation is that few real problems are fully connected,but a deeper reason is that for large S, even if the true transition probability matrix is not sparse,there will never be time to gain enough experience for the estimated transition matrix to not besparse.3 A Markov Prediction ExperimentConsider the 500 state Markov system depicted in Figure 4, which is a more complex version ofthe problem presented in Figure 1. Appendix A gives details of how this problem was randomlygenerated. The system has sixteen terminal states, depicted by white and black circles. Theprediction problem is to estimate, for every non-terminal state, the long-term probability that itwill terminate in a black, rather than a white, circle. The data available to the learner is a sequenceof observed state transitions.Temporal di�erencing, the classical method, and prioritized sweeping were all applied to thisproblem. Each learner was shown the same sequence. TD used parameters � = 0:25 and � = 0:05,which gave the best performance of a number of manually optimized experiments. The classicalmethod was required to compute up to date absorption probability estimates after every real-worldobservation. Prioritized sweeping was allowed �ve backups per real experience (� = 5); it thusupdated the �̂ik estimates for the �ve highest priority states between each real-world observation.The threshold for ignoring tiny changes, �, was 10�5. Each method was evaluated at a number ofstages of learning, by stopping the real time clock and computing the error between the estimatedwhite-absorption probabilities which we denote by �̂i;WHITE and the true values which we denote by9



Figure 4: A 500-state Markovsystem. Each state has, on av-erage, 5 stochastic successors.
�i;WHITE. The following RMS error over all states was recorded:q 1Snt PSnti=0 (�iWHITE � �̂iWHITE)2 (9)In Figure 5 we look at the RMS error plotted against the number of observations. After 100,000experiences all methods are performing well; TD is the weakest but even it manages an RMS errorof only 0.1.In Figure 6 we look at a di�erent measure of performance: plotted against real time. Here wesee the great weakness of the classical technique. Performing the Gauss-Seidel algorithm of Figure 2after each observation gives excellent predictions but is very time consuming, and after 300 secondsthere has only been time to process a few thousand observations. After the same amount of time,TD has had time to process almost half a million observations. Prioritized sweeping performs bestrelative to real time. It takes approximately ten times as long as TD to process each observationbut because the data is used more e�ectively, convergence is superior.Ten further experiments, each with a di�erent random 500 state problem, were run. These10
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TD Classical Pri. SweepAfter 100,000 observations 0:14� 0:077 0:024� 0:0063 0:024� 0:0061After 300 seconds 0:079� 0:067 0:23� 0:038 0:021� 0:0080Table 1: RMS prediction error: mean and standard deviation for ten experiments.further runs, the �nal results of which are given in Table 1, indicate that the graphs in Figures 5and 6 are not atypical.This example has shown the general theme of this paper. Model-free methods perform well inreal time but make weak use of their data. Classical methods make good use of their data but areoften impractically slow. Techniques such as prioritized sweeping are interesting because they maybe able to achieve both.There is an important footnote concerning the classical method. If the problem had onlyrequired that a prediction be made after all transitions had been observed, then the only real timecost would have been recording the transitions in memory. The absorption probabilities could thenhave been computed as an individual large computation at the end of the sequence, giving the bestpossible estimate with a relatively small overall time cost. For the 500-state problem, we estimatethe cost as approximately 30 seconds for 100,000 points. Prioritized sweeping could also bene�tfrom only being required to predict after seeing all the data, although with little advantage overthe simpler, classical algorithm. Prioritized sweeping is thus most usefully applicable to the class oftasks in which a prediction is required on every time step. Furthermore, the remainder of the paperconcerns control of Markov decision tasks, in which the maintenance of up to date predictions isparticularly bene�cial.4 Learning Control of Markov Decision TasksLet us consider a related stochastic prediction problem, which bridges the gap between Markovprediction and control. Suppose the system gets rewarded for entering certain states and punishedfor entering others. Let the reward of the ith state be ri. An important quantity is then the12



expected discounted reward-to-go of each state. This is an in�nite sum of expected future rewards,with each term supplemented by an exponentially decreasing weighting factor k where  is calledthe discount factor. The expected discounted reward-to-go isJi = (This reward)+ (Expected reward in 1 time step)+2 (Expected reward in 2 time steps)+...k (Expected reward in k time steps)+... (10)For each i, Ji can be computed recursively as a function of its immediate successors.J1 = r1 + (q11J1 + q12J2 + . . . + q1SJS)J2 = r2 + (q21J2 + q22J2 + . . . + q2SJS)... ... ...JS = rS + (qS1J1 + qS2J2 + . . . + qSSJS) (11)which is another set of linear equations that may be solved if the transition probabilities qij areknown. If they are not known, but instead a sequence of state transitions and ri observations isgiven, then slight modi�cations of TD, the classical algorithm, and prioritized sweeping can all beused to estimate Ji.Markov decision tasksMarkov decision tasks are an extension of the Markov model in which, instead of passively watchingthe state move around randomly, we are able to inuence it.Associated with each state, i, is a �nite, discrete set of actions, actions(i). On each time step,the controller must choose an action. The probabilities of potential next states depend not onlyon the current state, but also on the chosen action. We will supplement our example problem withactions: actions(1) = fRANDOM;RIGHTg actions(3) = fRANDOM;RIGHTg actions(5) = fSTAYgactions(2) = fRANDOM;RIGHTg actions(4) = fRANDOM;RIGHTg actions(6) = fSTAYg (12)13



where RANDOM causes the same random transitions as before, RIGHT moves, with probability 1, to thecell immediately to the right, and STAY makes us remain in the same state. There is still no escapefrom states 5 and 6.We use the notation qaij for the probability that we move to state j, given that we have com-menced in state i and applied action a. Thus, in our example qRANDOM13 = 12 and qRIGHT13 = 1.A policy is a mapping from states to actions. For example, Figure 7 shows the policy1! RIGHT 3! RIGHT 5! STAY2! RANDOM 4! RANDOM 6! STAY (13)If the controller chooses actions according to a �xed policy then it behaves like a Markov system.The expected discounted reward-to-go can then be de�ned and computed in the same manner asEquation (11).
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Figure 7: The policy de�ned byEquation (13). Also shown is a re-ward function (bottom left of eachcell). Large expected reward-to-go in-volves getting to `5' and avoiding `6'.If the goal is large reward-to-go, then some policies are better than others. An important resultfrom the theory of Markov decision tasks tells us that there always exists at least one policy whichis optimal in the following sense. For every state, the expected discounted reward-to-go using anoptimal policy is no worse than that from any other policy.Furthermore, there is a simple algorithm for computing both an optimal policy and the expecteddiscounted reward-to-go of this policy. The algorithm is called Dynamic Programming (Bellman 1957).It is based on the following relationship known as Bellman's optimality equation which holds be-14



tween the optimal expected discounted reward-to-go at di�erent states.Ji = maxa 2 actions(i) (ri + (qai1J1 + qai2J2 + � � �+ qaiSJS)) (14)Dynamic programming applied to our example gives the policy shown in Figure 7, which happensto be the unique optimal policy.A very important question for machine learning has been how to obtain an optimal, or nearoptimal, policy when the qaij values are not known in advance. Instead, a series of actions, statetransitions, and rewards is observed. For example:1(r1 = 0) RANDOM�! 2(r2 = 0) RANDOM�! 4(r4 = 0) RIGHT�! 6(r6 = 10)2(r2 = 0) RANDOM�! 1(r1 = 0) RIGHT�! 3(r3 = 0) RANDOM�! 5(r5 = �10)3(r3 = 0) RANDOM�! 5(r5 = 10)... (15)A critical di�erence between this problem and the Markov prediction problem of the earlier sectionsis that the controller now a�ects which transitions are seen, because it supplies the actions.The question of learning such systems is studied by the �eld of reinforcement learning, which isalso known as \learning control of Markov decision tasks". Early contributions to this �eld were thecheckers player of Samuel (1959) and the BOXES system of Michie and Chambers (1968). Evensystems which may at �rst appear trivially small, such as the two armed bandit problem (Berryand Fristedt 1985) have promoted rich and interesting work in the statistics community.The technique of gradient descent optimization of neural networks in combination with ap-proximations to the policy and reward-to-go (called the \adaptive heuristic critic") was introducedby Sutton (1984). Kaelbling (1990) introduced several applicable techniques, including the In-terval Estimation algorithm. Watkins (1989) introduced an important model-free asynchronousDynamic Programming technique called Q-learning. Sutton (1990) has extended this further withthe Dyna architecture. Christiansen et al. (1990) applied a planner, closely related to DynamicProgramming, to a tray tilting robot. An excellent review of the entire �eld may be foundin (Barto et al. 1991). 15



4.1 Prioritized sweeping for learning control of Markov decision tasksThe main di�erences between this case and the previous application of prioritized sweeping are1. We need to estimate the optimal discounted reward-to-go, J, of each state, rather than theeventual absorption probabilities.2. Instead of using the absorption probability backup Equation (6), we use Bellman's equa-tion (Bellman 1957; Bertsekas and Tsitsiklis 1989):Ĵi = maxa 2 actions(i) 0@r̂ai +  � Xj2succs(i;a) q̂aij Ĵj1A (16)where Ĵi is the estimate of the optimal discounted reward starting from state i,  is thediscount factor, actions(i) is the set of possible actions in state i, and q̂aij is the maximumlikelihood estimated probability of moving from state i to state j given that we have appliedaction a. The estimated immediate reward, r̂ai , is computed as the mean reward experiencedto date during all previous applications of action a in state i.3. The rate of learning can be a�ected considerably by the controller's exploration strategy.The algorithm for prioritized sweeping in conjunction with Bellman's equation is given in Fig-ure 8. The only substantial di�erence between this algorithm and the prediction case is the statebackup step, namely the Bellman's equation application of Step 2.2. Notice also that the prede-cessors of a state are now a set of state-action pairs.Let us now consider the question of how best to gain useful experience in a Markov decisiontask. The formally correct method would be to compute that exploration which maximizes theexpected reward received over the robot's remaining life. This computation, which requires aprior probability distribution over the space of Markov decision tasks, is unrealistically expensive.It is computationally exponential in all of (i) the number of time steps for which the system isto remain alive (ii) the number of states in the system, and (iii) the number of actions avail-able (Berry and Fristedt 1985).An exploration heuristic is thus required. Kaelbling (1990) and Barto et al. (1991) both giveexcellent overviews of the wide range of heuristics which have been proposed.16



1. Promote state irecent to top of priority queue.2. While we are allowed further processing and priority queue not empty2.1 Remove the top state from the priority queue. Call it i2.2 �new := maxa 2 actions(i) 0@r̂ai +  � Xj2succs(i;a) q̂aij Ĵj1A2.3 �max := j �new � Ĵi j2.4 Ĵi := �new2.5 for each (i0; a0) 2 preds(i)P := q̂a0i0i�maxIf P > � (a tiny threshold) and if (if i0 not onqueue or P exceeds the current priority of i0) thenpromote i0 to new priority P .Figure 8: The prioritized sweeping algorithm for Markov Decision Tasks.
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We use the philosophy of optimism in the face of uncertainty, a method successfully developed bythe Interval Estimation (IE) algorithm of Kaelbling (1990) and by the exploration bonus techniquein Dyna (Sutton 1990). The same philosophy is also used by Thrun and M�oller (1992).A slightly di�erent heuristic is used with the prioritized sweeping algorithm. This is becauseof minor problems of computational expense for IE and the instability of the exploration bonus inlarge state-spaces.The slightly di�erent optimistic heuristic is as follows. In the absence of contrary evidence,any action in any state is assumed to lead us directly to a �ctional absorbing state of permanentlarge reward ropt. The amount of evidence to the contrary which is needed to quench our optimismis a system parameter, Tbored. If the number of occurrences of a given state-action pair is lessthan Tbored, we assume that we will jump to �ctional state with subsequent long term rewardropt+ ropt+ 2ropt+ . . . = ropt=(1� ). If the number of occurrences is not less than Tbored, thenwe use the true, non-optimistic, assumption. Thus the optimistic reward-to-go estimate Ĵopt isĴopti = maxa 2 actions(i) 8>>><>>>: ropt=(1� ) if nai < Tboredr̂ai +  � Xj2succs(i;a) q̂aij Ĵoptj otherwise (17)where nai is the number of times action a has been tried to date in state i. The importantfeature, identi�ed by Sutton (1990), is the planning to explore behavior caused by the appear-ance of the optimism on both sides of the equation. A related exploration technique was usedby (Christiansen et al. 1990). Consider the situation in Figure 9. The top left hand corner ofstate-space only looks attractive if we use an optimistic heuristic. The areas near the frontiers oflittle experience will have high Ĵopt, and in turn the areas near those have nearly as high Ĵopt.Therefore, if prioritized sweeping (or any other asynchronous dynamic programming method) doesits job, from START we will be encouraged to go north towards the unknown instead of east tothe best reward discovered to date.The system parameter ropt does not require �ne tuning. It can be set to a gross overestimateof the largest possible reward, and the system will simply continue exploration until it has sampledall state-action combinations Tbored times. However, Section 6 discusses its use as a search-guidingheuristic similar to the heuristic at the heart of A? search.18
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Figure 9: The state-space of avery simple path planning prob-lem.
The Tbored parameter, which de�nes how often we must try a given state-action combinationbefore we cease our optimism, certainly does require forethought by the human programmer. Iftoo small, we might overlook some low probability but highly rewarding stochastic successor. Iftoo high, the system will waste time needlessly resampling already reliable statistics. Thus, theexploration procedure does not have full autonomy. This is, arguably, a necessary weakness ofany non-random exploration heuristic. Dyna's exploration bonus contains a similar parameter inthe relative size of the exploration bonus to the expected reward, and Interval Estimation has theparameter implicit in the optimistic con�dence level.The selection of an appropriate Tbored would be hard to formalize. It should take into account:the expected lifetime of the system, a measure of the importance of not becoming stuck duringlearning, and perhaps any available prior knowledge of the stochasticity of the system, or knownconstraints on the reward function. An automatic procedure for computing Tbored would requirea formal de�nition of the human programmer's requirements and a prior distribution of possibleworlds. 19



5 Experimental ResultsThis section begins with some comparative results in the familiar domain of stochastic two dimen-sional maze worlds. It then examines the � parameter which speci�es the amount of computation(number of Bellman equation backups) allowed per real-world observation and also the Tbored pa-rameter which de�nes how much exploration is performed. A number of larger examples are thenused to investigate performance for a range of di�erent discrete stochastic reinforcement tasks.Maze problemsEach state has four actions: one for each direction. Blocked actions do not move. One goal state(the star in subsequent �gures) gives 100 units of reward, all others give no reward, and there isa discount factor of 0:99. Trials start in the bottom left corner. The system is reset to the startstate whenever the goal state has been visited ten times since the last reset. The reset is outsidethe learning task: it is not observed as a state transition.Dyna and prioritized sweeping were both allowed ten Bellman's equation backups per observa-tion (� = 10). Two versions of Dyna were tested:1. Dyna-PI+ is the original Dyna-PI of Sutton (1990), supplemented with the exploration bonus(� = 0:001) from the same paper.2. Dyna-opt is the original Dyna-PI supplemented with the same Tbored optimistic heuristicthat is used by prioritized sweeping.Table 2 shows the number of observations before convergence. A trial was de�ned to have convergedby a given time if no subsequent sequence of 1000 decisions contained more than 2% suboptimaldecisions. The test for optimality was performed by comparison with the control law obtained fromfull dynamic programming using the true simulation.We begin with some results for deterministic problems, in the �rst three rows of Table 2. The�rst row shows that Dyna-PI+ converged for all problems except the 4,528 state problem. A smallerexploration bonus than e = 0:001 might have helped the latter problem converge, albeit slowly.20
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215 state 117 state 178 state 284 state 605 state 2627 4528Det Dyna-PI+ 400 500 10,000 18,000 36,000 195,000 > 106Det Dyna-opt 300 900 4,250 12,000 21,000 105,000 245,000Det PriSweep 150 1,200 3,250 2,800 6,000 29,000 59,000Stc Q 600 31,000 62,000 310,000 untested untested untestedStc Q-opt 500 > 106 > 106 untested untested untested untestedStc Dyna-PI+ 400 4750 12,000 25,000 58,000 240,000 525,000Stc Dyna-opt 700 5250 7500 14,000 35,000 155,000 310,000Stc PriSweep 600 3500 5500 11,000 22,000 94,000 200,000Table 2. Number of observations before 98% of decisions were subsequently optimal. These valueshave been rounded. For prioritized sweeping (and Dyna, where applicable) � = 10, � = 10�3 andropt = 200. The tabulated experiments were all only run once; however, further multiple runs ofthe optimistic Dyna and prioritized sweeping have revealed little variance in convergence rate. Seealso Figures 11 and 14.
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The other two rows used the optimistic heuristic with ropt = 200 and Tbored = 1. The ropt valuethus overestimated the best possible reward by a factor of two|this was to see if we would convergewithout an accurate estimation of the true best possible reward. Tbored = 1 meant that as soon assomething was tried all optimism was lost. This is a safe strategy in a deterministic environment.The learning controller was given no clues beyond those implicit in the two parameters roptand Tbored. Thus, to ensure convergence to the optimum, it had to sample each state-action pairat least once.Prioritized sweeping required fewer steps than optimistic Dyna in all mazes but one small one.All learners and runs took between 10|30 seconds per thousand observations running on a Sun-4workstation. Interestingly, prioritized sweeping usually took about half the real time of Dyna. Thisis because during much of the exploration there were so few surprises that it did not need to useits full allocation of Bellman's equation processing steps. This e�ect is even more pronounced if300 processing steps per observation are allowed instead of ten. For example, in the 4,528 stateproblem, optimistic Dyna then required 143,000 observations and took three hours. Prioritizedsweeping required 21,000 observations and took �fteen minutes.The lower part of Table 2 shows the results for stochastic problems using the same mazes. Eachaction had a 50% chance of being corrupted to a random value before it was applied. Thus if\North" was applied the outcome was movement North 12 + 18 = 58 of the time, and each otherdirection 18 of the time. Prioritized sweeping and optimistic Dyna each used a Tbored value of 5.Thus, they sampled every state-action combination �ve times before losing their optimism. Thisvalue was chosen as a reasonable balance between exploration and exploitation, given the authors'knowledge of the stochasticity of the system, and happily it proved to be satisfactory. As wediscussed in Section 4.1, the choice of Tbored is not automated for any of these experiments.These stochastic results also include a recent interesting incremental technique called Q-learning(Watkins 1989), which manages to learn without constructing a state transition model. Addition-ally, we tried Q-learning using the same Tbored optimistic heuristic as prioritized sweeping. Theinitial Q values were set high to encourage better initial exploration than a random walk. Muche�ort was put into tuning Q for this application. Its performance was, however, worse. In particu-22



lar, the optimistic heuristic is a disaster for Q-learning which easily gets trapped|this is becauseQ-learning only pays attention to the current state of the system while the \planning to explore"behavior requires that attention is paid to areas of the state-space which the system is not currentlyin. For the stochastic maze results the di�erence between optimistic Dyna and prioritized sweepingis less pronounced. This is because the large number of predecessors quickly dilute the wave ofinteresting changes which are propagated back on the priority queue, leading to a queue of many,very similar, priorities. However, prioritized sweeping still required less than half the total realtime of either version of Dyna before convergence.A small, fully connected, exampleWe also have results for a �ve state bench-mark problem described by Sato et al. (1988) andalso used in Barto and Singh (1990). The transition matrix is in Figure 10 and the results areshown in Table 3. A Tbored parameter of 20 was used. In fact, Tbored = 5 also converged 20times out of 20, taking on average 120 steps and therefore Tbored = 20 was considered a safesafety margin. The two Q-learners were heavily tweaked to �nd their best performance. TheEQ-algorithm (Barto and Singh 1990) is designed to guarantee convergence at all costs|and so itspoor comparative performance here is to be expected. Dyna-PI+ was given what was probably toosmall an exploration bonus for the problem. The reduced exploration meant faster convergence,but on one occasion some misleading early transitions caused it to get stuck with a suboptimalpolicy.The system parameters for prioritized sweepingWe now look at two results to give insight into two important parameters of prioritized sweeping.Firstly we consider its performance relative to the number of backups per observation. This exper-iment used the stochastic, 605 state example from Table 2 and the results are graphed in Figure 11.Using one operation is almost equivalent to optimistic Q-learning which does not converge. Evenusing only two backups gives reasonable performance, and performance improves as the number of23



Q Q-opt Dyna-PI+ Dyna-opt PriSweep EQ2; 105� 520 2;078� 430 252� 35 470� 21 472� 22 7;105� 662(one failure)Table 3. The mean number of observations before > 98% of subsequent decisions were optimal.Each learner was run twenty times and in all cases, bar one, there was eventual convergence tooptimal performance. Also shown is the standard deviation of the twenty trials. The discountfactor was  = 0:8. For the optimistic methods ropt = 10 and Tbored = 20. For prioritized sweepingand Dyna � = 10, and for prioritized sweeping � = 10�3.
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Figure 11: Number of experiencesneeded for prioritized sweeping to con-verge, plotted against number of back-ups per observation (�). This used the605 state stochastic maze from Table 2( = 0:99, ropt = 200, Tbored = 5,� = 10�3). The error bars show thestandard deviations from ten runs withdi�erent random seeds.backups increases. Beyond �fty backups, the priority queue usually gets exhausted on each timestep, and there is little further improvement.The other parameter is Tbored. We use a test case in which inadequate exploration is particularly24



dangerous. The maze in Figure 12 has two reward states. The lesser reward of 50 comes from thestate in the bottom right. The greater reward of 100 is from the more inaccessible state near thetop right. Trials always begin from the bottom left and the world is stochastic in the same manneras the earlier examples. Trials are reset when either goal state is encountered ten times. If Tboredis set too low and if there is bad luck while attempting to explore near the large reward state thenthe controller will lose interest, never return, and very likely spend the rest of its days travelingto the inferior reward. Each value of Tbored was run ten times and we recorded the percentage ofruns which had converged correctly by 50,000 observations. Figure 13 graphs the results. For thisproblem Tbored = 5 (which was checked a further 30 times) appears su�cient to ensure that we donot become stuck.
S

Figure 12: A misleading maze.A small reward in the bottomright tempts us away from alarger reward.Figure 14 shows the number of experiences needed for convergence as a function of Tbored forthe same set of experiments.Other tasksWe begin with a task with a 3-d state-space quantized into 14,400 potential discrete states: guidinga rod through a planar maze by translation and rotation. There are four actions: move forwardsone unit along the rod's length, move backwards one unit, rotate left one unit and rotate right one25
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Figure 13: The frequency of correct con-vergence versus Tbored for the mislead-ing maze ( = 0:99, ropt = 200, � = 10,� = 10�3). 5 10 15 20
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Figure 14: The mean and standard de-viation number of experiences beforeconvergence for ten independent exper-iments, as a function of Tbored for themisleading maze. Parameter values areas in Figure 13.unit. In fact, the action takes us to the nearest quantized state after having applied the action.There are 20�20 position quantizations and 36 angle quantizations producing 14,400 states, thoughmany are unreachable from the start. The distance unit is 1=20th the width of the workspace andthe angular unit is 10 degrees. The problem is deterministic but requires a long, very speci�c,sequence of moves to get to the goal. Figure 15 shows the problem, obstacles and shortest solutionfor our experiments.Q, Dyna-PI+, Optimistic Dyna and prioritized sweeping were all tested. The results are inTable 4.Q and Dyna-PI+ did not even travel a quarter of the way to the goal, let alone discover anoptimal path, within 200,000 experiences. It is possible that a very well-chosen exploration bonuswould have helped Dyna-PI+ but in the four di�erent experiments we tried, no value producedstable exploration.Optimistic Dyna and prioritized sweeping both eventually converged, with the latter requiringa third the experiences and a �fth the real time.When 2000 backups per experience were permitted, instead of 100, then both optimistic Dyna26
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Figure 15: A three-DOF prob-lem and the shortest solutionpath.
Experiences to converge Real time to convergeQ neverDyna-PI+ neverOptimistic Dyna 55,000 1500 secsPrioritized Sweeping 14,000 330 secsTable 4. Performance on the deterministic rod-in-maze task. Both Dynas and prioritized sweepingwere allowed 100 backups per experience ( = 0:99; ropt = 200; � = 100; Tbored = 1; � = 10�3).27



and prioritized sweeping required fewer experiences to converge. Optimistic Dyna took 21,000experiences instead of 55,000 but took 2,900 seconds|almost twice the real time. Prioritizedsweeping took 13,500 instead of 14,000 experiences|very little improvement, but it used no extratime. This indicates that for prioritized sweeping, 100 backups per observation is su�cient to makealmost complete use of its observations, so that all the long term reward (Ĵi) estimates are veryclose to the estimates which would be globally consistent with the transition probability estimates(q̂aij). Thus, we conjecture that even full dynamic programming after each experience (which wouldtake days of real time) would do little better.We also consider a more complex extension of the maze world, invented by Singh (1991), whichconsists of a maze and extra state information dependent on where you have visited so far in themaze. We use the example in Figure 16. There are 263 cells, but there are also four binary agsappended to the state, producing a total of 263 � 16 = 4208 states. The ags, named A, B, Cand X, are set whenever the cell containing the corresponding letter is passed through. All agsare cleared when the start state (in the bottom left hand corner) is entered. A reward is givenwhen the goal state (top right) is entered, only if ags A, B and C are set. Flag X provides furtherinterest. If X is clear, the reward is 100 units. If X is set, the reward is only 50 units. This taskdoes not specify which order A, B and C are to be visited. The controller must �nd the optimalpath.Prioritized sweeping was tried with both the deterministic and stochastic maze dynamics ( =0:99; ropt = 200; � = 10; � = 10�3). In the deterministic case Tbored = 1. In the stochastic caseTbored = 5. In both cases it found the globally optimal path through the three good ags to thegoal, avoiding ag X. The deterministic case took 19,000 observations and twenty minutes of realtime. The stochastic case required 120,000 observations and two hours of real time.In these experiments, no information regarding the special structure of the problem was availableto the learner. For example, knowledge of the cell at coordinates (7; 1) with ag A set had no bearingon knowledge of the cell at coordinates (7;1) with A clear. If we told the learner that cell transitionsare independent of ag settings then the convergence rate would be increased considerably. A farmore interesting possibility is the automatic discovery of such structure by inductive inference on28
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Figure 16: A maze with extrastate in the form of four binaryags.
the structure of the learned state transition matrix. See Singh (1991) for current interesting workin that direction.The third experiment is the familiar pole-balancing problem of Michie and Chambers (1968).There is no place here to discuss the enormous number of techniques which have been applied tothis problem along with an equally enormous variation in details of the task formulation. The state-space of the cart is quantized at three equal levels for cart position, cart velocity, and pole angularspeed. It is quantized at six equal levels for pole angle. The simulation used four real-valued statevariables, yet the learner was only allowed to base its control decisions on the current quantizedstate. There are two actions: thrust left 10N and thrust right 10N . The problem is interestingbecause it involves hidden state|the controller believes the system is Markov when in fact it is not.This is because there are many possible values for the real-valued state variables in each discretizedbox, and successor boxes are partially determined by these real values, which are not given tothe controller. The task is de�ned by a reward of 100 units for every state except one absorbingstate corresponding to a crash, which receives zero reward. Crashes occur if the pole angle or cartposition exceed their limits. A discount factor of  = 0:999 is used and trials start in randomsurvivable con�gurations. Other parameters are (ropt = 200; � = 100;Tbored = 1; � = 10�3).If the simulation contains no noise, or a very small amount (0:1% added to the simulated thrust),29



prioritized sweeping very quickly (usually in under 1000 observations and 15 crashes) develops apolicy which provides stability for approximately 100,000 cycles. With a small amount of noise(1%), stable runs of approximately 20,000 time steps are discovered after, on average, 30 crashes.6 Heuristics to Guide SearchIn all experiments to date, the optimistic estimate of the best available one-step reward, ropt, hasbeen set to an overestimate of the best reward which is actually available. However, if the humanprogrammer knows in advance what is the best possible reward-to-go from any given state, thenthe resultant, more realistic, optimism does not need to experience all state-action pairs.For example, consider the maze world. If the robot is told the location of the goal state (in allprevious experiments it was not given this information), but is not told which states are blocked,then it can nevertheless compute what would be the best possible reward-to-go from a state. Itcould not be greater than the reward obtained from the shortest possible path to the goal. Thelength of the path, l, can be computed easily with the Manhattan distance metric and then thebest possible reward-to-go is01 + 02 + . . . + 0l�1 + roptl + roptl+1 + . . . = roptl1�  (18)When this optimistic heuristic is used, initial exploration is biased towards the goal, and once apath is discovered then many of the unexplored areas may be ignored. Ignoring occurs when eventhe most optimistic reward-to-go of a state is no greater than that of the already obtained path.For example, Figure 17 shows the areas explored using a Manhattan heuristic when �nding theoptimal path from the start state at the bottom leftmost cell to the goal state at the center of themaze. The maze has 8525 states of which only 1722 needed to be explored.For some tasks we may be satis�ed to cease exploration when we have obtained a solutionknown to be, say, within 50% of the optimal solution. This can be achieved by using a heuristicwhich lies: it tells us that the best possible reward-to-go is that of a path which is twice the lengthof the true shortest possible path. 30
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Figure 17: Dotted statesare all those visited whenthe Manhattan heuristic wasused to derive ropt ( =0:99;� = 10; Tbored = 1; � =10�3).
7 DiscussionGeneralization of the state transition modelThis paper has been concerned with discrete state systems in which no prior assumptions are madeabout the structure of the state-space. Despite the weakness of the assumptions, we can successfullylearn large stochastic tasks. However, very many problems do have extra known structure in thestate-space, and it is important to consider how this knowledge can be used. By far the mostcommon knowledge is smoothness|given two states which are in some way similar, in generaltheir transition probabilities will be similar.TD can also be applied to highly smooth problems using a parametric function approximatorsuch as a neural network. This technique has recently been used successfully on a large complexproblem, Backgammon, by Tesauro (1991). The discrete version of prioritized sweeping given inthis paper could not be applied directly to Backgammon because the game has 1023 states, which31



is unmanageably large by a factor of at least 1010. However, a method which quantized the spaceof board positions, or used a more sophisticated smoothing mechanism, might conceivably be ableto compute a near-optimal strategy.We are currently developing memory-based algorithms which take advantage of local smoothnessassumptions. In these investigations, state transition models are learned by memory-based func-tion approximators (Moore and Atkeson 1992). Prioritized sweeping takes place over non-uniformtessellations of state-space, partitioned by variable resolution kd-trees (Moore 1991). We are alsoinvestigating the role of locally linear control rules and reward functions in such partitionings, inwhich instead of using Bellman's Equation (16) directly, we use local linear quadratic regulators(LQR) (see, for example, Sage and White (1977)). It is worth remembering that, if the system issu�ciently linear, LQR is an extremely powerful technique. In a pole balancer experiment in whichwe used local weighted regression to identify a local linear model, LQR was able to create a stablecontroller based on only 31 state transitions!Other current investigations which attempt to perform generalization in conjunction with re-inforcement learning are Mahadevan and Connell (1990) which investigates clustering parts of thepolicy, Chapman and Kaelbling (1990) which investigates automatic detection of locally relevantstate variables, and Singh (1991) which considers how to automatically discover the structure intasks such as the multiple-ags example of Figure 16.7.1 Related workThe Dyna-Q-queue algorithm of Peng and WilliamsPeng and Williams (1992) have concurrently been developing a closely related algorithm which theycall Dyna-Q-queue. This conceptually similar idea was discovered independently. Where prioritizedsweeping provides e�cient data processing for methods which learn the state transition model,Dyna-Q-queue performs the same role for Q-learning (Watkins 1989), an algorithm which avoidsbuilding an explicit state-transition model. Dyna-Q-queue is also more careful about what it allowsonto the priority queue: it only allows predecessors which have a predicted change (\interestingness"32



value) greater than a signi�cant threshold �, whereas prioritized sweeping allows everything abovea minuscule change (� = 10�5 times the maximum reward) onto the queue. The initial experimentsin Peng and Williams (1992) consist of sparse, deterministic maze worlds of several hundred cells.Performance, measured by total number of Bellman's equation processing steps before convergence,is greatly improved over conventional Dyna-Q (Sutton 1990).Other related workSutton (1990) identi�es reinforcement learning with asynchronous dynamic programming and in-troduces the same computational regime as that used for prioritized sweeping. The notion of usingan optimistic heuristic to guide search goes back to the A? tree search algorithm Nilsson (1971),which also motivated another aspect of prioritized sweeping: it too schedules nodes to be expandedaccording to an (albeit di�erent) priority measure. More recently Korf (1990) gives a combinationof A? and Dynamic Programming in the LRTA? algorithm. LRTA? is, however, very di�erent fromprioritized sweeping: it concentrates all search e�ort in a �nite-horizon set of states beyond thecurrent actual system state. Finally, Lin (1991) has investigated a simple technique which replays,backwards, the memorized sequence of experiences which the controller has recently had. Undersome circumstances this may produce some of the bene�cial e�ects of prioritized sweeping.8 ConclusionOur investigation shows that prioritized sweeping can solve large state-space real time problemswith which other methods have di�culty. Other bene�ts of the memory-based approach, describedin Moore and Atkeson (1992), allow us to control forgetting in potentially changeable environmentsand to automatically scale state variables. Prioritized sweeping is heavily based on learning a worldmodel and we conclude with a few words on this topic.If a model of the world is not known to the human programmer in advance then an adaptivesystem is required, and there are two alternatives:33



Learn a model and fromthis develop a controlrule. Learn a control rulewithout building amodel.Dyna and prioritized sweeping fall into the �rst category. Temporal di�erences and Q-learningfall into the second. Two motivations for not learning a model are (i) the interesting fact thatthe methods do, nevertheless, learn, and (ii) the possibility that this more accurately simulatessome kinds of biological learning (Sutton and Barto 1990). However, a third advantage which issometimes touted|that there are computational bene�ts in not learning a model|is, in our view,dubious. A common argument is that with the real world available to be sensed directly, why shouldwe bother with less reliable, learned internal representations? The counterargument is that evensystems acting in real time can, for every one real experience, sample millions of mental experiencesfrom which to make decisions and improve control rules.Consider a more colorful example. Suppose the anti-model argument was applied by a newarrival at a university campus: \I don't need a map of the university|the university is its ownmap." If the new arrival truly mistrusts the university cartographers then there might be anargument for one full exploration of the campus in order to create their own map. However,once this map has been produced, the amount of time saved overall by pausing to consult themap before traveling to each new location|rather than exhaustive or random search in the realworld|is undeniably enormous.It is justi�ed to complain about the indiscriminate use of combinatorial search or matrix in-version prior to each supposedly real time decision. However, models need not be used in such anextravagant fashion. The prioritized sweeping algorithm is just one example of a class of algorithmswhich can easily operate in real time and also derive great power from a model.AcknowledgementsMany thanks to Mary Lee, Rich Sutton and the reviewers of the paper for some very valuable com-ments and suggestions. Thanks also to Stefan Schaal and Satinder Singh for useful comments onan early draft. Andrew W. Moore is supported by a Postdoctoral Fellowship from SERC/NATO.34
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