CS 287 Advanced Robotics — Fundamental
Knowledge

Pieter Abbeel, Laura Smith, Ignasi Clavera, Harry Xu
November 9, 2019

This document contains all the possible exam questions and the answers for
(CS287 Fall 2019. The exam will be closed-book. There will be no clarification
questions during the exam, because this handout already clarifies everything
and is yours to study.

Happy studying!

1 Value Iteration

Q: For an MDP (S, A, P(s'|s,a), R(s,a),v, H), (a) Write the objective to be
optimized; (b) Write out the Value Iteration algorithm; (c) Describe in words
the meaning of V;*(s) and 7} (s); (d) Write out the Bellman equation, satisfied
by V* at convergence.

A:
(a)

(b)
set Vi (s) = 0 for all states s
fori=1,....H

for all states s:
(Vi*(s), 75 (s)) = max, [R(s,a) + 7Y, P(s']s,a)V; 1 ()]

(c)
V*(s) = expected sum of rewards accumulated starting from state s, if acting
optimally for i steps

7} (s) = optimal action when in state s and getting to act for i steps

2 Policy Iteration

Q: For an infinite horizon MDP (S, A, P(s'|s,a), R(s,a),~), (a) Write the objec-
tive to be optimized; (b) Write out the Policy Iteration algorithm; (c¢) Provide
intuition why the policy improvement step indeed improves the policy.

A:
(a)

max [E
U

> ' R(s,ar) | W]

t=0

randomly initialize the policy mo(s)
for k=0,1,... (till convergence)

Evaluate the current policy my:

init V7*(s) for all states s (any init OK, most efficient: V™-1)
for i =1,2,... (till convergence)
for all states s:
V7r(s) <= R(s,mi(s)) +v> o P(s'|s,a)V™(s')
Improve upon the current policy through one-step lookahead:

Tr+1(s) = argmax, R(s,a) + 7>, P(s|s,a)V™(s)

(c)

First, let’s consider the non-stationary policy which at the first time step
follows 41 and then onwards follows 7. This non-stationary policy is at least
as good as 7, because by definition it takes the optimal first action assuming
using 7 then onwards. In contrast, 7, doesn’t get to optimize that first action.

Now, since we have a stationary MDP, on the second time step, we are faced
with the exact same problem as at the first time step. This means that at the
second time step we're also better off executing 741 (rather than).

This same reasoning applies to all future time steps, hence applying 741 at
all time steps is better than 7. (That is, until convergence has been achieved,
at which point 741 = 7g.)

3 Max-Ent Value Iteration

Q: (a) Consider the 1-step max-ent problem:
V = max (E[r(a)] + H(7(a)))

m(a)

(i) Write out the dual formulation; (ii) Write out the optimality conditions and
derive the solution for 7(a); (iii) Fill the solution for 7(a) into the objective and
simplify to get the expression for max-ent V.

(b) Now consider max-ent value iteration:

Vi(s) = max (E[R(s,a) 4+ Vi—1(s")] + BH(7(als)))

Using the results from (a), write out a closed-form expression for V4 (s) and for
7 (als).

A:
(a)(1)

I}:(z;}){m/\in L(r(a),) = Iﬁ?)cm/\in 2 ,BZ a)logm(a) +)\(; m(a) — 1)
(a)(i1)

aﬂ(a) (())
antay oa T(@)r(a) = B3, m(a)logm(a) + (X, m(a) = 1) =0
r(a) — Blogm(a) — B+ A =0

) —
Blogm(a) =r(a) — B+ A
r(a

(a) (iif)

V =

= Za Z exp(B

>0z 7 exp(

1
s

r(a))

r(@)r(a) - B, % exp(3r(a)) log (4 exp(4r(a)))
(r(@) = B1og (exp(47(a)))) = B, exp(hr(a)) log 3
0—ﬁlog72a Zexp(%
fﬂlog%
Blog 3, exp(Lr(a))

Vi(s) = max,E[r(s,a) + fH(m(als) + Vi—1(s')]

Vk(s)

max, E[Qx(s, a) + fH(m(als)]

= BlogZeXp(%Qk(s, a))

mr(als) = l eXp(le(S,a))

Z B

4 Solving Continuous MDPs with Discretization

Q: (a) Sketch how to solve Continuous MDPs with Discretization with stochastic
mapping onto all direct neighbors. (b) Discuss why this often outperforms
mapping onto the single nearest neighbor.

A:
& & & &
a ; Discrete states: {§, , ..., §;, }

P& [&1,a) =pa

& & & P(&s]&1,0) = ps

P(& | &1,a) = pe

P(¢7 | &,a) =pp

s.t. 8" = pabe + ppés + pcés + Ppér

& fo &1 3%

The two main challenges with single nearest neighbor are (i) that small
actions can have zero effect on the discretized state; (ii) that solutions found in
the discretized MDP might take advantage of the very particular deterministic
properties it contains.

5 Cross Entropy Method

Q: Describe the Cross-Entropy Method to solve maz, f(x), assuming = € R™.
Discuss what are the hyperparameters. Discuss how it can also be applied when
z €{0,1}"™.

A:

max f(x)

CEM:
sample (¥ ~ N(0,0?)
foriteri=1, 2, ...
fore=1, 2. ..
sample @~ N (D, 0?)
compute f(z(®)
endfor
pY = mean{z® : f(z(®)) in top 10%}

= sigma and 10% are hyperparameters

= can in principle also fit sigma to top 10%
(or full covariance matrix if low-D)
m How about discrete action spaces?

= Within top 10%, look at frequency of each
discrete action in each time step, and use
that as probability

= Then sample from this distribution

6 Challenges with Approximate Value Iteration

Q: (a) Describe the Tsitsiklis & Van Roy 2-state example MDP showing that
value iteration with least squares function approximation can diverge. (b) Draw
a simple scenario of two operators, where the first operator (77) is a contraction
in the infinity-norm, and the second operator (T3) is a contraction in the two-
norm, but alternating them leads to divergence.

(a)

JD(@1) = 0+~Jyo (22) = 240
JD(zs) = 04~y (22) = 240
=0 Function approximation with least squares fit:

]) o 270()
2 T 290

6
o = 8 g0
5",'
[¢] 26 Repeated back-ups and function approximations result in:
o) (gw) PO
5
Function approximator: [12]* 8 which diverges if 7 > £ even though the function approximation class can

represent the true value function.]

Vi) Ve
m.//

I Ver * Ve

w-nom box
¥ smaller

V=0 V(1)

7 LQR

Q: (a) Describe the LQR setting in standard notation, (b) Derive the LQR
update equations

A:
(a)
The LQR setting assumes a linear dynamical system:
Tip1 = Az + Buy,
xs: state at time t

uy: input at time ¢
It assumes a quadratic cost function:

gl ug) = ac;ert -+ u;rRut

with @ >~ 0, R > 0.

Initialize Jy(z) = a7 Pyz.

Ji(z) = mi}n [ITQZE +u' Ru+ Jo(Az + Bu)]
= m’}n [.ITQI +u" Ru+ (Az + Bu)" Py(Ax + Bu)] (1)
To find the minimum over u, we set the gradient w.r.t. u equal to zero:
Vul...] = 2Ru+2BT Py(Ax + Bu) = 0,

hence: u = —(R + BTP[]B)ABTPOA;U (2)

(2) into (1): Ji(z) = z' P
for: P = Q+ K RK,+ (A+ BK,)" Py(A+ BK))
K, = —(R+BTRB) 'BTRA.

8 Gradient Descent and Newton’s Method

Q: (a) Describe the Gradient Descent algorithm ; (b) Discuss the notion of well-
conditioned versus poorly-conditioned problems by considering gradient descent
on the objective f(z) = & (23 +~23) for different choices of ~; (c) Derive the
Newton Step; (d) Discuss how Newton’s method fares on the objective from (b).
A: (a)

Initialize ©

Repeat

Compute the gradient V f(x)
Line search: find a good step size t > 0
Update: x + = —tV f(x)

Until stopping criterion satisfied

4,
)
3 of
—4}
—10 0 10
T

This problem is well conditioned for v = 1. This problem is poorly condi-
tioned for v >> 1 and for 0 < v << 1.

(¢) Newton’s method considers the local 2nd order Taylor approximation:
1
flz+ Az) =~ f(z) + Vf(z) Az + §AITV2f(I)AIE

Assuming V2f(x) = 0 (which is true for convex f), the minimum of the
second-order approximation is found at:

Az = —(V2f(2)) 'V f(z)
which is called the Newton step.

(d) Since the objective under (b) is a quadratic objective, the Newton step will
take us directly to the optimum, independent of the conditioning (i.e. indepen-
dent of the value of 7).

10

9 Natural Gradient

Q: (a) Derive the natural gradient for a maximum likelihood problem

_ (@),
max f(9) mgxzi: log p(x'*; 0)

and through your derivation show how it’s different from the Hessian. (b) List
the benefits

A:
(a)

afe) >3 dlogp(z1; 0) > op(z;0) 1

Gradient: o, = a0, 0, p@0;0)

Hessian: 1) Pp(x;0) 1 Ap(x@;0) 1 Op(z;0) 1

96,00, —~ 90,06, p(x®;6) 99, p(x®D;6) 96, p(z;0)

2p(x(9):) .
v 1(0) = 30 TR - (Viowp(a:0)) (Viowp(at!:0))

-1
Natural gradient: = (Z (V logp(z(i);H)) (V logp(m(i);ﬂ))T) (ZVI(@p(z‘“;H))

i

faster to compute than Hessian (only gradients needed)

. guaranteed to be negative definite

found to be superior to exact Hessian in various experiments

invariant to reparameterization of the distribution p

11

10 Constrained Optimization: Penalty Method

Q: Consider the constrained optimization problem:

min go(2)
s.t. gi(x) <0 Vi
hj ({)3) =0 V]

(a) Write out the penalty formulation and annotate what is the “merit function”;
(b) Describe the general Penalty Method; (¢) Describe the Penalty Method with
Trust Region Inner Loop; (d) Describe Dual Descent

A:
(a)
min go(e) +p Y los(@)* + 1Y Iy 0)] = min £, (x)

fu(z) is the merit function

(b)

Inner loop: optimize merit function over x, which could be done with
gradient descent, Newton or quasi-Newton, or trust region methods

Outer loop: increase

exit when constraints are satisfied after completion of inner loop

(¢) The trust region inner loop will repeatedly solve:

min go(Z) + Vego(Z)(x —) + 1132, 19:(%) + Vagi(2) (@ — 2)|T + n 32, [h;(2) + Voh; (T) (2 — 7)]

xr
.. o — Fl|s < ¢

(d)

max mingo() + 3 \igi(w) + D vih;(x)
i J

Dual Descent iterates over:

1. Optimize over z

2. Gradient descent step for A and v:

Ai < A + ag;i(x) (clip to zero to keep positive)

vj < vj + ahj(z)

12

11 Optimization for Control

Q: (a) Write out the breakdown of optimal control formulations across (i) open-
loop vs. closed-loop; (ii) shooting vs. collocation in 2x2 table. (b) What is a
key benefit of collocation? (c) What is a key benefit of shooting?

A:
(a)

Return feedback policy 7g(-)

Return open-loop
(e.g. linear or neural net)

controls ug, u;, ..., Ug

Shooting sy Jmin .‘,,”-'U-"u) t e flzo. uo), w1} + e(f (f (w0, wo). w1), w2} + ... m'j""‘[-“lw wa(xa)) + el f(xo, mol(xo)), mo(f(xo, malxa)))) + ...
. H
min SSH | eae, molz1))
. H S TR
. min Yot clwe ug) i
collocation st @iy = flaemo(a,))
st @ = flag,w) Vi
min Z:" 0 clay, ug)
T, U0 T, UY e, E U0 .
st. @y = f(.[.". m) Vit
wy = mo(xy) Vi

(b) In shooting, the influence of the control inputs propagates directly over time,
often making for a very poorly conditioned problem. In collocation, by having
the state as optimization variable, the influence is decoupled into per-time-step
influence, improving conditioning.

(c) Collocation can get stuck in infeasible local optima, whereas with shooting
the solution is always something that can be executed.

13

12 Rapidly Exploring Random Trees

Q: Write out the RRT algorithm

A:

GENERATE_RRT (zipi, K, At)
T.illit(.‘,l?i.n_if_)
for k=1 to K do
Trand +— RANDOM_STATE();
Tnear +— NEAREST _NEIGHBOR(Z,and, T);
u + SELECTINPUT(2;4nd, Tnear);
Tnew NE"‘?—ST‘ATE("E?N.‘RTE u, Af),
T .add_vertex(@ ey);
T .add_edge(Tpear, Tnew, 1);
Return 7

O 00 =1 O Ot e W

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
SELECT_INPUT(): often a few inputs are sampled, and one that results in x_new closest to

14

13 Bayes’ Filters and Particle Filters

Q: (a) Write out the Bayes’ filter Time Update and Measurement Update equa-
tions; (b) Write out the particle filter algorithm. In addition to the pseudo-code,
include brief comments about what’s happening in each line.

A:
(a) Time Update:

P(zrgal20,- - 2) = Y Plaea|e) Pz, ., 2)
Tt
Measurement Update:

1
P(xii1]z0, -, 2, 2e41) = EP(JUt+1|Zo,---,Zt)P(Zt+1|3?t+1)

1. Algorithm particle_filter(S;.;, u;, z):

2. 8=, n=0

3. Fori=1,...n Generate new samples

4 Sample index j(i) from the discrete distribution given by w,;
5. Sample x; from p(x,lx_.u) using x/!" and u,

6 w: =p(z, | x,’) Compute importance weight
7. n=n+w Update normalization factor
8 S, =8 U{<x,w >} Add to new particle set

9. Fori=1...n

10. wi=w/n Normalize weights

15

14 POMDPs

Q: (a) Draw the POMDP light-dark domain; (b) Draw the state-space plan
the certainty-equivalent policy would come up with (which plans purely in state
space assuming the mean estimate is the actual state); (¢) Draw what the opti-
mal solution would do, which can be found by planning in belief space.

goal I . I

Problem setting State space plan Belief space plan

A:

Figure 1: From left to right: (a), (b), (c)

16

15 Imitation Learning

Q: (a) Describe Behavioral Cloning; (b) Describe distribution shift, why it
happens, and its effect; (c¢) Describe DAgger; (d) Describe the problem setting
of Inverse Optimal Control

A:

(a) Given demonstration data (o, a;) where o; is the observation at time ¢ and
as the action taking by the demonstrator at time ¢, behavioral cloning runs
supervised learning to learn the mapping from observation to action.

(b) Distribution shift refers to encountering a different distribution over observa-
tions at test time compared to training time. In behavioral cloning this happens
because the learned policy doesn’t perfectly match the demonstration policy. In
turn, this means the learned policy is applied to observations it wasn'’t trained
for, which can often be problematic.

(c) DAgger corrects for distribution shift by collecting expert data under the
distribution over observations currently encountered by the learned policy.

(d)
Given:

State space, Action space
Transition model

Demonstrations (samples from 7*)
Goal:

Learn reward function R(s,a) that best explaines the demonstrations

17

16 Policy Gradients

Q: (a) Derive the likelihood ratio policy gradient starting from the objective
0) = P(r;0)R(r

(b) Introduce the temporal aspect, to get an expression for Vg log P(7(?;) that
shows the dynamics model is not required to compute the policy gradient; (c)
Write out the vanilla policy gradient expression with value function baseline.

A:
(a)
VoU(0) =Vyy,, P(r; H)R(T)
=%, P(7:0) Vf»f Z”Rm
=>.. P(1;0)Vglog P(1;0)R(T)
VU () ~ % i Vo log P(r™;0)R(7")
(b)

Vo log P(r);0) = Vo log HP(S§21 st ut”) - mo (uf”]s”)

J/

dynam1cs model POliCy

H
=V, ZlogP sgle s u{?) —I—Zlogﬂo PO
t=0

H
Vo Z log 7y (ugz) |s§1))
0

I
M =
i

Vjylog o (u” \sgi))l

o~
Il
o

Ve
no dynamics model required!!

m H H-1
1
VoU () ~ - ZZV@ log 7o (u)|s() (Z R(sk ,uk V¢,(st)>
k=t

i=1 t=0

18

17 TRPO and PPO

Q: (a) Describe the TRPO surrogate objective; (b) Describe the PPO v1 sur-
rogate objective; (¢) Describe the PPO v2 surrogate objective

A:
(a)

max E mo(at|st) A
0 b Toorq (@slse) 7t

s.t. By [KL[mo, (- | s0),mo(- | s0)]] <6

. [mo(at|st)

minmaxE; | —————
20 8 0014 (at|5t)

Ad] = 8 (B KLl 50 7ol | 301 -)

Optimize by running dual descent, which alternatives over gradient steps for
0 to maximize and gradient steps over 8 to minimize

(c) Let:
o (at |St)
T6o1a (at|3t)

r(0) =
Then Optimize the surrogate loss:

LOVP () = &, [min (rt(Q)At, clip (r¢(0),1 —¢,1+¢) /1,5)]

19

18 Q-Learning (forthcoming)

Q: (a) Describe the tabular Q-learning algorithm; (b) Describe the main one-line
change for Q-learning with function approximation.

A:
(a)

e Init Q(s,a) [anything is fine, all 0 can make sense; optimistic can also
make sense]

o Get initial state s
e Iterate (till convergence)

— SAMPLE: sample action a, get reward r and next state s’
— COMPUTE TARGET VALUE:
x IF s’ is terminal:
- target =1
- Sample new initial state s’
+x ELSE:
- target = r + ymax, Q(s',a’)
— UPDATE Q: Q(s,a) < (1 — a)Q(s,a) + « target

— 5+ 5§

(b)
The UPDATE now becomes an update of a parameterized function Qg, often
done in small batches. For a single sample we’d take one (or more) steps on this

objective:

mein (Qo(s,a) — target)®

20

19 DDPG and SAC

Q: (a) Described DDPG; (b) Describe SAC

A:
(a)
e ROLL-OUTS: collect data under current policy, add data in replay buffer
D
e LEARNING UPDATES (loss functions on which to take a few steps):
JQ(H) = E(St,at-,TmSt+1)ND (’rt + ’YQO(St; 7T¢(8t)) - Q9 (8157 a‘t))2
Jx(¢) = —Es,~p [QB(Sta 7T¢(3t7 Zt)]
Note: in practice there are two Q functions for stabilization.
(b)
e ROLL-OUTS: collect data under current policy 74, add data in replay
buffer D

e LEARNING UPDATES (loss functions on which to take a few steps):

T () = B | (Vis(51) = Bagmr, [Qo(s1,) — log o (auls1)])
JQ(G) = E(St,atyrf,751,+1)ND (Tt + Pyvﬂi(sﬂrl) - Qe(stﬂ a‘t))Q

(@) = By [Dic, (7ol]s0) [22422500 |

Note: in practice there are two @Q-functions and two V-functions for stabi-
lization.

21

20 Model-based RL

Q: (a) Describe canonical model-based RL; (b) What is the model-bias problem
in model-based RL?
A:
(a)
Iterate

— Collect data under current policy
— Learn dynamics model from all data collected so far

— Improve policy by using the learned dynamics model

(b) Policy optimization using the learned dynamics model can result in exploit-
ing regions where insufficient data was available to support the learned dynamics
model, which can lead to catastrophic failures when the policy that looks great
in simulation gets deployed in real world.

22

