Optimization for Locally Optimal Control

Pieter Abbeel
UC Berkeley EECS
Optimal Control (Open Loop)

- Optimal control problem:

$$\min_{x, u} \sum_{t=0}^{H} c_t(x_t, u_t)$$

s.t.
$$x_0 = \bar{x}_0$$

$$x_{t+1} = f(x_t, u_t) \quad t = 0, \ldots, H - 1$$

- Solution:
 - = Sequence of controls u and resulting state sequence x
 - If no noise, sufficient to just execute u
 - In general non-convex optimization problem, can be solved with sequential convex programming (SCP)
Optimal Control (Closed Loop)

Given: \(\bar{x}_0 \)

For \(t=0, 1, 2, ..., T \)

- Solve
 \[
 \min_{x,u} \sum_{k=t}^{T} c_k(x_k, u_k)
 \]
 \[
 \text{s.t.} \quad x_{k+1} = f(x_k, u_k), \quad \forall k \in \{t, t+1, \ldots, T-1\}
 \]
 \[
 x_t = \bar{x}_t
 \]

- Execute \(u_t \)

- Observe resulting state, \(\bar{x}_{t+1} \)

= “Model Predictive Control”

Initialize with solution from \(t - 1 \) to solve fast at time \(t \)
Collocation versus Shooting

- What we considered thus far is a collocation method
 - It considers both x and u simultaneously, optimizes over both of them, and re-linearizes (inside the SCP loop) based on both x and u from the previous round

- Shooting methods
 - Optimize over u directly
 - This can be done as every u results (following the dynamics) in a state sequence x, for which in turn the cost can be computed
 - Upside: Improve sequence of controls over time
 - Versus: collocation might converge to a local optimum that’s infeasible
 - Downsides:
 - Derivatives with respect to u as well as the cost for a given u can be numerically unstable to compute (especially in case of unstable dynamical systems)
 [x provides decoupling between time-steps, making computation stable]
 - Not clear how to initialize in a way that nudges towards a goal state