Function Approximation

Pieter Abbeel
UC Berkeley EECS
Value Iteration

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For $i = 1, \ldots, H$

For all states s in S:

$$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]$$

$$\pi_{i+1}^*(s) \leftarrow \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]$$

This is called a value update or Bellman update/back-up

Impractical for large state spaces

$V_i^*(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for i steps

$\pi_i^*(s)$ = optimal action when in state s and getting to act for i steps

Similar issue for policy iteration and linear programming
Outline

- Function approximation
- Value iteration with function approximation
- Policy iteration with function approximation
- Linear programming with function approximation
Function Approximation Example 1: Tetris

- **state:** board configuration + shape of the falling piece $\sim 2^{200}$ states!
- **action:** rotation and translation applied to the falling piece
- 22 features aka basis functions ϕ_i
 - Ten basis functions, 0, \ldots, 9, *mapping the state to the height $h[k]$ of each column.*
 - Nine basis functions, 10, \ldots, 18, *each mapping the state to the absolute difference* between heights of successive columns: $|h[k+1] - h[k]|$, $k = 1, \ldots, 9$.
 - One basis function, 19, that maps state to the maximum column height: $\max_k h[k]$
 - One basis function, 20, that maps state to the number of ‘holes’ in the board.
 - One basis function, 21, that is equal to 1 in every state.

\[
\hat{V}_\theta(s) = \sum_{i=0}^{21} \theta_i \phi_i(s) = \theta^T \phi(s)
\]

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]
Function Approximation Example 2: Pacman

\[V(s) = \theta_0 + \theta_1 \text{“distance to closest ghost”} \]

\[+ \theta_2 \text{“distance to closest power pellet”} \]

\[+ \theta_3 \text{“in dead-end”} \]

\[+ \theta_4 \text{“closer to power pellet than ghost”} \]

\[+ \text{...} \]

\[= \sum_{i=0}^{n} \theta_i \phi_i(s) = \theta^\top \phi(s) \]
Function Approximation Example 3: Nearest Neighbor

- 0’th order approximation (1-nearest neighbor):

\[\hat{V}(s) = \hat{V}(x_1) = \theta_1 \]

Only store values for x1, x2, ..., x12
- call these values \(\theta_1, \theta_2, \ldots, \theta_{12} \)

Assign other states value of nearest “x” state

\[\phi(s) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \]

\[\hat{V}(s) = \theta^\top \phi(s) \]
Function Approximation Example 4: k-Nearest Neighbor

- 1’th order approximation (k-nearest neighbor interpolation):

\[\hat{V}(s) = \phi(s) \theta + \phi_2(s) \theta_2 + \phi_5(s) \theta_5 + \phi_6(s) \theta_6 \]

\[\phi(s) = \begin{pmatrix} 0.2 \\ 0.6 \\ 0 \\ 0.05 \\ 0.15 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \]

Only store values for \(x_1, x_2, \ldots, x_{12} \)
- call these values \(\theta_1, \theta_2, \ldots, \theta_{12} \)

Assign other states interpolated value of nearest 4 “x” states
More Function Approximation Examples

- Examples:
 - $S = \mathbb{R}$, $\hat{V}(s) = \theta_1 + \theta_2 s$
 - $S = \mathbb{R}$, $\hat{V}(s) = \theta_1 + \theta_2 s + \theta_3 s^2$
 - $S = \mathbb{R}$, $\hat{V}(s) = \sum_{i=0}^{n} \theta_i s^i$
 - S, $\hat{V}(s) = \log\left(\frac{1}{1 + \exp(\theta^\top \phi(s))}\right)$
Function Approximation

- **Main idea:**
 - Use approximation \hat{V}_θ of the true value function V,
 - θ is a free parameter to be chosen from its domain Θ
 - Representation size: $|S| \rightarrow$ downto: $|\Theta|$

+ : less parameters to estimate

- : less expressiveness, typically there exist many V for which there is no θ such that $\hat{V}_\theta = V$
Given:
- set of examples \((s^{(1)}, V(s^{(1)})), (s^{(2)}, V(s^{(2)})), \ldots, (s^{(m)}, V(s^{(m)})),\)

Asked for:
- “best” \(\hat{V}_\theta\)

Representative approach: find \(\theta\) through least squares

\[
\min_{\theta \in \Theta} \sum_{i=1}^{m} (\hat{V}_\theta(s^{(i)}) - V(s^{(i)}))^2
\]
Supervised Learning Example

- Linear regression

\[
\text{Prediction} = \hat{y} = \theta_0 + \theta_1 x^{(i)}
\]

\[
\text{Observation} = y^{(i)}
\]

\[
\text{Error or “residual”} = y^{(i)} - \hat{y}^{(i)}
\]

\[
\min_{\theta_0, \theta_1} \sum_{i=1}^{n} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2
\]
Overfitting

Degree 15 polynomial
Overfitting

- To avoid overfitting: reduce number of features used

- Practical approach: leave-out validation
 - Perform fitting for different choices of feature sets using just 70% of the data
 - Pick feature set that led to highest quality of fit on the remaining 30% of data
Status

- Function approximation through supervised learning

BUT: where do the supervised examples come from?
Value Iteration with Function Approximation

- Pick some $S' \subseteq S$ (typically $|S'| << |S|$)
- Initialize by choosing some setting for $\theta^{(0)}$
- Iterate for $i = 0, 1, 2, \ldots, H$:
 - Step 1: Bellman back-ups
 $\forall s \in S' : \hat{V}_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \hat{V}_{\theta(i)}(s') \right]$
 - Step 2: Supervised learning
 find $\theta^{(i+1)}$ as the solution of:
 $$\min_{\theta} \sum_{s \in S'} \left(\hat{V}_{\theta(i+1)}(s) - \hat{V}_{i+1}(s) \right)^2$$
Value Iteration w/Function Approximation --- Example

- Mini-tetris: two types of blocks, can only choose translation (not rotation)
 - Example state:

- Reward = 1 for placing a block
- Sink state / Game over is reached when block is placed such that part of it extends above the red rectangle
- If you have a complete row, it gets cleared
Value Iteration w/Function Approximation --- Example

\[S' = \{ \text{ } \} \]
Value Iteration w/Function Approximation --- Example

- $S' = \{$, $\}$

- **10 features (also called basis functions) ϕ_i**
 - Four basis functions, $0, \ldots, 3$, *mapping the state to the height $h[k]$ of each of the four columns.*
 - Three basis functions, $4, \ldots, 6$, *each mapping the state to the absolute difference between heights of successive columns: $|h[k+1] - h[k]|$, $k = 1, \ldots, 3$.*
 - One basis function, 7, that maps state to the maximum column height: $\max_k h[k]$
 - One basis function, 8, that maps state to the number of ‘holes’ in the board.
 - One basis function, 9, that is equal to 1 in every state.

- Init with $\theta^{(0)} = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 10)$
Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S':

$$V(s) = \max \{0.5 \times (1 + \gamma V(s'_{10})) + 0.5 \times (1 + \gamma V(s'_{11})),$$

$$0.5 \times (1 + \gamma V(s'_{10})) + 0.5 \times (1 + \gamma V(s'_{11})),$$

$$0.5 \times (1 + \gamma V(s'_{10})) + 0.5 \times (1 + \gamma V(s'_{11})),$$

$$0.5 \times (1 + \gamma V(s'_{10})) + 0.5 \times (1 + \gamma V(s'_{11})) \}$$
Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S'

\[
V(s) = \max \{ 0.5 \times (1 + \gamma V(s')) + 0.5 \times (1 + \gamma V(s'')) , \\
0.5 \times (1 + \gamma V(s')) + 0.5 \times (1 + \gamma V(s'')) , \\
0.5 \times (1 + \gamma V(s')) + 0.5 \times (1 + \gamma V(s''')) , \\
0.5 \times (1 + \gamma V(s')) + 0.5 \times (1 + \gamma V(s'))) \}
\]
Value Iteration w/Function Approximation --- Example

\[S' = \{ \text{state 1}, \text{state 2}, \text{state 3}, \text{state 4} \} \]

- **10 features aka basis functions \(\varphi_i \)**
 - Four basis functions, 0, \ldots, 3, *mapping the state to the height* \(h[k] \) *of each of the four columns.*
 - Three basis functions, 4, \ldots, 6, *each mapping the state to the absolute difference* between heights of successive columns: \(|h[k+1] - h[k]|, k = 1, \ldots, 3. \)
 - One basis function, 7, that maps state to the maximum column height: \(\max_k h[k] \)
 - One basis function, 8, that maps state to the number of 'holes' in the board.
 - One basis function, 9, that is equal to 1 in every state.

- **Init with** \(\Theta^{(0)} = (-1, -1, -1, -1, -2, -2, -3, -2, 10) \)
Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S’:

\[
V(\text{sink-state, V=0}) = \max \{ \begin{array}{l}
0.5 \times (1 + \gamma) \; \theta^T \phi \left((6,2,4,0,4,2,4,6,0,1) \right) \\
0.5 \times (1 + \gamma) \; \theta^T \phi \left((2,6,4,0,4,2,4,6,0,1) \right)
\end{array} \}
\]

\[
V(\text{sink-state, V=0}) = \max \{ \begin{array}{l}
0.5 \times (1 + \gamma) \; \theta^T \phi \left((0,0,2,2,0,2,0,0,0,1) \right) \\
0.5 \times (1 + \gamma) \; \theta^T \phi \left((0,0,2,2,0,2,0,0,0,1) \right)
\end{array} \}
\]
Value Iteration w/ Function Approximation --- Example

- Bellman back-ups for the states in S':

$$V(\text{state}) = \max \{ 0.5 * (1 + \gamma (-30)) + 0.5 * (1 + \gamma (-30)) , $$

$$0.5 * (1 + \gamma (-30)) + 0.5 * (1 + \gamma (-30)) , $$

$$0.5 * (1 + \gamma (0)) + 0.5 * (1 + \gamma (0)) , $$

$$0.5 * (1 + \gamma (6)) + 0.5 * (1 + \gamma (6)) \}$$

$$= 6.4 \quad \text{(for } \gamma = 0.9)$$
Value Iteration w/Function Approximation --- Example

Bellman back-ups for the second state in S':

\[
V(s) = \max \{ \ 0.5 \cdot (1 + \gamma) \cdot V(s') + 0.5 \cdot (1 + \gamma) \cdot V(s') , \\
0.5 \cdot (1 + \gamma) \cdot V(s') + 0.5 \cdot (1 + \gamma) \cdot V(s') , \\
0.5 \cdot (1 + \gamma) \cdot V(s') + 0.5 \cdot (1 + \gamma) \cdot V(s') , \\
0.5 \cdot (1 + \gamma) \cdot \theta^T \phi(s') + 0.5 \cdot (1 + \gamma) \cdot \theta^T \phi(s') \}
\]

\[
= 19
\]

$\theta^{(0)} = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 20)$
Bellman back-ups for the third state in S':

$$V(0,0,0,0,0,0,0,0,1) = \max \{ 0.5 \ast (1 + \gamma \theta^T \phi (2,4,0,0,0,4,0,4,1)) + 0.5 \ast (1 + \gamma \theta^T \phi (0,4,4,0,4,0,0,4,1)) \},$$

$\text{-> } V = -8$

$$0.5 \ast (1 + \gamma \theta^T \phi (0,4,4,0,4,0,0,4,1)) + 0.5 \ast (1 + \gamma \theta^T \phi (2,4,0,0,0,4,0,4,1))$$

$\text{-> } V = -14$

$$0.5 \ast (1 + \gamma \theta^T \phi (0,0,0,0,0,0,0,0,1)) + 0.5 \ast (1 + \gamma \theta^T \phi (0,0,0,0,0,0,0,0,1))$$

$\text{-> } V = 20$

$= 19$
Value Iteration w/Function Approximation --- Example

\(\theta^{(0)} = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 20) \)

- Bellman back-ups for the fourth state in \(S' \):

\[
V(\text{state}) = \max \{ 0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state}) + 0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state}) \}
\]

\[
\Rightarrow V = -34
\]

\[
0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state}) + 0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state})
\]

\[
\Rightarrow V = -38
\]

\[
0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state}) + 0.5 \cdot (1 + \gamma) \theta^T \phi(\text{state})
\]

\[
\Rightarrow V = -42
\]

\[
= -29.6
\]
Value Iteration w/Function Approximation --- Example

- After running the Bellman back-ups for all 4 states in S' we have:

 $V(2, 2, 4, 0, 0, 2, 4, 0, 1) = 6.4$
 $V(4, 4, 0, 0, 0, 4, 0, 1) = 19$
 $V(2, 2, 0, 0, 0, 2, 0, 1) = 19$
 $V(4, 0, 4, 0, 4, 4, 0, 1) = -29.6$

- We now run supervised learning on these 4 examples to find a new θ:

 $\min_{\theta} \theta^T \phi(h) + (19 - \theta^T \phi(h))^2 + ((-29.6) - \theta^T \phi(h))^2$

Running least squares gives:

$\theta^{(1)} = (0.195, 6.24, -2.11, 0, -6.05, 0.13, -2.11, 2.13, 0, 1.59)$
Potential Guarantees?
Simple Example**

Function approximator: $[1, 2] \times \theta$
Simple Example**

\[J_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \theta \]

\[\tilde{J}^{(1)}(x_1) = 0 + \gamma \tilde{J}_{\theta^{(0)}}(x_2) = 2 \gamma \theta^{(0)} \]
\[\tilde{J}^{(1)}(x_2) = 0 + \gamma \tilde{J}_{\theta^{(0)}}(x_2) = 2 \gamma \theta^{(0)} \]

Function approximation with least squares fit:

\[\begin{bmatrix} 1 \\ 2 \end{bmatrix} \theta^{(1)} \approx \begin{bmatrix} 2 \gamma \theta^{(0)} \\ 2 \gamma \theta^{(0)} \end{bmatrix} \]

Least squares fit results in:

\[\theta^{(1)} = \frac{6}{5} \gamma \theta^{(0)} \]

Repeated back-ups and function approximations result in:

\[\theta^{(i)} = \left(\frac{6}{5} \gamma \right)^i \theta^{(0)} \]

which diverges if \(\gamma > \frac{5}{6} \), even though the function approximation class can represent the true value function.]
Composing Operators

- **Definition.** An operator G is a non-expansion with respect to a norm $\| \cdot \|$ if $\| G J_1 - G J_2 \| \leq \| J_1 - J_2 \|$

- **Fact.** If the operator F is a γ-contraction with respect to a norm $\| \cdot \|$ and the operator G is a non-expansion with respect to the same norm, then the sequential application of the operators G and F is a γ-contraction, i.e., $\| G F J_1 - G F J_2 \| \leq \gamma \| J_1 - J_2 \|$

- **Corollary.** If the supervised learning step is a non-expansion, then iteration in value iteration with function approximation is a γ-contraction, and in this case we have a convergence guarantee.
Averager Function Approximators Are Non-Expansions**

DEFINITION: A real-valued function approximation scheme is an *averager* if every fitted value is the weighted average of zero or more target values and possibly some predetermined constants. The weights involved in calculating the fitted value Y_i may depend on the sample vector X_0, but may not depend on the target values Y. More precisely, for a fixed X_0, if Y has n elements, there must exist n real numbers k_i, n^2 nonnegative real numbers β_{ij}, and n nonnegative real numbers β_i, so that for each i we have $\beta_i + \sum_j \beta_{ij} = 1$ and $\hat{Y}_i = \beta_i k_i + \sum_j \beta_{ij} Y_j$.

Examples:

- nearest neighbor (aka state aggregation)
- linear interpolation over triangles (tetrahedrons, ...)

Averager Function Approximators Are Non-Expansions**

Proof: Let J_1 and J_2 be two vectors in \mathbb{R}^n. Consider a particular entry s of ΠJ_1 and ΠJ_2:

$$|(\Pi J_1)(s) - (\Pi J_2)(s)| = |\beta_{s0} + \sum_{s'} \beta_{ss'} J_1(s') - \beta_{s0} + \sum_{s'} \beta_{ss'} J_2(s')|$$

$$= |\sum_{s'} \beta_{ss'} (J_1(s') - J_2(s'))|$$

$$\leq \max_{s'} |J_1(s') - J_2(s')|$$

$$= \|J_1 - J_2\|_{\infty}$$

This holds true for all s, hence we have

$$\|\Pi J_1 - \Pi J_2\|_{\infty} \leq \|J_1 - J_2\|_{\infty}$$
Linear Regression 😞 **

Figure 2: The mapping associated with linear regression when samples are taken at the points $x = 0, 1, 2$. In (a) we see a target value function (solid line) and its corresponding fitted value function (dotted line). In (b) we see another target function and another fitted function. The first target function has values $y = 0, 0, 0$ at the sample points; the second has values $y = 0, 1, 1$. Regression exaggerates the difference between the two functions: the largest difference between the two target functions at a sample point is 1 (at $x = 1$ and $x = 2$), but the largest difference between the two fitted functions at a sample point is $\frac{7}{6}$ (at $x = 2$).

Example taken from Gordon, 1995
Guarantees for Fixed Point**

Theorem. Let J^* be the optimal value function for a finite MDP with discount factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity norm and let \tilde{J} be any fixed point of Π. Suppose $\|\tilde{J} - J^*\|_{\infty} \leq \epsilon$. Then ΠT converges to a value function \bar{J} such that:

$$\|\bar{J} - J^*\| \leq 2\epsilon + \frac{2\gamma\epsilon}{1 - \gamma}$$

- I.e., if we pick a non-expansion function approximator which can approximate J^* well, then we obtain a good value function estimate.

- To apply to discretization: use continuity assumptions to show that J^* can be approximated well by chosen discretization scheme
Outline

- Value iteration with function approximation
- Linear programming with function approximation
Outline

- Function approximation
- Value iteration with function approximation
 - Policy iteration with function approximation
 - Linear programming with function approximation
Policy Iteration

One iteration of policy iteration:

- **Policy evaluation:** with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

 $$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

- **Policy improvement:** with fixed utilities, find the best action according to one-step look-ahead

 $$\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

- Repeat until policy converges

- At convergence: optimal policy; and converges faster under some conditions
Policy Evaluation Revisited

- **Idea 1:** modify Bellman updates

\[
\begin{align*}
V_0^\pi(s) &= 0 \\
V_{i+1}^\pi(s) &\leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')] \\
\end{align*}
\]

- **Idea 2:** it is just a linear system, solve with Matlab (or whatever)

variables: \(V^\pi(s) \)

constants: \(T, R \)

\[
\forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
\]
Outline

- Function approximation
- Value iteration with function approximation
- Policy iteration with function approximation
 - Linear programming with function approximation
Infinite Horizon Linear Program

\[
\min_V \sum_{s \in S} \mu_0(s) V(s)
\]
\[
\text{s.t. } V(s) \geq \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')] , \quad \forall s \in S, a \in A
\]

Theorem. \(V^*\) is the solution to the above LP.

\(\mu_0\) is a probability distribution over \(S\), with \(\mu_0(s) > 0\) for all \(s\) in \(S\).
Infinite Horizon Linear Program

\[
\min_{\mu_0} \sum_{s \in S} \mu_0(s)V(s)
\]

s.t. \(V(s) \geq \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')] \), \(\forall s \in S, a \in A \)

Let \(V(s) = \theta^\top \phi(s) \), and consider \(S' \) rather than \(S \):

\[
\min_{\theta} \sum_{s \in S'} \mu_0(s)\theta^\top \phi(s)
\]

s.t. \(\theta^\top \phi(s) \geq \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma \theta^\top \phi(s')] \), \(\forall s \in S', a \in A \)

We find approximate value function \(\hat{V}_\theta(s) = \theta^\top \phi(s) \)
Approximate Linear Program – Guarantees**

\[
\min_{\theta} \sum_{s \in S'} \mu_0(s) \theta^\top \phi(s) \\
\text{s.t. } \theta^\top \phi(s) \geq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \theta^\top \phi(s') \right], \quad \forall s \in S', a \in A
\]

- LP solver will converge
- Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to one for all states, and assuming \(S' = S\) we have that:

\[
\|V^* - \Phi \theta\|_{1, \mu_0} \leq \frac{2}{1 - \gamma} \min_{\theta} \|V^* - \Phi \theta\|_{\infty}
\]

(slightly weaker, probabilistic guarantees hold for \(S'\) not equal to \(S\), these guarantees require size of \(S'\) to grow as the number of features grows)