Beam Sensor Models

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
The central task is to determine $P(z/x)$, i.e., the probability of a measurement z given that the robot is at position x.

Question: Where do the probabilities come from?

Approach: Let’s try to explain a measurement.

Proximity Sensors
Beam-based Sensor Model

- Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

- Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$
Beam-based Sensor Model

\[P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m) \]
Typical Measurement Errors in Range Measurements

1. Beams reflected by obstacles
2. Beams reflected by persons / caused by crosstalk
3. Random measurements
4. Maximum range measurements
Beam-based Proximity Model

Measurement noise

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2} \left(\frac{z - z_{exp}}{b}\right)^2}$$

Unexpected obstacles

$$P_{unexp}(z \mid x, m) = \begin{cases}
\eta \lambda e^{-\lambda z} & \text{if } z < z_{exp} \\
0 & \text{otherwise}
\end{cases}$$
Beam-based Proximity Model

Random measurement

Max range

\[P_{\text{rand}}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}} \]

\[P_{\text{max}}(z \mid x, m) = \eta \frac{1}{z_{\text{small}}} \]
Resulting Mixture Density

\[
P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix}^T \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}
\]

How can we determine the model parameters?
Raw Sensor Data

Measured distances for expected distance of 300 cm.

Sonar

Laser
Approximation

- Maximize log likelihood of the data \(P(z \mid z_{\text{exp}}) \)
- Search space of n-1 parameters.
 - Hill climbing
 - Gradient descent
 - Genetic algorithms
 - ...
- Deterministically compute the n-th parameter to satisfy normalization constraint.
Approximation Results

Laser

Sonar

300cm

400cm
Approximation Results

Laser

Sonar
Influence of Angle to Obstacle
Summary Beam-based Model

- Assumes independence between beams.
 - Justification?
 - Overconfident!

- Models physical causes for measurements.
 - Mixture of densities for these causes.
 - Assumes independence between causes. Problem?

- Implementation
 - Learn parameters based on real data.
 - Different models should be learned for different angles at which the sensor beam hits the obstacle.
 - Determine expected distances by ray-tracing.
 - Expected distances can be pre-processed.