Task and Motion Planning

Dylan Hadfield-Menell
UC Berkeley CS 287 Guest Lecture



Planning for Complex Tasks




Outline

= Task Planning
= Formulation

s Fast-Forward

s Task and Motion Planning
s Forward Search
= Plan Skeletons

= Extension: Partial observability



Example Domain




Motion Planning

= Initial State:

m Goal State:

= Target robot pose




Motion Planning++

= Initial State:

m Goal State:

= Set of Robot Configurations
= In(Robot, Room?2)

= In(Robot, Room3)?



Task and Motion Planning

= Initial State:

s Goal State:
= In(A, Room3) A In(B, Room?2)




Early Robotics: Shakey the Robot




Task Planning: State Representation

s Represent state of the world as list of true properties

In(Robot, RO)
In(A, R1)
In(C, R2)
In(B, RO)

Holding(Robot, None)
Blocks(B, RO, R3)




Task Planning: Action Representation

= An operator is a defined by 3

attributes Move(R0, R1)

Preconditions

= Name
= |dentifier for action In(robot, RO)
Connected(RO, R1

= Preconditions ~Blocks(A, RO, R1

)
)
= List of fluents that must be true ~Blocks(B, RO, R1)

~Blocks(C, RO, R1)

in order to take action

Effects
In(robot, R1)
~In(robot, RO)

s Effects
= Add list: fluents that become
true after the action

= Delete list: fluents that become
false after the action




Task Planning: More Actions

MoveHolding(A, RO, R1)

Preconditions

Pick(A, RO)

Preconditions
Holding(None)
In(A, RO)
In(robot, RO)

Effects
~Holding(None)
Holding(A)

Clear(B, RO, R1)

Preconditions
Blocks(B, RO, R1)
In(robot, RO)
Holding(None)

Effects
~Blocks(B, RO, R1)

In(robot, RO)
Holding(A)
Connected(RO, R1)
~Blocks(A, RO, R1)
~Blocks(B, RO, R1)
~Blocks(C, RO, R1)

Effects

In(robot, R1)
~In(robot, RO)
In(A, R1)
~In(A, RO)




Planning Domain Description Language

m Standardized format to represent planning problems

s Used for International Planning Competitions

= Lots of published code that can read this representation

= Domain file defines

= Fluents, object types, operator schemas

m Problem file defines

= Objects, Initial state, Goal condition



Example PDDL Domain

(define (domain gripper-strips)
(:predicates (room ?r) (ball ?b)

gripper ?9)

at-robby ?r)

at ?b ?r) (free ?9)

carry 70 79))

P e e U e

(:action move
:parameters (?from ?to)
:precondition (and (room ?from)
(room ?to)
(at-robby ?from))
.effect (and (at-robby ?to)
(not (at-robby ?from))))

Example from Manuela Veloso



Example PDDL Domain (cont’d)

(:action pick (:action drop
:parameters (?0bj ?room ?gripper) :parameters (?obj ?room ?gripper)
:precondition (and (ball ?0bj) ‘precondition (and (ball ?obj)
(room ?room) (room ?room)
(gripper ?gripper) (gripper ?gripper)
(at ?0bj ?room) (carry ?obj ?gripper)
(at-robby ?room) (at-robby ?room))
(free ?gripper)) .effect (and (at ?obj ?room)
-effect (and (carry ?obj ?gripper) (free ?gripper)
(not (at ?0bj ?room)) (not (not (carry ?obj ?gripper)))))
(free ?gripper))))

Example from Manuela Veloso



Example PDDL Problem

(define (problem strips-gripper2)
(:domain gripper-strips)
(:objects rooma roomb ball1 ball2 left right)
(:init (room rooma) (room roomb)
(ball ball1) (ball ball2)
(gripper left) (gripper right)
(at-robby rooma)
(free left) (free right)
(at ball1 rooma) (at ball2 rooma))
(:goal (at ball1 roomb)))

Example from Manuela Veloso

Solution:
pick(ball1 rooma left)
move(rooma roomb)
drop(ball1 roomb left)




Algorithms for Task Planning

Lots of intermediate approaches
2014: IPC-8

) E— 50+ submissions

1995: GraphPlan

1972: STRIPS 2001: Fast Forward
| | | | | | |
| | | | | | |
1939: GPS 1998: First IPC
e 2006: Fast Downward
H_/
Early Methods

Domain Independent Heuristics

Not to scale



Planning Graph [Blum & Furst ‘95]

s Preprocessing Step before planning
= Can reveal natural structure in problem

s Compute over-approximation of reachable set of literals



Planning Graph [Blum & Furst ‘95]

L()é all facts true in initial state

t <+ 0
While goal ¢ L,

L € facts from L, 4

For each action with pTG(CL) c L4

L, =L,Ue a
t%%let ff(a)

Theorem:Lt is a superset of reachable set of fluents for plans of length t



Fast-Forward [Hoffmann 2001]

= Early use of plan graphs analyzed the plan graph to extract a
sequence of actions

s Fast-Forward: use the length of the planning graph as a
heuristic inside of a forward search
= Actually use relaxed planning graph, which ignores delete effects

= Some modifications to handle very slow heuristic computation



Fast-Forward [Hoffmann 2001]

Q) < PriorityQueue()
Q.push(init, 0)

While goal not found
s + Q.pop()
pg < RelaxPlanGraph(s, goal)

for c in s.children
Q-push(c, len(pg))



Fast-Forward Details

s Enforced hill climbing

= Greedy search + breadth-first search to account for plateaus

= Push children with heuristic evaluated on parent

= 1 heuristic evaluation/expansion

= Alternative is 1 heuristic evaluation/child

s Helpful actions

= When planning graph terminates, we can extract a plan with
simultaneous actions

s Search those actions first



Task Planning Summary

= Binary State Representation

= Properties of the world that change over time
s Actions defined by preconditions and effects

m State-of-the-art relies on heuristic forward search with domain
independent heuristics



Task Planning for Robots (the hope)
Binary Planning In(Robot, RO) In(A, R1)
Representation In(C, R2) In(B, RO) »
Holding(Robot, None) Planning
Blocks(B, RO, R3)
Motion

Continuous Full Representation




Task Planning for Robots (the reality)

Binary Planning In(Robot, RO) In(A, R1)

Representation In(C, R2) In(B, RO) »
Holding(Robot, None) Planning

Blocks(B, RO, R3)

Continuous Full Representation




Executing a Task Plan

m Each high level action encodes a motion planning problem

= Ex. Move(RO, R1) u
= Initial State: Current robot pose -

= Goal State: anything in R1

= Motion plan each step in sequence

= Issue: dependency between intermediate steps of plan



Dependency for intermediate states

Move(RO, R1) Move(R1, R2)

Solution: Try several intermediate poses for each action

What if the task plan itself is wrong?



A Continuous Representation

= Goal: Holding(robot, A)

= High-Level Actions

= Grasp(robot, r_pose, obj, o_pose,
grasp)

= Move(robot, posel, pose2)

= Place(robot, r_pose, obj, grasp,

obj_pose)
m Grasps, poses, and locations are

all continuous



A Continuous Operator

Continuous parameters \
\

)
i 1

v

Grasp(robot, r_p;"ose, obj, o_gose, grasp)

Preconditions:
GraspPose(r_pose, 0_pose, grasp)
At(robot, r_pose)
At(obj, o _pose)
Holding(robot, None)

Effects:
~At(obj, o _pose)
Holding(robot, obj)
~Holding(robot, None)
\v/p1, p2 ~Obstructs(obj, p1, p2)




Task and Motion Planning Approaches

Forward Search

= Gravot, Fabien, Stephane Cambon, and Rachid Alami. "aSyMov: a planner that deals with intricate symbolic and geometric
problems." Robotics Research. The Eleventh International Symposium. Springer Berlin Heidelberg, 2005.

= Dornhege, Christian, et al. "Semantic attachments for domain-independent planning systems." Towards Service Robots for
Everyday Environments. Springer Berlin Heidelberg, 2012.

= Garrett, Caelan Reed, Tomdas Lozano-Pérez, and Leslie Pack Kaelbling. "FFROB: An efficient heuristic for task and motion
planning." Algorithmic Foundations of Robotics XI. Springer International Publishing, 2015. 179-195.

Hierarchical TAMP

= Kaelbling, Leslie Pack, and Tomas Lozano-Pérez. "Hierarchical task and motion planning in the now." Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.

Plan Skeleton

= Srivastava, Siddarth, et al. "Combined task and motion planning through an extensible planner-independent interface
layer." Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014.

= Lozano-Pérez, Tomas, and Leslie Pack Kaelbling. "A constraint-based method for solving sequential manipulation planning
problems." Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. |EEE, 2014.

= Toussaint, Marc. "Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion
Planning." 2015.



Strawman TAMP Algorithm: Discretize

= Replace each continuous value with a set of discrete options
s Compute all relevant properties

= Run your favorite task planner

= Now it sets intermediate poses as well

m |ssues?
= Curse of dimensionality

= Lots of irrelevant motion planning



TAMP via Forward Search

= Main idea: lazily discretize values and compute properties
during search

Grasp
Move

Move Grasp




Forward Search

Q) <+ PriorityQueue()
Q) .push(init, 0)
While goal not found

s + Q.pop()
pg < RelaxPlanGraph(s, goal)

for each applicable action, a s.t. pre(a) € s
children <— Discretize(s,a)

for ¢ € children
Q.push(c, h(c))



Forward Search Challenges

= Node expansions are very slow
= >95% of running time is spent answering motion planning queries
= Efficient caching strategies can help a lot

= [aSyMov ‘05] interleave PRM iterations with search iterations

s Useful heuristic information
= Obtaining useful heuristic information has been a primary bottleneck

= Recent work investigates efficient computation of plan graph heuristic
[Garrett ‘15]



Task and Motion Planning Approaches

Forward Search

= Gravot, Fabien, Stephane Cambon, and Rachid Alami. "aSyMov: a planner that deals with intricate symbolic and geometric
problems." Robotics Research. The Eleventh International Symposium. Springer Berlin Heidelberg, 2005.

= Dornhege, Christian, et al. "Semantic attachments for domain-independent planning systems." Towards Service Robots for
Everyday Environments. Springer Berlin Heidelberg, 2012.

= Garrett, Caelan Reed, Tomdas Lozano-Pérez, and Leslie Pack Kaelbling. "FFROB: An efficient heuristic for task and motion
planning." Algorithmic Foundations of Robotics XI. Springer International Publishing, 2015. 179-195.

Hierarchical TAMP

= Kaelbling, Leslie Pack, and Tomas Lozano-Pérez. "Hierarchical task and motion planning in the now." Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.

Plan Skeleton

= Srivastava, Siddarth, et al. "Combined task and motion planning through an extensible planner-independent interface
layer." Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014.

= Lozano-Pérez, Tomas, and Leslie Pack Kaelbling. "A constraint-based method for solving sequential manipulation planning
problems." Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. |EEE, 2014.

= Toussaint, Marc. "Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion
Planning." 2015.



Plan Skeleton Methods

Initially plan with abstract representation that ignores
continuous dynamics

Output can be thought of as a continuous constraint
satisfaction problem

= Preconditions = constraints

Algorithm sketch
= Generate task plan

= Attempt to solve CSP

= If failure, generate new plan



A Continuous Operator

Continuous parameters \
\

)
i 1

v

Grasp(robot, r_p;"ose, obj, o_gose, grasp)

Preconditions:
GraspPose(r_pose, 0_pose, grasp)
At(robot, r_pose)
At(obj, o _pose)
Holding(robot, None)

Effects:
~At(obj, o _pose)
Holding(robot, obj)
~Holding(robot, None)
\v/p1, p2 ~Obstructs(obj, p1, p2)




Poses = Pose References

= Replace continuous values symbols -~ L,
. . P_A :“object pose where Ais
with symbolic references type: object pose
G_A :“grasp we can use for A”
s Leave these values type: grasp

uninstantiated during task GP_A : "fose with a valid grasp
: or A”
planning

type: robot pose

P_R : “initial robot pose”
type: robot pose

values for continuous Properties

= Refine task plan to pick

At(robot, P_R)
At (A, P_A)
GraspPose(GP_A, P_A, G_A)

parameters

[Srivastava, Siddharth, et al. “Combined task and motion planning through
an extensible planner-independent interface layer.” ICRA, 2014.]



Planning with an Interface

Symbols
P_A,G_A, .. (0,0)
Properties
At(robot, P_R) (1! 1)
(0.1,0.2)
Goal: Holding(robot, A) A |(1.1,1.2)
Task .
Plan Skeleton: Interface
Planner | 1. Move(robot, P_R, GP_A) Planner

2. Grasp(robot, GP_A,
AP A GA)




Planning with an Interface

Symbols
P_A,G_A, .. (0,0)

Properties (1 , 1)

At(robot, P_R)

(-1, -.2)
Goal: Holding(robot, A) A | @-1.2)
(0.9, 0.8)

Plan Skeleton: Interface

Planner |1. Move(robot, P R, GP A

Final Plan:

1. Move(robot, (0,0), (0.9, 0.8) )

2. Grasp(robot, (0.9, 0.8), A, (1,1), (0.1, 0.2))
e




Error Propagation

= What do we lose with
symbol references?

= High level can’t know
anything that depends on
specific values of parameters

= E.g. what if B blocks A

= Solution:

= Interface queries motion
planner to determine failure

= Updates high level



Error Propagation

Plan Skeleton:
1. Move(robot, P_R, GP_A)
2. Grasp(robot, GP_A,

A P_A G_A)

Obstructs(B, P_R, GP_A)

Plan Skeleton:
Task 1. Move(robot, P_R, GP_B)

Planner | Grasp(robot, GP_B, B,

P_B, G_B)
3. Move(robot, GP_B,
PDP_B)

4. Place(robot, PDP_B, B,
PDP_B, G_B)

Planner




Plan Refinement via Local Search

\ Plan Skeleton

Move(robot, P_R, GP_A) Grasp(robot, GP_A,A,P A, G A)
~Obstructs(A, P_R, GP_A) € -~ o _ GraspPose(GP_A, P_A, G_A)
~Obstructs(B, P_R, GP_A) €= = ~a - Holding(robot, None)

Preconditions constrain
potential values of symbols

Calls to Motion Planner ~

Initialize Determine violated
symbols constraint

Modify symbols of
violated constraints



Plan Refinement via Local Search

PR |(0,0)

PAa (1,1

G A |(0.1,0.2)

GP_A |(0.5,0.5) (\

Inltlallze Determlne violated Modlfy symbols of
symbols constralnt wolated constraints

(0,0) Obstructs(A, P_R, GP_A)
P_A (1, 1) ~GraspPose(GP_A, P_A, G_A)
G_A ](0.1,0.2)
GP_A | (1.1,1.2)




Plan Refinement via Local Search

PR |(0,0)

PA |(1,1)

G A |(-0.1,-0.2)
GP_A |(0.9,0.8)

Inltlallze Determine violated Modify symbols of
symbols constraint violated constraints

Obstructs(A, P_R, GP_A) \

(0,0) M ~
P_A (1, 1) \\ GraspPose(GP_A,P_A, G A) \
A |(0.1,02) \ !
GP A |(1.1,1.2) Constraint ordering Conditional
distribution over

symbol values



Searching over Plan Skeletons

= Using the failure information to generate the next state
defines a graph

= Nodes are plan skeletons

= Edges are failure explanations

= Interleave node expansion (failure propagation) and
node refinement (motion planning)

[Guided Search for Task and Motion Plans Using Learned Heuristics Rohan Chitnis, Dylan Hadfield-Menell,
Abhishek Gupta, Siddharth Srivastava, Pieter Abbeel. ICRA, 2016 (under review)].



Searching over Plan Skeletons

Plan Skeleton:

1. Move(robot, P_R, GP_B)

2. Grasp(robot, GP_B, B,
P_B, G_B)

3. Move(robot, GP_B,
PDP_B)

4. Place(robot, PDP_B, B,

PDP_B, G_B)

Obstructs(B, P_R, GP_A

Plan Skeleton:
1. Move(robot, P_R, GP_A)
2. Grasp(robot, GP_A,

AP A GA)

Challenge: need useful heuristics to effectively
search this graph.

Solution: learn a heuristic

(details at final project presentations)



Task and Motion Planning Summary

m Pure Task Planning doesn’t work directly because of
= Abstracted continuous dynamics

= Long horizons

= Solution methods
= Discretize and represent everything logically
= Discretize lazily and run motion planning during search

= Plan abstractly and fill in continuous values later
= Get a new plan if that doesn’t work



Physical State

= Proposal: treat beliefs like poses

= Symbolic references let us reason
about and plan with continuous state




hallenge: Non-determinism

A

= Observations depend on
physical state

= Which we don’t know!

= Approximate solution:

= Assume that each belief state
deterministically generates its
maximum likelihood
observation!1]

= Re-planif necessary

Belief State [1] Platt et al. "Belief space planning assuming maximum
likelihood observations." RSS (2010).



haIIenge Non-determinism

A A" -




A Partially Observed Move

Move(robot, r p1, r_p2)

Preconditions:
At(robot, r _p1)
Y/ obj ~Obstructs(obj, r p1, r p2)
A

Effects: N
~At(robot, r p1) .7
At(robot, r_p2) ,/

obj blocks trajectory
Achieved by Pick

PO-Move(robot, r p1,r p2)

Preconditions:
At(robot, r _p1)
\/ obj ~BObstructs(obj, r p1, r_p2)
A
Effects: ,’
~At(robot, r p1) .7/
At(robot, r _p2) ,'

w.h.p. obj blocks trajectory
Achieved by Pick OR Observe



S

——”

Should | pick up B or

observe it??




Logical Belief State Dynamics

s |In the POMDP formulation,
answering this question is
complicated...

m Key Idea: observation will
only be useful if it lets us
conclude that B is not in the
way

Should | pick up

B or observe
it??

= We've assumed maximum
likelihood observations, so this
is tractable



Logical Belief Space Dynamics

= Split properties of belief

states into 2 cases PO-Move(robot, r_p1, r_p2)
= Properties of maximum Preconditions: o7
likelihood states At(robot, r_p1)

= Properties of associated
uncertainty

Effects:
= Interface determines which ~At(robot, r_p1)

i At(robot, r_p2)
caused failure and updates

high level Achieved by Observe



Refining a Plan Skeleton in Belief Space

Plan Skeleton: I weighted # of collisions < safety threshold
1. PO-Move(robot, P_R, GP_A)
2. PO-Grasp(robot, GP_A, A,BP_A, G _A)

Belief Query Sampled p_r
Obstacles gp_a
Sampled >
Obstacles SUCCESS
. Motion
Belief State Interface
bp_3, 8_a Planner

grasp success




Error Propagation in Belief Space

Plan Skeleton:

1. PO-Move(robot, P_R, GP_A)

2. PO-Grasp(robot, GP_A, A,BP_A, G _A)

A

Belief State

Belief Query

Sampled
Obstacles

ML Query

ML Obstacles

Interface

UODbstructs(B, P_R, GP_A)

Sampled p_r
Obstacles gp_a
>

fail

Motion

ML p_r,
Obstacles gp_a) Planner

SUCCESS




Error Propagation in Belief Space

A
Plan Skeleton:
1. PO-Move(robot, P_R, GP_A) MLObstructs(B, P_R, GP_A )
2. PO-Grasp(robot, GP_A, A,BP_A, G _A)

Belief Query Sampled p_r
Obstacles gp_a

Sampled >

Obstacles £l

' Motion
Belief State | ML Query Interface ML P, I
Obstacles gp_a) Planner
ML Obstacles

fail




