Task and Motion Planning

Dylan Hadfield-Menell

UC Berkeley CS 287 Guest Lecture

Planning for Complex Tasks

Outline

- Task Planning
 - Formulation
 - Fast-Forward
- Task and Motion Planning
 - Forward Search
 - Plan Skeletons
 - Extension: Partial observability

Example Domain

Motion Planning

Initial State:

- Goal State:
 - Target robot pose

Motion Planning++

Initial State:

- Goal State:
 - Set of Robot Configurations
 - In(Robot, Room2)
 - In(Robot, Room3)?

Task and Motion Planning

Initial State:

- Goal State:
 - In(A, Room3) ^ In(B, Room2)

Early Robotics: Shakey the Robot

Task Planning: State Representation

Represent state of the world as list of true properties

In(Robot, R0) In(A, R1) In(C, R2) In(B, R0) Holding(Robot, None) Blocks(B, R0, R3)

Task Planning: Action Representation

- An operator is a defined by 3 attributes
 - Name
 - Identifier for action
 - Preconditions
 - List of fluents that must be true in order to take action
 - Effects
 - Add list: fluents that become true after the action
 - Delete list: fluents that become false after the action

```
Move(R0, R1)
Preconditions
  In(robot, R0)
  Connected(R0, R1)
  ~Blocks(A, R0, R1)
  ~Blocks(B, R0, R1)
  ~Blocks(C, R0, R1)
Effects
  In(robot, R1)
  ~In(robot, R0)
```

Task Planning: More Actions

```
Pick(A, R0)

Preconditions
Holding(None)
In(A, R0)
In(robot, R0)

Effects
~Holding(None)
Holding(A)
```

```
Clear(B, R0, R1)
Preconditions
  Blocks(B, R0, R1)
  In(robot, R0)
  Holding(None)
Effects
  ~Blocks(B, R0, R1)
```

```
MoveHolding(A, R0, R1)
Preconditions
  In(robot, R0)
  Holding(A)
  Connected(R0, R1)
  ~Blocks(A, R0, R1)
  ~Blocks(B, R0, R1)
  ~Blocks(C, R0, R1)
Effects
  In(robot, R1)
  ~In(robot, R0)
  In(A, R1)
  ~In(A, R0)
```

Planning Domain Description Language

- Standardized format to represent planning problems
- Used for International Planning Competitions
 - Lots of published code that can read this representation
- Domain file defines
 - Fluents, object types, operator schemas
- Problem file defines
 - Objects, Initial state, Goal condition

Example PDDL Domain

```
(define (domain gripper-strips)
 (:predicates (room ?r) (ball ?b)
               (gripper ?g)
               (at-robby ?r)
               (at ?b ?r) (free ?g)
               (carry ?o ?q))
(:action move
  :parameters (?from ?to)
  :precondition (and (room ?from)
                 (room ?to)
                 (at-robby ?from))
  :effect (and (at-robby ?to)
            (not (at-robby ?from))))
```

Example PDDL Domain (cont'd)

```
(:action pick
  :parameters (?obj ?room ?gripper)
  :precondition (and (ball ?obj)
                 (room ?room)
                 (gripper ?gripper)
                 (at ?obj ?room)
                 (at-robby ?room)
                (free ?gripper))
 :effect (and (carry ?obj ?gripper)
         (not (at ?obj ?room)) (not
(free ?gripper))))
```

```
(:action drop
 :parameters (?obj ?room ?gripper)
 :precondition (and (ball ?obj)
               (room ?room)
                (gripper ?gripper)
                (carry ?obj ?gripper)
                (at-robby ?room))
 :effect (and (at ?obj ?room)
         (free ?gripper)
         (not (carry ?obj ?gripper)))))
```

Example PDDL Problem

```
(define (problem strips-gripper2)
  (:domain gripper-strips)
  (:objects rooma roomb ball1 ball2 left right)
  (:init (room rooma) (room roomb)
       (ball ball1) (ball ball2)
       (gripper left) (gripper right)
       (at-robby rooma)
       (free left) (free right)
       (at ball1 rooma) (at ball2 rooma))
 (:goal (at ball1 roomb)))
```

Solution: pick(ball1 rooma left) move(rooma roomb) drop(ball1 roomb left)

Algorithms for Task Planning

Not to scale

Planning Graph [Blum & Furst '95]

- Preprocessing Step before planning
- Can reveal natural structure in problem
- Compute over-approximation of reachable set of literals

Planning Graph [Blum & Furst '95]

 $L_0 \leftarrow$ all facts true in initial state

$$t \leftarrow 0$$

While $goal \notin L_t$

$$L_t \leftarrow$$
 facts from L_{t-1}

For each action with $pre(a) \in L_{t-1}$ $L_t = L_t \cup eff(a)$ $t \leftarrow t+1$

Theorem: L_t is a superset of reachable set of fluents for plans of length t

Fast-Forward [Hoffmann 2001]

- Early use of plan graphs analyzed the plan graph to extract a sequence of actions
- Fast-Forward: use the length of the planning graph as a heuristic inside of a forward search
 - Actually use relaxed planning graph, which ignores delete effects
 - Some modifications to handle very slow heuristic computation

Fast-Forward [Hoffmann 2001]

```
Q \leftarrow PriorityQueue()
Q.push(init, 0)
While goal not found s \leftarrow Q.pop()
  pg \leftarrow RelaxPlanGraph(s, goal)
  for c in s.children
     Q.push(c, len(pg))
```

Fast-Forward Details

- Enforced hill climbing
 - Greedy search + breadth-first search to account for plateaus
- Push children with heuristic evaluated on parent
 - 1 heuristic evaluation/expansion
 - Alternative is 1 heuristic evaluation/child
- Helpful actions
 - When planning graph terminates, we can extract a plan with simultaneous actions
 - Search those actions first

Task Planning Summary

- Binary State Representation
 - Properties of the world that change over time
- Actions defined by preconditions and effects
- State-of-the-art relies on heuristic forward search with domain independent heuristics

Task Planning for Robots (the hope)

Task Planning for Robots (the reality)

Executing a Task Plan

- Each high level action encodes a motion planning problem
- Ex. Move(R0, R1)
 - Initial State: Current robot pose
 - Goal State: anything in R1
- Motion plan each step in sequence
 - Issue: dependency between intermediate steps of plan

Dependency for intermediate states

Move(R0, R1) Move(R1, R2) R0 **R1**

Solution: Try several intermediate poses for each action What if the task plan itself is wrong?

A Continuous Representation

- Goal: Holding(robot, A)
- High-Level Actions
 - Grasp(robot, r_pose, obj, o_pose, grasp)
 - Move(robot, pose1, pose2)
 - Place(robot, r_pose, obj, grasp, obj_pose)
- Grasps, poses, and locations are all continuous

A Continuous Operator

Task and Motion Planning Approaches

Forward Search

- Gravot, Fabien, Stephane Cambon, and Rachid Alami. "aSyMov: a planner that deals with intricate symbolic and geometric problems." *Robotics Research. The Eleventh International Symposium*. Springer Berlin Heidelberg, 2005.
- Dornhege, Christian, et al. "Semantic attachments for domain-independent planning systems." *Towards Service Robots for Everyday Environments*. Springer Berlin Heidelberg, 2012.
- Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. "FFROB: An efficient heuristic for task and motion planning." Algorithmic Foundations of Robotics XI. Springer International Publishing, 2015. 179-195.

Hierarchical TAMP

• Kaelbling, Leslie Pack, and Tomás Lozano-Pérez. "Hierarchical task and motion planning in the now." *Robotics and Automation (ICRA), 2011 IEEE International Conference on.* IEEE, 2011.

Plan Skeleton

- Srivastava, Siddarth, et al. "Combined task and motion planning through an extensible planner-independent interface layer." *Robotics and Automation (ICRA), 2014 IEEE International Conference on.* IEEE, 2014.
- Lozano-Pérez, Tomás, and Leslie Pack Kaelbling. "A constraint-based method for solving sequential manipulation planning problems." *Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on.* IEEE, 2014.
- Toussaint, Marc. "Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning." 2015.

Strawman TAMP Algorithm: Discretize

- Replace each continuous value with a set of discrete options
- Compute all relevant properties
- Run your favorite task planner
 - Now it sets intermediate poses as well
- Issues?
 - Curse of dimensionality
 - Lots of irrelevant motion planning

TAMP via Forward Search

Main idea: lazily discretize values and compute properties

Forward Search

```
Q \leftarrow PriorityQueue()
Q.push(init, 0)
While goal not found
  s \leftarrow Q.pop()
  pg \leftarrow RelaxPlanGraph(s, goal)
 for each applicable action, a s.t. pre(a) \in s
     children \leftarrow Discretize(s, a)
     for c \in children
                                 Challenge: What goes here?
        Q.push(c,h(c)) \leftarrow
```

Forward Search Challenges

- Node expansions are very slow
 - >95% of running time is spent answering motion planning queries
 - Efficient caching strategies can help a lot
 - [aSyMov '05] interleave PRM iterations with search iterations
- Useful heuristic information
 - Obtaining useful heuristic information has been a primary bottleneck
 - Recent work investigates efficient computation of plan graph heuristic
 [Garrett '15]

Task and Motion Planning Approaches

Forward Search

- Gravot, Fabien, Stephane Cambon, and Rachid Alami. "aSyMov: a planner that deals with intricate symbolic and geometric problems." *Robotics Research. The Eleventh International Symposium*. Springer Berlin Heidelberg, 2005.
- Dornhege, Christian, et al. "Semantic attachments for domain-independent planning systems." *Towards Service Robots for Everyday Environments*. Springer Berlin Heidelberg, 2012.
- Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. "FFROB: An efficient heuristic for task and motion planning." Algorithmic Foundations of Robotics XI. Springer International Publishing, 2015. 179-195.

Hierarchical TAMP

• Kaelbling, Leslie Pack, and Tomás Lozano-Pérez. "Hierarchical task and motion planning in the now." *Robotics and Automation (ICRA), 2011 IEEE International Conference on.* IEEE, 2011.

Plan Skeleton

- Srivastava, Siddarth, et al. "Combined task and motion planning through an extensible planner-independent interface layer." *Robotics and Automation (ICRA), 2014 IEEE International Conference on.* IEEE, 2014.
- Lozano-Pérez, Tomás, and Leslie Pack Kaelbling. "A constraint-based method for solving sequential manipulation planning problems." *Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on.* IEEE, 2014.
- Toussaint, Marc. "Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning." 2015.

Plan Skeleton Methods

- Initially plan with abstract representation that ignores continuous dynamics
- Output can be thought of as a continuous constraint satisfaction problem
 - Preconditions → constraints
- Algorithm sketch
 - Generate task plan
 - Attempt to solve CSP
 - If failure, generate new plan

A Continuous Operator

Poses -> Pose References

- Replace continuous values with symbolic references
- Leave these values

 uninstantiated during task
 planning
- Refine task plan to pick values for continuous parameters

```
Symbols
  P A : "object pose where A is"
  type: object pose
  G_A: "grasp we can use for A"
  type: grasp
  GP_A: "pose with a valid grasp
           for A"
  type: robot pose
  P R : "initial robot pose"
  type: robot pose
Properties
   At(robot, P R)
   At (A, P_A)
   GraspPose(GP_A, P_A, G_A)
```

[Srivastava, Siddharth, et al. "Combined task and motion planning through an extensible planner-independent interface layer." ICRA, 2014.]

Planning with an Interface

Planning with an Interface

Error Propagation

- What do we lose with symbol references?
 - High level can't know anything that depends on specific values of parameters
 - E.g. what if B blocks A
- Solution:
 - Interface queries motion planner to determine failure
 - Updates high level

Error Propagation

Plan Refinement via Local Search

```
Plan Skeleton
Move(robot, P_R, GP_A)
                                             Grasp(robot, GP_A, A, P_A, G_A)
~Obstructs(A, P_R, GP_A) ← ~
                                                GraspPose(GP_A, P_A, G_A)
Holding(robot, None)
~Obstructs(B, P_R, GP_A) 		◀
                            Preconditions constrain
                           potential values of symbols
          Calls to Motion Planner
                                                                 Modify symbols of
   Initialize
                            Determine violated
```

constraint

symbols

violated constraints

Plan Refinement via Local Search

Plan Refinement via Local Search

Searching over Plan Skeletons

- Using the failure information to generate the next state defines a graph
 - Nodes are plan skeletons
 - Edges are failure explanations
- Interleave node expansion (failure propagation) and node refinement (motion planning)

Searching over Plan Skeletons

Plan Skeleton:

- 1. Move(robot, P_R, GP_B)
- Grasp(robot, GP_B, B, P_B, G_B)
- 3. Move(robot, GP_B, PDP B)
- Place(robot, PDP_B, B, PDP B, G B)
- 5. ...

Challenge: need useful heuristics to effectively search this graph.

Solution: learn a heuristic (details at final project presentations)

Task and Motion Planning Summary

- Pure Task Planning doesn't work directly because of
 - Abstracted continuous dynamics
 - Long horizons
- Solution methods
 - Discretize and represent everything logically
 - Discretize lazily and run motion planning during search
 - Plan abstractly and fill in continuous values later
 - Get a new plan if that doesn't work

Extension: Partial Observability

Challenge: Non-determinism

- Observations depend on physical state
 - Which we don't know!
- Approximate solution:
 - Assume that each belief state deterministically generates its maximum likelihood observation^[1]
 - Re-plan if necessary

[1] Platt et al. "Belief space planning assuming maximum likelihood observations." RSS (2010).

Challenge: Non-determinism

A Partially Observed Move

```
Move(robot, r_p1, r_p2)
Preconditions:
    At(robot, r p1)
    ∀ obj ~Obstructs(obj, r_p1, r_p2)
Effects:
    ~At(robot, r_p1) _ /
    At(robot, r p2) /
     obj blocks trajectory
      Achieved by Pick
```


At(robot, r p2)

w.h.p. obj blocks trajectory
Achieved by Pick **OR** Observe

Logical Belief State Dynamics

Logical Belief State Dynamics

- In the POMDP formulation, answering this question is complicated...
- Key Idea: observation will only be useful if it lets us conclude that B is not in the way
 - We've assumed maximum likelihood observations, so this is tractable

Logical Belief Space Dynamics

- Split properties of belief states into 2 cases
 - Properties of maximum likelihood states
 - Properties of associated uncertainty
- Interface determines which caused failure and updates high level

Achieved by Pick PO-Move(robot, r_p1, r_p2) Preconditions: At(robot, r p1) Effects: ~At(robot, r p1) At(robot, r_p2) Achieved by Observe

Refining a Plan Skeleton in Belief Space

Error Propagation in Belief Space

Error Propagation in Belief Space

