Markov Decision Processes
and
Exact Solution Methods:
Value Iteration
Policy Iteration
Linear Programming

Pieter Abbeel
UC Berkeley EECS
Markov Decision Process

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]
Markov Decision Process \((S, A, T, R, \gamma, H)\)

Given

- \(S\): set of states
- \(A\): set of actions
- \(T: S \times A \times S \times \{0,1,\ldots,H\} \rightarrow [0,1]\)
 \(T_t(s,a,s') = P(s_{t+1} = s' \mid s_t = s, a_t = a)\)
- \(R: S \times A \times S \times \{0,1,\ldots,H\} \rightarrow \mathbb{R}\)
 \(R_t(s,a,s') = \text{reward for } (s_{t+1} = s', s_t = s, a_t = a)\)
- \(\gamma \in (0,1]\): discount factor
- \(H\): horizon over which the agent will act

Goal:

- Find \(\pi^*: S \times \{0,1,\ldots,H\} \rightarrow A\) that maximizes expected sum of rewards, i.e.,

\[
\pi^* = \arg \max_\pi \mathbb{E}[\sum_{t=0}^{H} \gamma^t R_t(S_t, A_t, S_{t+1}) \mid \pi]
\]
Examples

MDP \((S, A, T, R, \gamma, H)\),

\[\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(S_t, A_t, S_{t+1}) | \pi \right] \]

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people
Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end
In an MDP, we want to find an optimal policy π^*: $S \times 0:H \rightarrow A$

- A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards

- Contrast: If deterministic, just need an optimal plan, or sequence of actions, from start to a goal
Optimal Control

\[\text{given an MDP } (S, A, T, R, \gamma, H) \]

find the optimal policy \(\pi^* \)

Outline

- Exact Methods:
 - Value Iteration
 - Policy Iteration
 - Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. We will consider continuous spaces later!
Value Iteration

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For $i = 1, \ldots, H$

For all states s in S:

\[
V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]
\]

\[
\pi_{i+1}^*(s) \leftarrow \arg \max_{a \in A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]
\]

This is called a value update or Bellman update/back-up

$V_i^*(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for i steps

$\pi_i^*(s)$ = optimal action when in state s and getting to act for i steps
Value Iteration in Gridworld

noise = 0.2, γ = 0.9, two terminal states with R = +1 and -1

VALUES AFTER 1 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, γ = 0.9, two terminal states with $R = +1$ and -1

VALUES AFTER 2 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, γ = 0.9, two terminal states with R = +1 and -1

VALUES AFTER 3 ITERATIONS
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 4 ITERATIONS

0.37 0.66 0.83 1.00
0.00 0.51 -1.00
0.00 0.00 0.31 0.00
Value Iteration in Gridworld

noise = 0.2, γ = 0.9, two terminal states with R = +1 and -1

VALUES AFTER 5 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1
Value Iteration in Gridworld

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

<table>
<thead>
<tr>
<th></th>
<th>0.64</th>
<th>0.74</th>
<th>0.85</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td></td>
<td>0.43</td>
<td>0.48</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALUES AFTER 1000 ITERATIONS
Now we know how to act for infinite horizon with discounted rewards!

- Run value iteration till convergence.
- This produces V^*, which in turn tells us how to act, namely following:

$$
\pi^*(s) = \arg \max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
$$

- Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)
Convergence: Intuition

- \(V^*(s) \) = expected sum of rewards accumulated starting from state \(s \), acting optimally for \(\infty \) steps
- \(V_H^*(s) \) = expected sum of rewards accumulated starting from state \(s \), acting optimally for \(H \) steps

- Additional reward collected over time steps \(H+1, H+2, \ldots \)

\[
\gamma^{H+1}R(s_{H+1}) + \gamma^{H+2}R(s_{H+2}) + \ldots \leq \gamma^{H+1}R_{\text{max}} + \gamma^{H+2}R_{\text{max}} + \ldots = \frac{\gamma^{H+1}}{1-\gamma}R_{\text{max}}
\]

goes to zero as \(H \) goes to infinity

Hence \(V_H^* \xrightarrow{H\to\infty} V^* \)

For simplicity of notation in the above it was assumed that rewards are always greater than or equal to zero. If rewards can be negative, a similar argument holds, using \(\max |R| \) and bounding from both sides.
Convergence and Contractions

- Define the max-norm: $||U|| = \max_s |U(s)|$

- Theorem: For any two approximations U and V

 $$||U_{i+1} - V_{i+1}|| \leq \gamma ||U_i - V_i||$$

 i.e., any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

- Theorem:

 $$||V_{i+1} - V_i|| < \epsilon, \Rightarrow ||V_{i+1} - V^*|| < 2\epsilon / (1 - \gamma)$$

 i.e. once the change in our approximation is small, it must also be close to correct
Exercise 1: Effect of Discount and Noise

(a) Prefer the close exit (+1), risking the cliff (-10)
(b) Prefer the close exit (+1), but avoiding the cliff (-10)
(c) Prefer the distant exit (+10), risking the cliff (-10)
(d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1) $\gamma = 0.1$, noise = 0.5
(2) $\gamma = 0.99$, noise = 0
(3) $\gamma = 0.99$, noise = 0.5
(4) $\gamma = 0.1$, noise = 0
Exercise 1 Solution

(a) Prefer close exit (+1), risking the cliff (-10)

(4) $\gamma = 0.1$, noise = 0
Exercise 1 Solution

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>-10.00</td>
<td>-10.00</td>
<td>-10.00</td>
<td>-10.00</td>
<td>-10.00</td>
</tr>
</tbody>
</table>

(b) Prefer close exit (+1), avoiding the cliff (-10)

(1) \(\gamma = 0.1 \), noise = 0.5
Exercise 1 Solution

(c) Prefer distant exit (+1), risking the cliff (-10)

(2) $\gamma = 0.99$, noise = 0
(d) Prefer distant exit (+1), avoid the cliff (-10)

(3) $\gamma = 0.99$, noise = 0.5
Optimal Control

\[\text{given an MDP } (S, A, T, R, \gamma, H) \]

find the optimal policy \(\pi^* \)

Outline

- Optimal Control
- Exact Methods:
 - Value Iteration
 - Policy Iteration
 - Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. We will consider continuous spaces later!
Recall value iteration iterates:

$$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V_i^*(s')]$$

Policy evaluation:

$$V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]$$

At convergence:

$$\forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]$$
Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct update to perform policy evaluation for this stochastic policy?

1. $V_{i+1}^\mu(s) \leftarrow \max_a \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

2. $V_{i+1}^\mu(s) \leftarrow \sum_{s'} \sum_a \mu(a|s) T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

3. $V_{i+1}^\mu(s) \leftarrow \sum_a \mu(a|s) \max_{s'} T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$
Policy Iteration

One iteration of policy iteration:

- Policy evaluation: with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge

\[
V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_{i}^{\pi_k}(s') \right]
\]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

\[
\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]
\]

- Repeat until policy converges

- At convergence: optimal policy; and converges faster under some conditions
Policy Evaluation Revisited

- **Idea 1:** modify Bellman updates

 \[
 V_0^\pi(s) = 0
 \]

 \[
 V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]
 \]

- **Idea 2:** it is just a linear system, solve with Matlab (or whatever)

 variables: \(V^\pi(s) \)

 constants: \(T, R \)

 \[
 \forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]
Policy Iteration Guarantees

Policy Iteration iterates over:

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge
 \[
 V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]
 \]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead
 \[
 \pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^{\pi_k}(s') \right]
 \]

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy and its value function are the optimal policy and the optimal value function!

Proof sketch:

1. **Guarantee to converge:** In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., \((\text{number actions})^{\text{number states}}\), we must be done and hence have converged.

2. **Optimal at convergence:** by definition of convergence, at convergence $\pi_{k+1}(s) = \pi_k(s)$ for all states s. This means $\forall s \ V_{\pi_k}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^{\pi_k}(s') \right]$. Hence V_{π_k} satisfies the Bellman equation, which means V_{π_k} is equal to the optimal value function V^*.

Optimal Control

=

given an MDP \((S, A, T, R, \delta, H)\)

find the optimal policy \(\pi^*\)

Exact Methods:

- Value Iteration
- Policy Iteration

 - Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. We will consider continuous spaces later!
Infinite Horizon Linear Program

- Recall, at value iteration convergence we have

\[\forall s \in S : \quad V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- LP formulation to find \(V^* \):

\[
\begin{align*}
\min_V & \quad \sum_s \mu_0(s)V(s) \\
\text{s.t.} & \quad \forall s \in S, \forall a \in A : \\
& \quad V(s) \geq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\end{align*}
\]

\(\mu_0 \) is a probability distribution over \(S \), with \(\mu_0(s) > 0 \) for all \(s \) in \(S \).

Theorem. \(V^* \) is the solution to the above LP.
Theorem Proof

Let F be the Bellman operator, i.e., $V_{i+1}^* = F(V_i)$. Then the LP can be written as:

$$\min_V \mu_0^\top V$$

s.t. $V \geq F(V)$

Monotonicity Property: If $U \geq V$ then $F(U) \geq F(V)$. Hence, if $V \geq F(V)$ then $F(V) \geq F(F(V))$, and by repeated application, $V \geq F(V) \geq F^2V \geq F^3V \geq \ldots \geq F^\infty V = V^*$. Any feasible solution to the LP must satisfy $V \geq F(V)$, and hence must satisfy $V \geq V^*$. Hence, assuming all entries in μ_0 are positive, V^* is the optimal solution to the LP.
Exercise 3

- How about:

$$\max_V \mu_0^\top V$$
$$\text{s.t. } V \leq F(V)$$
Dual Linear Program

\[
\max_{\lambda} \sum_{s \in S} \sum_{a \in A} \sum_{s' \in S} \lambda(s, a)T(s, a, s')R(s, a, s')
\]
\[\text{s.t. } \forall s' \in S : \sum_{a' \in A} \lambda(s', a') = \mu_0(s) + \gamma \sum_{s \in S} \sum_{a \in A} \lambda(s, a)T(s, a, s')\]

- **Interpretation:**
 - \[\lambda(s, a) = \sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a)\]
 - Equation 2: ensures that \(\lambda\) has the above meaning
 - Equation 1: maximize expected discounted sum of rewards

- **Optimal policy:** \(\pi^*(s) = \arg \max_a \lambda(s, a)\)
Optimal Control

=

given an MDP \((S, A, T, R, °, H)\)

find the optimal policy \(\pi^*\)

 Exact Methods:

- Value Iteration
- Policy Iteration
- Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. We will consider continuous spaces later!
Today and Forthcoming Lectures

- Optimal control: provides general computational approach to tackle control problems.
 - Dynamic programming / Value iteration
 - Exact methods on discrete state spaces (DONE!)
 - Discretization of continuous state spaces
 - Function approximation
 - Linear systems
 - LQR
 - Extensions to nonlinear settings:
 - Local linearization
 - Differential dynamic programming
 - Optimal Control through Nonlinear Optimization
 - Open-loop
 - Model Predictive Control
 - Examples: