Probability: Review

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
Why probability in robotics?

- Often state of robot and state of its environment are unknown and only noisy sensors available
 - Probability provides a framework to fuse sensory information
 → Result: probability distribution over possible states of robot and environment

- Dynamics is often stochastic, hence can’t optimize for a particular outcome, but only optimize to obtain a good distribution over outcomes
 - Probability provides a framework to reason in this setting
 → Ability to find good control policies for stochastic dynamics and environments
Example 1: Helicopter

- State: position, orientation, velocity, angular rate

- Sensors:
 - GPS: noisy estimate of position (sometimes also velocity)
 - Inertial sensing unit: noisy measurements from
 - 3-axis gyro [=angular rate sensor],
 - 3-axis accelerometer [=measures acceleration + gravity; e.g., measures (0,0,0) in free-fall],
 - 3-axis magnetometer

- Dynamics:
 - Noise from: wind, unmodeled dynamics in engine, servos, blades
Example 2: Mobile robot inside building

- **State:** position and heading

- **Sensors:**
 - Odometry (=sensing motion of actuators): e.g., wheel encoders
 - Laser range finder:
 - Measures time of flight of a laser beam between departure and return
 - Return is typically happening when hitting a surface that reflects the beam back to where it came from

- **Dynamics:**
 - Noise from: wheel slippage, unmodeled variation in floor
Axioms of Probability Theory

\[0 \leq \Pr(A) \leq 1 \]

\[\Pr(\Omega) = 1 \quad \Pr(\phi) = 0 \]

\[\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \]

\(\Pr(A) \) denotes probability that the outcome \(\omega \) is an element of the set of possible outcomes \(A \). \(A \) is often called an event. Same for \(B \).
\(\Omega \) is the set of all possible outcomes.
\(\phi \) is the empty set.
A Closer Look at Axiom 3

\[\Pr(\Omega) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \]
Using the Axioms

\[
\begin{aligned}
\Pr(A \cup (\Omega \setminus A)) &= \Pr(A) + \Pr(\Omega \setminus A) - \Pr(A \cap (\Omega \setminus A)) \\
\Pr(\Omega) &= \Pr(A) + \Pr(\Omega \setminus A) - \Pr(\phi) \\
1 &= \Pr(A) + \Pr(\Omega \setminus A) - 0 \\
\Pr(\Omega \setminus A) &= 1 - \Pr(A)
\end{aligned}
\]
Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i.
- $P(\cdot)$ is called probability mass function.
- *E.g., X models the outcome of a coin flip, $x_1 = \text{head}, x_2 = \text{tail}, P(x_1) = 0.5, P(x_2) = 0.5$*
Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
\Pr(x \in (a, b)) = \int_a^b p(x) \, dx
$$

- E.g.
Joint and Conditional Probability

- \(P(X=x \text{ and } Y=y) = P(x,y) \)

- If \(X \) and \(Y \) are independent then
 \[
P(x,y) = P(x) P(y)
 \]

- \(P(x \mid y) \) is the probability of \(x \) given \(y \)
 \[
P(x \mid y) = \frac{P(x,y)}{P(y)}
 \]
 \[
P(x,y) = P(x \mid y) P(y)
 \]

- If \(X \) and \(Y \) are independent then
 \[
P(x \mid y) = P(x)
 \]

- Same for probability densities, just \(P \rightarrow p \)
Law of Total Probability, Marginals

<table>
<thead>
<tr>
<th>Discrete case</th>
<th>Continuous case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum x P(x) = 1$</td>
<td>$\int p(x) , dx = 1$</td>
</tr>
<tr>
<td>$P(x) = \sum_y P(x, y)$</td>
<td>$p(x) = \int p(x, y) , dy$</td>
</tr>
<tr>
<td>$P(x) = \sum_y P(x \mid y) P(y)$</td>
<td>$p(x) = \int p(x \mid y) p(y) , dy$</td>
</tr>
</tbody>
</table>
Bayes Formula

\[
P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)
\]

\[\Rightarrow\]

\[
P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}
\]
Normalization

\[
P(x \mid y) = \frac{P(y \mid x) \cdot P(x)}{P(y)} = \eta \cdot P(y \mid x) \cdot P(x)
\]

\[
\eta = P(y)^{-1} = \frac{1}{\sum_x P(y \mid x)P(x)}
\]

Algorithm:

\[
\forall x : \text{aux}_{x \mid y} = P(y \mid x) \cdot P(x)
\]

\[
\eta = \frac{1}{\sum_x \text{aux}_{x \mid y}}
\]

\[
\forall x : P(x \mid y) = \eta \cdot \text{aux}_{x \mid y}
\]
Conditioning

- Law of total probability:

\[P(x) = \int P(x, z)dz \]

\[P(x) = \int P(x \mid z)P(z)dz \]

\[P(x \mid y) = \int P(x \mid y, z)P(z \mid y)dz \]
Bayes Rule with Background Knowledge

\[P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)} \]
Conditional Independence

\[P(x, y \mid z) = P(x \mid z)P(y \mid z) \]

equivalent to \[P(x \mid z) = P(x \mid z, y) \]

and \[P(y \mid z) = P(y \mid z, x) \]
Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{open} | z)$?
Causal vs. Diagnostic Reasoning

- $P(\text{open} | z)$ is diagnostic.
- $P(z | \text{open})$ is causal. \(\text{count frequencies!}\)
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(\text{open} | z) = \frac{P(z | \text{open})P(\text{open})}{P(z)}$$
Example

- \(P(z|\text{open}) = 0.6 \) \quad \text{and} \quad \(P(z|\neg\text{open}) = 0.3 \)
- \(P(\text{open}) = P(\neg\text{open}) = 0.5 \)

\[
P(\text{open} | z) = \frac{P(z|\text{open})P(\text{open})}{P(z)}
\]

\[
P(\text{open} | z) = \frac{P(z|\text{open})P(\text{open})}{P(z|\text{open})p(\text{open}) + P(z|\neg\text{open})p(\neg\text{open})}
\]

\[
P(\text{open} | z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67
\]

- \(z \) raises the probability that the door is open.
Combining Evidence

- Suppose our robot obtains another observation z_2.
- How can we integrate this new information?
- More generally, how can we estimate $P(x|z_1...z_n)$?
Recursive Bayesian Updating

\[
P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x, z_1, \ldots, z_{n-1}) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}
\]

Markov assumption: \(z_n \) is independent of \(z_1, \ldots, z_{n-1} \) if we know \(x \).

\[
P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}
= \eta P(z_n \mid x) P(x \mid z_1, \ldots, z_{n-1})
= \eta_{1\ldots n} \left(\prod_{i=1\ldots n} P(z_i \mid x) \right) P(x)
\]
Example: Second Measurement

- $P(z_2|\text{open}) = 0.5$ \hspace{1cm} $P(z_2|\neg\text{open}) = 0.6$

- $P(\text{open}|z_1) = \frac{2}{3}$

\[
P(\text{open} | z_2, z_1) = \frac{P(z_2 | \text{open}) P(\text{open} | z_1)}{P(z_2 | \text{open}) P(\text{open} | z_1) + P(z_2 | \neg\text{open}) P(\neg\text{open} | z_1)}
\]

\[
= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625
\]

- z_2 lowers the probability that the door is open.
A Typical Pitfall

- Two possible locations x_1 and x_2
- $P(x_1)=0.99$
- $P(z|x_2)=0.09$ $P(z|x_1)=0.07$