
Sampling-based Algorithms for Optimal Motion Planning

Sertac Karaman Emilio Frazzoli∗

Abstract

During the last decade, sampling-based path planning algorithms, such as Probabilistic
RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work
well in practice and possess theoretical guarantees such as probabilistic completeness. However,
little effort has been devoted to the formal analysis of the quality of the solution returned by
such algorithms, e.g., as a function of the number of samples. The purpose of this paper is
to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution re-
turned by stochastic sampling-based algorithms as the number of samples increases. A number
of negative results are provided, characterizing existing algorithms, e.g., showing that, under
mild technical conditions, the cost of the solution returned by broadly used sampling-based
algorithms converges almost surely to a non-optimal value. The main contribution of the paper
is the introduction of new algorithms, namely, PRM∗ and RRT∗, which are provably asymptot-
ically optimal, i.e., such that the cost of the returned solution converges almost surely to the
optimum. Moreover, it is shown that the computational complexity of the new algorithms is
within a constant factor of that of their probabilistically complete (but not asymptotically op-
timal) counterparts. The analysis in this paper hinges on novel connections between stochastic
sampling-based path planning algorithms and the theory of random geometric graphs.

Keywords: Motion planning, optimal path planning, sampling-based algorithms, random geometric graphs.

1 Introduction

The robotic motion planning problem has received a considerable amount of attention, especially
over the last decade, as robots started becoming a vital part of modern industry as well as our
daily life (Latombe, 1991; LaValle, 2006; Choset et al., 2005). Even though modern robots may
possess significant differences in sensing, actuation, size, workspace, application, etc., the problem
of navigating through a complex environment is embedded and essential in almost all robotics appli-
cations. Moreover, this problem is relevant to other disciplines such as verification, computational
biology, and computer animation (Latombe, 1999; Bhatia and Frazzoli, 2004; Branicky et al., 2006;
Cortes et al., 2007; Liu and Badler, 2003; Finn and Kavraki, 1999).

Informally speaking, given a robot with a description of its dynamics, a description of the
environment, an initial state, and a set of goal states, the motion planning problem is to find a
sequence of control inputs so as the drive the robot from its initial state to one of the goal states
while obeying the rules of the environment, e.g., not colliding with the surrounding obstacles. An
algorithm to address this problem is said to be complete if it terminates in finite time, returning a
valid solution if one exists, and failure otherwise.

Unfortunately, the problem is known to be very hard from the computational point of view.
For example, a basic version of the motion planning problem, called the generalized piano movers

∗The authors are with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technol-
ogy, Cambridge, MA. Manuscript to appear in the International Journal of Robotics Research.

1

problem, is PSPACE-hard (Reif, 1979). In fact, while complete planning algorithms exist (see, e.g.,
Lozano-Perez and Wesley, 1979; Schwartz and Sharir, 1983; Canny, 1988), their complexity makes
them unsuitable for practical applications.

Practical planners came around with the development of cell decomposition methods (Brooks
and Lozano-Perez, 1983) and potential fields (Khatib, 1986). These approaches, if properly im-
plemented, relaxed the completeness requirement to, for instance, resolution completeness, i.e.,
the ability to return a valid solution, if one exists, if the resolution parameter of the algorithm
is set fine enough. These planners demonstrated remarkable performance in accomplishing vari-
ous tasks in complex environments within reasonable time bounds (Ge and Cui, 2002). However,
their practical applications were mostly limited to state spaces with up to five dimensions, since
decomposition-based methods suffered from large number of cells, and potential field methods from
local minima (Koren and Borenstein, 1991). Important contributions towards broader applicabil-
ity of these methods include navigation functions (Rimon and Koditschek, 1992) and randomiza-
tion (Barraquand and Latombe, 1993).

The above methods rely on an explicit representation of the obstacles in the configuration
space, which is used directly to construct a solution. This may result in an excessive computational
burden in high dimensions, and in environments described by a large number of obstacles. Avoiding
such a representation is the main underlying idea leading to the development of sampling-based
algorithms (Kavraki and Latombe, 1994; Kavraki et al., 1996; LaValle and Kuffner, 2001). See
Lindemann and LaValle (2005) for a historical perspective. These algorithms proved to be very
effective for motion planning in high-dimensional spaces, and attracted significant attention over
the last decade, including very recent work (see, e.g., Prentice and Roy, 2009; Tedrake et al.,
2010; Luders et al., 2010; Berenson et al., 2008; Yershova and LaValle, 2008; Stilman et al., 2007;
Koyuncu et al., 2010). Instead of using an explicit representation of the environment, sampling-
based algorithms rely on a collision checking module, providing information about feasibility of
candidate trajectories, and connect a set of points sampled from the obstacle-free space in order
to build a graph (roadmap) of feasible trajectories. The roadmap is then used to construct the
solution to the original motion-planning problem.

Informally speaking, sampling-based methods provide large amounts of computational savings
by avoiding explicit construction of obstacles in the state space, as opposed to most complete motion
planning algorithms. Even though these algorithms are not complete, they provide probabilistic
completeness guarantees in the sense that the probability that the planner fails to return a solution,
if one exists, decays to zero as the number of samples approaches infinity (Barraquand et al., 1997)
(see also Hsu et al., 1997; Kavraki et al., 1998; Ladd and Kavraki, 2004). Moreover, the rate of decay
of the probability of failure is exponential, under the assumption that the environment has good
“visibility” properties (Barraquand et al., 1997). More recently, the empirical success of sampling-
based algorithms was argued to be strongly tied to the hypothesis that most practical robotic
applications, even though involving robots with many degrees of freedom, feature environments
with such good visibility properties (Hsu et al., 2006).

1.1 Sampling-Based Algorithms

Arguably, the most influential sampling-based motion planning algorithms to date include Prob-
abilistic RoadMaps (PRMs) (Kavraki et al., 1996, 1998) and Rapidly-exploring Random Trees
(RRTs) (Kuffner and LaValle, 2000; LaValle and Kuffner, 2001; LaValle, 2006). Even though the
idea of connecting points sampled randomly from the state space is essential in both approaches,
these two algorithms differ in the way that they construct a graph connecting these points.

The PRM algorithm and its variants are multiple-query methods that first construct a graph

2

(the roadmap), which represents a rich set of collision-free trajectories, and then answer queries by
computing a shortest path that connects the initial state with a final state through the roadmap.
The PRM algorithm has been reported to perform well in high-dimensional state spaces (Kavraki
et al., 1996). Furthermore, the PRM algorithm is probabilistically complete, and such that the
probability of failure decays to zero exponentially with the number of samples used in the construc-
tion of the roadmap (Kavraki et al., 1998). During the last two decades, the PRM algorithm has
been a focus of robotics research: several improvements were suggested by many authors and the
reasons to why it performs well in many practical cases were better understood (see, e.g., Branicky
et al., 2001; Hsu et al., 2006; Ladd and Kavraki, 2004, for some examples).

Even though multiple-query methods are valuable in highly structured environments, such as
factory floors, most online planning problems do not require multiple queries, since, for instance, the
robot moves from one environment to another, or the environment is not known a priori. Moreover,
in some applications, computing a roadmap a priori may be computationally challenging or even
infeasible. Tailored mainly for these applications, incremental sampling-based planning algorithms
such as RRTs have emerged as an online, single-query counterpart to PRMs (see, e.g., Kuffner and
LaValle, 2000; Hsu et al., 2002). The incremental nature of these algorithms avoids the necessity
to set the number of samples a priori, and returns a solution as soon as the set of trajectories built
by the algorithm is rich enough, enabling on-line implementations. Moreover, tree-based planners
do not require connecting two states exactly and more easily handle systems with differential
constraints. The RRT algorithm has been shown to be probabilistically complete (Kuffner and
LaValle, 2000), with an exponential rate of decay for the probability of failure (Frazzoli et al.,
2002). The basic version of the RRT algorithm has been extended in several directions, and found
many applications in the robotics domain and elsewhere (see, for instance, Frazzoli et al., 2002;
Bhatia and Frazzoli, 2004; Cortes et al., 2007; Branicky et al., 2006, 2003; Zucker et al., 2007). In
particular, RRTs have been shown to work effectively for systems with differential constraints and
nonlinear dynamics (LaValle and Kuffner, 2001; Frazzoli et al., 2002) as well as purely discrete or
hybrid systems (Branicky et al., 2003). Moreover, the RRT algorithm was demonstrated in major
robotics events on various experimental robotic platforms (Bruce and Veloso, 2003; Kuwata et al.,
2009; Teller et al., 2010; Shkolnik et al., 2011; Kuffner et al., 2002).

Other sampling-based planners of note include Expansive Space Trees (EST) (Hsu et al., 1997,
1999) and Sampling-based Roadmap of Trees (SRT) (Plaku et al., 2005). The latter combines the
main features of multiple-query algorithms such as PRM with those of single-query algorithms such
as RRT and EST.

1.2 Optimal Motion Planning

In most applications, the quality of the solution returned by a motion planning algorithm is impor-
tant. For example, one may be interested in solution paths of minimum cost, with respect to a given
cost functional, such as the length of a path, or the time required to execute it. The problem of
computing optimal motion plans has been proven in Canny and Reif (1987) to be very challenging
even in basic cases.

In the context of sampling-based motion planning algorithms, the importance of computing op-
timal solutions has been pointed out in early seminal papers (LaValle and Kuffner, 2001). However,
optimality properties of sampling-based motion planning algorithms have not been systematically
investigated, and most of the relevant work relies on heuristics. For example, in many field imple-
mentations of sampling-based planning algorithms (see, e.g., Kuwata et al., 2009), it is often the
case that since a feasible path is found quickly, additional available computation time is devoted
to improving the solution with heuristics until the solution is executed. Urmson and Simmons

3

(2003) proposed heuristics to bias the tree growth in RRT towards those regions that result in low-
cost solutions. They have also shown experimental results evaluating the performance of different
heuristics in terms of the quality of the solution returned. Ferguson and Stentz (2006) considered
running the RRT algorithm multiple times in order to progressively improve the quality of the
solution. They showed that each run of the algorithm results in a path with smaller cost, even
though the procedure is not guaranteed to converge to an optimal solution. Criteria for restarting
multiple RRT runs, in a different context, were also proposed in Wedge and Branicky (2008). A
more recent approach is the transition-based RRT (T-RRT) designed to combine rapid exploration
properties of the RRT with stochastic global optimization methods (Jaillet et al., 2010; Berenson
et al., 2011).

A different approach that also offers optimality guarantees is based on graph search algorithms,
such as A∗, applied over a finite discretization (based, e.g., on a grid, or a cell decomposition of the
configuration space) that is generated offline. Recently, these algorithms received a large amount of
attention. In particular, they were extended to run in an anytime fashion (Likhachev et al., 2004,
2008), deal with dynamic environments (Stentz, 1995; Likhachev et al., 2008), and handle systems
with differential constraints (Likhachev and Ferguson, 2009). These have also been successfully
demonstrated on various robotic platforms (Likhachev and Ferguson, 2009; Dolgov et al., 2009).
However, optimality guarantees of these algorithms are only ensured up to the grid resolution.
Moreover, since the number of grid points grows exponentially with the dimensionality of the state
space, so does the (worst-case) running time of these algorithms.

1.3 Statement of Contributions

To the best of the author’s knowledge, this paper provides the first systematic and thorough analysis
of optimality and complexity properties of the major paradigms for sampling-based path planning
algorithms, for multiple- or single-query applications, and introduces the first algorithms that are
both asymptotically optimal and computationally efficient, with respect to other algorithms in this
class. A summary of the contributions can be found below, and is shown in Table 1.

As a first set of results, it is proven that the standard PRM and RRT algorithms are not
asymptotically optimal, and that the “simplified” PRM algorithm is asymptotically optimal, but
computationally expensive. Moreover, it is shown that the k-nearest variant of the (simplified) PRM
algorithm is not necessarily probabilistically complete (e.g., it is not probabilistically complete for
k = 1), and is not asymptotically optimal for any fixed k.

In order to address the limitations of sampling-based path planning algorithms available in the
literature, new algorithms are proposed, i.e., PRM∗, RRG, and RRT∗, and proven to be probabilis-
tically complete, asymptotically optimal, and computationally efficient. Of these, PRM∗ is a batch
variable-radius PRM, applicable to multiple-query problems, in which the radius is scaled with the
number of samples in a way that provably ensures both asymptotic optimality and computational
efficiency. RRG is an incremental algorithm that builds a connected roadmap, providing similar
performance to PRM∗ in a single-query setting, and in an anytime fashion (i.e., a first solution is
provided quickly, and monotonically improved if more computation time is available). The RRT∗ al-
gorithm is a variant of RRG that incrementally builds a tree, providing anytime solutions, provably
converging to an optimal solution, with minimal computational and memory requirements.

In this paper, the problem of planning a path through a connected bounded subset of a d-
dimensional Euclidean space is considered. As in the early seminal papers on incremental sampling-
based motion planning algorithms such as Kuffner and LaValle (2000), no differential constraints are
considered (i.e., the focus of the paper is on path planning problems), but our methods can be easily
extended to planning in configuration spaces and applied to several practical problems of interest.

4

Table 1: Summary of results. Time and space complexity are expressed as a function of the number
of samples n, for a fixed environment.

Algorithm Probabilistic
Completeness

Asymptotic
Optimality

Monotone
Convergence

Time Complexity Space
ComplexityProcessing Query

E
x
is
ti
n
g

A
lg
o
ri
th

m
s PRM Yes No Yes O(n log n) O(n log n) O(n)

sPRM Yes Yes Yes O(n2) O(n2) O(n2)

k-sPRM Conditional No No O(n log n) O(n log n) O(n)

RRT Yes No Yes O(n log n) O(n) O(n)

P
ro

p
o
se

d
A
lg
o
ri
th

m
s

PRM∗
Yes Yes No O(n log n) O(n log n) O(n log n)

k-PRM∗

RRG
Yes Yes Yes O(n log n) O(n log n) O(n log n)

k-RRG

RRT∗
Yes Yes Yes O(n log n) O(n) O(n)

k-RRT∗

The extension to systems with differential constraints is deferred to future work (see Karaman and
Frazzoli (2010a) for preliminary results).

Finally, the results presented in this article, and the techniques used in the analysis of the algo-
rithms, hinge on novel connections established between sampling-based path planning algorithms
in robotics and the theory of random geometric graphs, which may be of independent interest.

A preliminary version of this article has appeared in Karaman and Frazzoli (2010b). Since
then a variety of new algorithms based on the the ideas behind PRM∗, RRG, and RRT∗ have been
proposed in the literature. For instance, a probabilistically complete and probabilistically sound
algorithm for solving a class of differential games has appeared in Karaman and Frazzoli (2010c).
Algorithms based on the RRG were used to solve belief-space planning problems in Bry and Roy
(2011). The RRT∗ algorithm was used for anytime motion planning in Karaman et al. (2011),
where it was also demonstrated experimentally on a full-size robotic fork truck. In Alterovitz et al.
(2011), the analysis given in Karaman and Frazzoli (2010b) was used to guarantee computational
efficiency and asymptotic optimality of a new algorithm that can trade off between exploration and
optimality during planning.

A software library implementing the new algorithms introduced in this paper has been released
as open-source software by the authors, and is currently available at http://ares.lids.mit.edu/
software/

1.4 Paper Organization

This paper is organized as follows. Section 2 lays the ground in terms of notation and problem for-
mulation. Section 3 is devoted to the discussion of the algorithms that are considered in the paper:
first, the main paradigms for sampling-based motion planning algorithms available in the literature
are presented, together with their main variants. Then, the new proposed algorithms are presented
and motivated. In Section 4 the properties of these algorithms are rigorously analyzed, formally
establishing their probabilistic completeness and asymptotically optimality (or lack thereof), as
well as their computational complexity as a function of the number of samples and of the number
of obstacles in the environment. Experimental results are presented in Section 5, to illustrate and

5

http://ares.lids.mit.edu/software/
http://ares.lids.mit.edu/software/

validate the theoretical findings. Finally, Section 6 contains conclusions and perspectives for future
work. In order not to excessively disrupt the flow of the presentation, a summary of notation used
throughout the paper, as well as lengthy proofs of important results are presented in the Appendix.

2 Preliminary Material

This section contains some preliminary material that will be necessary for the discussion in the
remainder of the paper. Namely, the problems of feasible and optimal motion planning is intro-
duced, and some important results from the theory of random geometric graphs are summarized.
The notation used in the paper is summarized in Appendix A.

2.1 Problem Formulation

In this section, the feasible and optimal path planning problems are formalized.
Let X = (0, 1)d be the configuration space, where d ∈ N, d ≥ 2. Let Xobs be the obstacle region,

such that X \ Xobs is an open set, and denote the obstacle-free space as Xfree = cl(X \ Xobs), where
cl(·) denotes the closure of a set. The initial condition xinit is an element of Xfree, and the goal region
Xgoal is an open subset of Xfree. A path planning problem is defined by a triplet (Xfree, xinit,Xgoal).

Let σ : [0, 1]→ Rd; the total variation of σ is defined as

TV(σ) = sup
{n∈N,0=τ0<τ1<···<τn=s}

n∑
i=1

|σ(τi)− σ(τi−1)|.

A function σ with TV(σ) <∞ is said to have bounded variation.

Definition 1 (Path) A function σ : [0, 1]→ Rd of bounded variation is called a

• Path, if it is continuous;

• Collision-free path, if it is a path, and σ(τ) ∈ Xfree, for all τ ∈ [0, 1];

• Feasible path, if it is a collision-free path, σ(0) = xinit, and σ(1) ∈ cl(Xgoal).

The total variation of a path is essentially its length, i.e., the Euclidean distance traversed by the
path in Rd. The feasibility problem of path planning is to find a feasible path, if one exists, and
report failure otherwise:

Problem 2 (Feasible path planning) Given a path planning problem (Xfree, xinit,Xgoal), find a
feasible path σ : [0, 1] → Xfree such that σ(0) = xinit and σ(1) ∈ cl(Xgoal), if one exists. If no such
path exists, report failure.

Let Σ denote the set of all paths, and Σfree the set of all collision-free paths. Given two paths
σ1, σ2 ∈ Σ, such that σ1(1) = σ2(0), let σ1|σ2 ∈ Σ denote their concatenation, i.e., (σ1|σ2)(τ) :=
σ1(2 τ) for all τ ∈ [0, 1/2] and (σ1|σ2)(τ) := σ2(2 τ − 1) for all τ ∈ (1/2, 1]. Both Σ and Σfree

are closed under concatenation. Let c : Σ → R≥0 be a function, called the cost function, which
assigns a strictly positive cost to all non-trivial collision-free paths (i.e., c(σ) = 0 if and only
if σ(τ) = σ(0),∀τ ∈ [0, 1]). The cost function is assumed to be monotonic, in the sense that
for all σ1, σ2 ∈ Σ, c(σ1) ≤ c(σ1|σ2), and bounded, in the sense that there exists kc such that
c(σ) ≤ kcTV(σ), ∀σ ∈ Σ.

The optimality problem of path planning asks for finding a feasible path with minimum cost:

6

Problem 3 (Optimal path planning) Given a path planning problem (Xfree, xinit,Xgoal) and a
cost function c : Σ→ R≥0, find a feasible path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}. If no
such path exists, report failure.

2.2 Random Geometric Graphs

The objective of this section is to summarize some of the results on random geometric graphs that
are available in the literature, and are relevant to the analysis of sampling-based path planning
algorithms. In the remainder of this article, several connections are made between the theory of
random geometric graphs and path-planning algorithms in robotics, providing insight on a number
of issues, including, e.g., probabilistic completeness and asymptotic optimality, as well as techni-
cal tools to analyze the algorithms and establish their properties. In fact, it turns out that the
data structures constructed by most sampling-based motion planning algorithms in the literature
coincide, in the absence of obstacles, with standard models of random geometric graphs.

Random geometric graphs are in general defined as stochastic collections of points in a met-
ric space, connected pairwise by edges if certain conditions (e.g., on the distance between the
points) are satisfied. Such objects have been studied since their introduction by Gilbert (1961);
see, e.g., Penrose (2003) and Balister et al. (2009a) for an overview of recent results. From the the-
oretical point of view, the study of random geometric graphs makes a connection between random
graphs (Bollobás, 2001) and percolation theory (Bollobás and Riordan, 2006). On the application
side, in recent years, random geometric graphs have attracted significant attention as models of ad
hoc wireless networks (Gupta and Kumar, 1998, 2000).

Much of the literature on random geometric graphs deals with infinite graphs defined on
unbounded domains, with vertices generated as a homogeneous Poisson point process. Recall
that a Poisson random variable of parameter λ ∈ R>0 is an integer-valued random variable
Poisson(λ) : Ω → N0 such that P(Poisson(λ) = k) = e−λλk/k!. A homogeneous Poisson point
process of intensity λ on Rd is a random countable set of points Pdλ ⊂ Rd such that, for any disjoint
measurable sets S1,S2 ⊂ Rd, S1 ∩ S2 = ∅, the numbers of points of Pdλ in each set are independent
Poisson variables, i.e., card

(
Pdλ ∩ S1

)
= Poisson(µ(S1)λ) and card

(
Pdλ ∩ S2

)
= Poisson(µ(S2)λ). In

particular, the intensity of a homogeneous Poisson point process can be interpreted as the expected
number of points generated in the unit cube, i.e., E(card

(
Pdλ ∩ (0, 1)d

)
) = E(Poisson(λ)) = λ.

Perhaps the most studied model of infinite random geometric graph is the following, introduced
in Gilbert (1961), and often called Gilbert’s disc model, or Boolean model:

Definition 4 (Infinite random r-disc graph) Let λ, r ∈ R>0, and d ∈ N. An infinite random
r-disc graph Gdisc

∞ (λ, r) in d dimensions is an infinite graph with vertices {Xi}i∈N = Pdλ, and such
that (Xi, Xj), i, j ∈ N, is an edge if and only if ‖Xi −Xj‖ < r.

A fundamental issue in infinite random graphs is whether the graph contains an infinite con-
nected component, with non-zero probability. If it does, the random graph is said to percolate.
Percolation is an important paradigm in statistical physics, with many applications in disparate
fields such as material science, epidemiology, and microchip manufacturing, just to name a few (see,
e.g., Sahimi, 1994).

Consider the infinite random r-disc graph, for r = 1, i.e., Gdisc
∞ (λ, 1), and assume, without loss

of generality, that the origin is one of the vertices of this graph. Let pk(λ) denote the probability
that the connected component of Gdisc

∞ (λ, 1) containing the origin contains k vertices, and define
p∞(λ) as p∞(λ) = 1 −

∑∞
k=1 pk(λ). The function p∞ : λ → p∞(λ) is monotone, and p∞(0) = 0

and limλ→∞ p∞(λ) = 1 (Penrose, 2003). A key result in percolation theory is that there exists a
non-zero critical intensity λc defined as λc := sup{λ : p∞(λ) = 0}. In other words, for all λ > λc,

7

there is a non-zero probability that the origin is in an infinite connected component of Gdisc
∞ (λ, 1);

moreover, under these conditions, the graph has precisely one infinite connected component, almost
surely (Meester and Roy, 1996). The function p∞ is continuous for all λ 6= λc: in other words,
the graph undergoes a phase transition at the critical density λc, often also called the continuum
percolation threshold (Penrose, 2003). The exact value of λc is not known; Meester and Roy
provide 0.696 < λc < 3.372 for d = 2 (Meester and Roy, 1996), and simulations suggest that
λc ≈ 1.44 (Quintanilla et al., 2000).

For many applications, including the ones in this article, models of finite graphs on a bounded
domain are more relevant. Penrose introduced the following model (Penrose, 2003):

Definition 5 (Random r-disc graph) Let r ∈ R>0, and n, d ∈ N. A random r-disc graph
Gdisc(n, r) in d dimensions is a graph whose n vertices, {X1, X2, . . . , Xn}, are independent, uni-
formly distributed random variables in (0, 1)d, and such that (Xi, Xj), i, j ∈ {1, . . . , n}, i 6= j, is
an edge if and only if ‖Xi −Xj‖ < r.

For finite random geometric graph models, one is typically interested in whether a random geometric
graph possesses certain properties asymptotically as n increases. Since the number of vertices is
finite in random graphs, percolation can not be defined easily. In this case, percolation is studied
in terms of the scaling of the number of vertices in the largest connected component with respect
to the total number of vertices; in particular, a finite random geometric graph is said to percolate if
it contains a “giant” connected component containing at least a constant fraction of all the nodes.
As in the infinite case, percolation in finite random geometric graphs is often a phase transition
phenomenon. In the case of random r-disc graphs,

Theorem 6 (Percolation of random r-disc graphs (Penrose, 2003)) Let Gdisc(n, r) be a ran-
dom r-disc graph in d ≥ 2 dimensions, and let Nmax(Gdisc(n, r)) be the number of vertices in its
largest connected component. Then, almost surely,

lim
n→∞

Nmax(Gdisc(n, rn))

n
= 0, if rn < (λc/n)1/d ,

and

lim
n→∞

Nmax(Gdisc(n, r))

n
> 0, if rn > (λc/n)1/d ,

where λc is the continuum percolation threshold.

A random r-disc graph with limn→∞ nr
d
n = λ ∈ (0,∞) is said to operate in the thermodynamic

limit. It is said to be in subcritical regime when λ < λc and supercritical regime when λ > λc.
Another property of interest is connectivity. Clearly, connectivity implies percolation. Interest-

ingly, emergence of connectivity in random geometric graphs is a phase transition phenomenon, as
percolation. The following result is available in the literature:

Theorem 7 (Connectivity of random r-disc graphs (Penrose, 2003)) Let Gdisc(n, r) be a
random r-disc graph in d dimensions. Then,

lim
n→∞

P
(
{Gdisc(n, r) is connected }

)
=

{
1, if ζdr

d > log(n)/n,

0, if ζdr
d < log(n)/n,

where ζd is the volume of the unit ball in d dimensions.

8

Another model of random geometric graphs considers edges between k nearest neighbors. (Note
that there are no ties, almost surely.) Both infinite and finite models are considered, as follows.

Definition 8 (Infinite random k-nearest neighbor graph) Let λ ∈ R>0, and d, k ∈ N. An
infinite random k-nearest neighbor graph Gnear

∞ (λ, k) in d dimensions is an infinite graph with
vertices {Xi}i∈N = Pdλ, and such that (Xi, Xj), i, j ∈ N, is an edge if Xj is among the k nearest
neighbors of Xi, or if Xi is among the k nearest neighbors of Xj.

Definition 9 (Random k-nearest neighbor graph) Let d, k, n ∈ N. A random k-nearest neigh-
bor graph Gnear(n, k) in d dimensions is a graph whose n vertices, {X1, X2, . . . , Xn}, are indepen-
dent, uniformly distributed random variables in (0, 1)d, and such that (Xi, Xj), i, j ∈ {1, . . . , n},
i 6= j, is an edge if Xj is among the k nearest neighbors of Xi, or if Xi is among the k nearest
neighbors of Xj.

Percolation and connectivity for random k-nearest neighbor graphs exhibit phase transition
phenomena, as in the random r-disc case. However, the results available in the literature are more
limited. Results on percolation are only available for infinite graphs:

Theorem 10 (Percolation in infinite random k-nearest graphs (Balister et al., 2009a))
Let Gnear

∞ (λ, k) be an infinite random k-nearest neighbor graph in d ≥ 2 dimensions. Then, there
exists a constant kp

d > 0 such that

P ({Gnear
∞ (1, k) has an infinite component }) =

{
1, if k ≥ kp

d ,

0, if k < kp
d .

The value of kp
d is not known. However, it is believed that kp

2 = 3, and kp
d = 2 for all d ≥ 3 (Balister

et al., 2009a). It is known that percolation does not occur for k = 1 (Balister et al., 2009a).
Regarding connectivity of random k-nearest neighbor graphs, the only available results in the

literature are not stated in terms of a given number of vertices: rather, the results are stated
in terms of the restriction of a homogeneous Poisson point process to the unit cube. In other
words, the vertices of the graph are obtained as {X1, X2, . . .} = Pdλ ∩ (0, 1)d. This is equivalent to
setting the number of vertices as a Poisson random variable of parameter n, and then sampling the
Poisson(n) vertices independently and uniformly in (0, 1)d:

Lemma 11 (Stoyan et al. (1995)) Let {Xi}i∈N be a sequence of points drawn independently
and uniformly from S ⊆ X . Let Poisson(n) be a Poisson random variable with parameter n.
Then, {X1, X2, . . . , XPoisson(n)} is the restriction to S of a homogeneous Poisson point process with
intensity n/µ(S).

The main advantage in using such a model to generate the vertices of a random geometric graph
is independence: in the Poisson case, the numbers of points in any two disjoint measurable regions
S1,S2 ⊂ [0, 1]d, S1 ∩ S2 = ∅, are independent Poisson random variables, with mean µ(S1)λ and
µ(S2)λ, respectively. These two random variables would not be independent if the total number
of vertices were fixed a priori (also called a binomial point process). With some abuse of notation,
such a random geometric graph model will be indicated as Gnear(Poisson(n), k).

Theorem 12 (Connectivity of random k-nearest graphs (Balister et al., 2009b; Xue and Kumar, 2004))
Let Gnear(Poisson(n), k) indicate a k-nearest neighbor graph model in d = 2 dimensions, such that

9

its vertices are generated using a Poisson point process of intensity n. Then, there exists a constant
kc

2 > 0 such that

lim
n→∞

P ({Gnear(Poisson(n), bk log(n)c) is connected }) =

{
1, if k ≥ kc

2,

0, if k < kc
2.

The value of kc
2 is not known; the current best estimate is 0.3043 ≤ kc

2 ≤ 0.5139 (Balister et al.,
2005).

Finally, the last model of random geometric graph that will be relevant for the analysis of the
algorithms in this paper is the following:

Definition 13 (Online nearest neighbor graph) Let d, n ∈ N. An online nearest neighbor
graph GONN(n) in d dimensions is a graph whose n vertices, (X1, X2, . . . , Xn), are independent,
uniformly distributed random variables in (0, 1)d, and such that (Xi, Xj), i, j ∈ {1, . . . , n}, j > 1,
is an edge if and only if ‖Xi −Xj‖ = min1≤k<j ‖Xk −Xj‖.

Clearly, the online nearest neighbor graph is connected by construction, and trivially percolates.
Recent results for this random geometric graph model include estimates of the total power-weighted
edge length and an analysis of the vertex degree distribution, see, e.g., Wade (2009).

3 Algorithms

In this section, a number of sampling-based motion planning algorithms are introduced. First, some
common primitive procedures are defined. Then, the PRM and the RRT algorithms are outlined, as
they are representative of the major paradigms for sampling-based motion planning algorithms in
the literature. Then, new algorithms, namely PRM∗ and RRT∗, are introduced, as asymptotically
optimal and computationally efficient versions of their “standard” counterparts.

3.1 Primitive Procedures

Before discussing the algorithms, it is convenient to introduce the primitive procedures that they
rely on.

Sampling: Let Sample : ω 7→ {Samplei(ω)}i∈N0 ⊂ X be a map from Ω to sequences of points
in X , such that the random variables Samplei, i ∈ N0, are independent and identically dis-
tributed (i.i.d.). For simplicity, the samples are assumed to be drawn from a uniform distribu-
tion, even though results extend naturally to any absolutely continuous distribution with density
bounded away from zero on X . It is convenient to consider another map, SampleFree : ω 7→
{SampleFreei(ω)}i∈N0 ⊂ Xfree that returns sequences of i.i.d. samples from Xfree. For each ω ∈ Ω,
the sequence {SampleFreei(ω)}i∈N0 is the subsequence of {Samplei(ω)}i∈N0 containing only the
samples in Xfree, i.e., {SampleFreei(ω)}i∈N0 = {Samplei(ω)}i∈N0 ∩ Xfree.

Nearest Neighbor: Given a graph G = (V,E), where V ⊂ X , a point x ∈ X , the function
Nearest : (G, x) 7→ v ∈ V returns the vertex in V that is “closest” to x in terms of a given distance
function. In this paper, the Euclidean distance is used (see, e.g., LaValle and Kuffner (2001) for
alternative choices), and hence

Nearest(G = (V,E), x) := argminv∈V ‖x− v‖.

10

A set-valued version of this function is also considered, kNearest : (G, x, k) 7→ {v1, v2, . . . , vk},
returning the k vertices in V that are nearest to x, according to the same distance function as
above. (By convention, if the cardinality of V is less than k, then the function returns V .)

Near Vertices: Given a graph G = (V,E), where V ⊂ X , a point x ∈ X , and a positive real
number r ∈ R>0, the function Near : (G, x, r) 7→ V ′ ⊆ V returns the vertices in V that are
contained in a ball of radius r centered at x, i.e.,

Near(G = (V,E), x, r) := {v ∈ V : v ∈ Bx,r} .

Steering: Given two points x, y ∈ X , the function Steer : (x, y) 7→ z returns a point z ∈ X
such that z is “closer” to y than x is. Throughout the paper, the point z returned by the function
Steer will be such that z minimizes ‖z − y‖ while at the same time maintaining ‖z − x‖ ≤ η, for
a prespecified η > 0,1 i.e.,

Steer(x, y) := argminz∈Bx,η‖z − y‖.

Collision Test: Given two points x, x′ ∈ X , the Boolean function CollisionFree(x, x′) returns
True if the line segment between x and x′ lies in Xfree, i.e., [x, x′] ⊂ Xfree, and False otherwise.

3.2 Existing Algorithms

Next, some of the sampling-based algorithms available in the literature are outlined. For con-
venience, inputs and outputs of the algorithms are not shown explicitly, but are as follows. All
algorithms take as input a path planning problem (Xfree, xinit,Xgoal), an integer n ∈ N, and a cost
function c : Σ→ R≥0, if appropriate. These inputs are shared with functions and procedures called
within the algorithms. All algorithms return a graph G = (V,E), where V ⊂ Xfree, card (V) ≤ n+1,
and E ∈ V × V. The solution of the path planning problem can be easily computed from such a
graph, e.g., using standard shortest-path algorithms.

Probabilistic RoadMaps (PRM): The Probabilistic RoadMaps algorithm is primarily aimed
at multi-query applications. In its basic version, it consists of a pre-processing phase, in which
a roadmap is constructed by attempting connections among n randomly-sampled points in Xfree,
and a query phase, in which paths connecting initial and final conditions through the roadmap
are sought. “Expansion” heuristics for enhancing the roadmap’s connectivity are available in the
literature (Kavraki et al., 1996) but have no impact on the analysis in this paper, and will not be
discussed.

The pre-processing phase, outlined in Algorithm 1, begins with an empty graph. At each
iteration, a point xrand ∈ Xfree is sampled, and added to the vertex set V . Then, connections are
attempted between xrand and other vertices in V within a ball of radius r centered at xrand, in
order of increasing distance from xrand, using a simple local planner (e.g., straight-line connection).
Successful (i.e., collision-free) connections result in the addition of a new edge to the edge set E.
To avoid unnecessary computations (since the focus of the algorithm is establishing connectivity),
connections between xrand and vertices in the same connected component are avoided. Hence, the
roadmap constructed by PRM is a forest, i.e., a collection of trees.

1This steering procedure is used widely in the robotics literature, since its introduction in Kuffner and LaValle
(2000). Our results also extend to the Rapidly-exploring Random Dense Trees (see, e.g., LaValle, 2006), which are
slightly modified versions of the RRTs that do not require tuning any prespecified parameters such as η in this case.

11

Algorithm 1: PRM (preprocessing phase)

1 V ← ∅; E ← ∅;
2 for i = 0, . . . , n do
3 xrand ← SampleFreei;
4 U ← Near(G = (V,E), xrand, r) ;
5 V ← V ∪ {xrand};
6 foreach u ∈ U , in order of increasing ‖u− xrand‖, do
7 if xrand and u are not in the same connected component of G = (V,E) then
8 if CollisionFree(xrand, u) then E ← E ∪ {(xrand, u), (u, xrand)};

9 return G = (V,E);

Analysis results in the literature are only available for a “simplified” version of the PRM algo-
rithm (Kavraki et al., 1998), referred to as sPRM in this paper. The simplified algorithm initializes
the vertex set with the initial condition, samples n points from Xfree, and then attempts to connect
points within a distance r, i.e., using a similar logic as PRM, with the difference that connections
between vertices in the same connected component are allowed. Notice that in the absence of
obstacles, i.e., if Xfree = X , the roadmap constructed in this way is a random r-disc graph.

Algorithm 2: sPRM

1 V ← {xinit} ∪ {SampleFreei}i=1,...,n; E ← ∅;
2 foreach v ∈ V do
3 U ← Near(G = (V,E), v, r) \ {v};
4 foreach u ∈ U do
5 if CollisionFree(v, u) then E ← E ∪ {(v, u), (u, v)}

6 return G = (V,E);

Practical implementation of the (s)PRM algorithm have often considered different choices for
the set U of vertices to which connections are attempted (i.e., line 4 in Algorithm 1, and line 3 in
Algorithm 2). In particular, the following criteria are of particular interest:

• k-Nearest (s)PRM: Choose the nearest k neighbors to the vertex under consideration,
for a given k (a typical value is reported as k = 15 (LaValle, 2006)). In other words, U ←
kNearest(G = (V,E), xrand, k) in line 4 of Algorithm 1 and U ← kNearest(G = (V,E), v, k)\
{v} in line 3 of Algorithm 2. The roadmap constructed in this way in an obstacle-free
environment is a random k-nearest graph.

• Bounded-degree (s)PRM: For any fixed r, the average number of connections attempted
at each iteration is proportional to the number of vertices in V , and can result in an excessive
computational burden for large n. To address this, an upper bound k can be imposed on
the cardinality of the set U (a typical value is reported as k = 20 (LaValle, 2006)). In
other words, U ← Near(G, xrand, r) ∩ kNearest(G, xrand, k) in line 4 of Algorithm 1, and
U ← (Near(G, v, r) ∩ kNearest(G, v, k)) \ {v} in line 3 of Algorithm 2.

• Variable-radius (s)PRM: Another option to maintain the degree of the vertices in the
roadmap small is to make the connection radius r a function of n, as opposed to a fixed

12

parameter. However, there are no clear indications in the literature on the appropriate func-
tional relationship between r and n.

Rapidly-exploring Random Trees (RRT): The Rapidly-exploring Random Tree algorithm
is primarily aimed at single-query applications. In its basic version, the algorithm incrementally
builds a tree of feasible trajectories, rooted at the initial condition. An outline of the algorithm is
given in Algorithm 3. The algorithm is initialized with a graph that includes the initial state as its
single vertex, and no edges. At each iteration, a point xrand ∈ Xfree is sampled. An attempt is made
to connect the nearest vertex v ∈ V in the tree to the new sample. If such a connection is successful,
xrand is added to the vertex set, and (v, xrand) is added to the edge set. In the original version
of this algorithm, the iteration is stopped as soon as the tree contains a node in the goal region.
In this paper, for consistency with the other algorithms (e.g., PRM), the iteration is performed n
times. In the absence of obstacles, i.e., if Xfree = X , the tree constructed in this way is an online
nearest neighbor graph.

Algorithm 3: RRT

1 V ← {xinit}; E ← ∅;
2 for i = 1, . . . , n do
3 xrand ← SampleFreei;
4 xnearest ← Nearest(G = (V,E), xrand);
5 xnew ← Steer(xnearest, xrand) ;
6 if ObtacleFree(xnearest, xnew) then
7 V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew)} ;

8 return G = (V,E);

A variant of RRT consists of growing two trees, respectively rooted at the initial state, and
at a state in the goal set. To highlight the fact that the sampling procedure must not necessarily
be stochastic, the algorithm is also referred to as Rapidly-exploring Dense Trees (RDT) (LaValle,
2006).

3.3 Proposed algorithms

In this section, the new algorithms considered in this paper are presented. These algorithms
are proposed as asymptotically optimal and computationally efficient versions of their “standard”
counterparts, as will be made clear through the analysis in the next section. Input and output data
are the same as in the algorithms introduced in Section 3.2.

Optimal Probabilistic RoadMaps (PRM∗): In the standard PRM algorithm, as well as in its
simplified “batch” version considered in this paper, connections are attempted between roadmap
vertices that are within a fixed radius r from one another. The constant r is thus a parameter of
PRM. The proposed algorithm—shown in Algorithm 4—is similar to sPRM, with the only difference
being that the connection radius r is chosen as a function of n, i.e., r = r(n) := γPRM(log(n)/n)1/d,

where γPRM > γ∗PRM = 2(1 + 1/d)1/d (µ(Xfree)/ζd)
1/d, d is the dimension of the space X , µ(Xfree)

denotes the Lebesgue measure (i.e., volume) of the obstacle-free space, and ζd is the volume of the
unit ball in the d-dimensional Euclidean space. Clearly, the connection radius decreases with the
number of samples. The rate of decay is such that the average number of connections attempted
from a roadmap vertex is proportional to log(n).

13

Note that in the discussion of variable-radius PRM in LaValle (2006), it is suggested that the
radius be chosen as a function of sample dispersion. (Recall that the dispersion of a point set
contained in a bounded set S ⊂ Rd is the radius of the largest empty ball centered in S.) Indeed,
the dispersion of a set of n random points sampled uniformly and independently in a bounded set
is O((log(n)/n)1/d) (Niederreiter, 1992), which is precisely the rate at which the connection radius
is scaled in the PRM∗ algorithm.

Algorithm 4: PRM∗

1 V ← {xinit} ∪ {SampleFreei}i=1,...,n; E ← ∅;
2 foreach v ∈ V do

3 U ← Near(G = (V,E), v, γPRM(log(n)/n)1/d) \ {v};
4 foreach u ∈ U do
5 if CollisionFree(v, u) then E ← E ∪ {(v, u), (u, v)}

6 return G = (V,E);

Another version of the algorithm, called k-nearest PRM∗, can be considered, motivated by the
k-nearest PRM implementation previously mentioned, whereby the number k of nearest neighbors
to be considered is not a constant, but is chosen as a function of the cardinality of the roadmap n.
More precisely, k(n) := kPRM log(n), where kPRM > k∗PRM = e (1 + 1/d), and U ← kNearest(G =
(V,E), v, kPRM log(n)) \ {v} in line 3 of Algorithm 4.

Note that k∗PRM is a constant that only depends on d, and does not otherwise depend on the
problem instance, unlike γ∗PRM. Moreover, kPRM = 2e is a valid choice for all problem instances.

Rapidly-exploring Random Graph (RRG): The Rapidly-exploring Random Graph algo-
rithm was introduced as an incremental (as opposed to batch) algorithm to build a connected
roadmap, possibly containing cycles. The RRG algorithm is similar to RRT in that it first at-
tempts to connect the nearest node to the new sample. If the connection attempt is successful, the
new node is added to the vertex set. However, RRG has the following difference. Every time a new
point xnew is added to the vertex set V , then connections are attempted from all other vertices in
V that are within a ball of radius r(card (V)) = min{γRRG(log(card (V))/ card (V))1/d, η}, where
η is the constant appearing in the definition of the local steering function, and γRRG > γ∗RRG =

2 (1 + 1/d)1/d (µ(Xfree)/ζd)
1/d. For each successful connection, a new edge is added to the edge set

E. Hence, it is clear that, for the same sampling sequence, the RRT graph (a directed tree) is a
subgraph of the RRG graph (an undirected graph, possibly containing cycles). In particular, the
two graphs share the same vertex set, and the edge set of the RRT graph is a subset of that of the
RRG graph.

Another version of the algorithm, called k-nearest RRG, can be considered, in which connections
are sought to k nearest neighbors, with k = k(card (V)) := kRRG log(card (V)), where kRRG >
k∗RRG = e (1 + 1/d), and Xnear ← kNearest(G = (V,E), xnew, kRRG log(card (V))), in line 7 of
Algorithm 5.

Note that k∗RRG is a constant that depends only on d, and does not depend otherwise on the
problem instance, unlike γ∗RRG. Moreover, kRRG = 2e is a valid choice for all problem instances.

Optimal RRT (RRT∗): Maintaining a tree structure rather than a graph is not only economical
in terms of memory requirements, but may also be advantageous in some applications, due to, for
instance, relatively easy extensions to motion planning problems with differential constraints, or

14

Algorithm 5: RRG

1 V ← {xinit}; E ← ∅;
2 for i = 1, . . . , n do
3 xrand ← SampleFreei;
4 xnearest ← Nearest(G = (V,E), xrand);
5 xnew ← Steer(xnearest, xrand) ;
6 if ObtacleFree(xnearest, xnew) then

7 Xnear ← Near(G = (V,E), xnew,min{γRRG(log(card (V))/ card (V))1/d, η}) ;
8 V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew), (xnew, xnearest)} ;
9 foreach xnear ∈ Xnear do

10 if CollisionFree(xnear, xnew) then E ← E ∪ {(xnear, xnew), (xnew, xnear)}

11 return G = (V,E);

to cope with modeling errors. The RRT∗ algorithm is obtained by modifying RRG in such a way
that formation of cycles is avoided, by removing “redundant” edges, i.e., edges that are not part
of a shortest path from the root of the tree (i.e., the initial state) to a vertex. Since the RRT and
RRT∗ graphs are directed trees with the same root and vertex set, and edge sets that are subsets
of that of RRG, this amounts to a “rewiring” of the RRT tree, ensuring that vertices are reached
through a minimum-cost path.

Before discussing the algorithm, it is necessary to introduce a few new functions. Given two
points x1, x2 ∈ Rd, let Line(x1, x2) : [0, s]→ X denote the straight-line path from x1 to x2. Given
a tree G = (V,E), let Parent : V → V be a function that maps a vertex v ∈ V to the unique vertex
u ∈ V such that (u, v) ∈ E. By convention, if v0 ∈ V is the root vertex of G, Parent(v0) = v0.
Finally, let Cost : V → R≥0 be a function that maps a vertex v ∈ V to the cost of the unique
path from the root of the tree to v. For simplicity, in stating the algorithm we will assume an
additive cost function, so that Cost(v) = Cost(Parent(v)) + c(Line(Parent(v), v)), although this
is not necessary for the analysis in the next section. By convention, if v0 ∈ V is the root vertex of
G, then Cost(v0) = 0.

The RRT∗ algorithm, shown in Algorithm 6, adds points to the vertex set V in the same way
as RRT and RRG. It also considers connections from the new vertex xnew to vertices in Xnear, i.e.,
other vertices that are within distance r(card (V)) = min{γRRT∗(log(card (V))/ card (V))1/d, η}
from xnew. However, not all feasible connections result in new edges being inserted in the edge set
E. In particular, (i) an edge is created from the vertex in Xnear that can be connected to xnew

along a path with minimum cost, and (ii) new edges are created from xnew to vertices in Xnear, if
the path through xnew has lower cost than the path through the current parent; in this case, the
edge linking the vertex to its current parent is deleted, to maintain the tree structure.

Another version of the algorithm, called k-nearest RRT∗, can be considered, in which con-
nections are sought to k nearest neighbors, with k(card (V)) = kRRG log(card (V)), and Xnear ←
kNearest(G = (V,E), xnew, kRRG log(i)), in line 7 of Algorithm 6.

4 Analysis

In this section, a number of results concerning the probabilistic completeness, asymptotic optimal-
ity, and complexity of the algorithms in Section 3 are presented.

The return value of Algorithms 1-6 is a graph. Since the sampling procedure SampleFree is

15

Algorithm 6: RRT∗

1 V ← {xinit}; E ← ∅;
2 for i = 1, . . . , n do
3 xrand ← SampleFreei;
4 xnearest ← Nearest(G = (V,E), xrand);
5 xnew ← Steer(xnearest, xrand) ;
6 if ObtacleFree(xnearest, xnew) then

7 Xnear ← Near(G = (V,E), xnew,min{γRRT∗(log(card (V))/ card (V))1/d, η}) ;
8 V ← V ∪ {xnew};
9 xmin ← xnearest; cmin ← Cost(xnearest) + c(Line(xnearest, xnew));

10 foreach xnear ∈ Xnear do // Connect along a minimum-cost path
11 if CollisionFree(xnear, xnew) ∧ Cost(xnear) + c(Line(xnear, xnew)) < cmin then
12 xmin ← xnear; cmin ← Cost(xnear) + c(Line(xnear, xnew))

13 E ← E ∪ {(xmin, xnew)};
14 foreach xnear ∈ Xnear do // Rewire the tree
15 if CollisionFree(xnew, xnear) ∧ Cost(xnew) + c(Line(xnew, xnear)) < Cost(xnear)

then xparent ← Parent(xnear);
16 E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}

17 return G = (V,E);

stochastic, the returned graph is in fact a random variable.2 Since the sampling procedure is
modeled as a map from the sample space Ω to infinite sequences in X , sets of vertices and edges
of the graphs maintained by the algorithms can be defined as functions from the sample space Ω
to appropriate sets. More precisely, let ALG be a label indicating one of the algorithms in Section
3, and let {V ALG

i (ω)}i∈N and {EALG
i (ω)}i∈N be, respectively, the sets of vertices and edges in the

graph returned by algorithm ALG, indexed by the number of samples, for a particular realization
of the sample sequence. (In other words, these are sequences of functions defined from Ω into finite
subsets of Xfree or Xfree × Xfree.) Similarly, let GALG

i = (V ALG
i , EALG

i). (The label ALG will be at
times omitted when the algorithm being used is clear from the context.)

All algorithms considered in the paper are sound, in the sense that they only return graphs
with vertices and edges representing points and paths in Xfree.This statement can be easily verified
by inspection of the algorithms in Section 3.

4.1 Probabilistic Completeness

In this section, the feasibility problem is considered, and the (probabilistic) completeness properties
of the algorithms in Section 3 are analyzed. First, some preliminary definitions are given, followed
by a definition of probabilistic completeness. Then, completeness properties of various sampling-
based motion planning algorithms are stated.

Let δ > 0 be a real number. A state x ∈ Xfree is said to be a δ-interior state of Xfree, if the closed
ball of radius δ centered at x lies entirely inside Xfree. The δ-interior of Xfree, denoted as intδ(Xfree),
is defined as the collection of all δ-interior states, i.e., intδ(Xfree) := {x ∈ Xfree | Bx,δ ⊆ Xfree}. In

2We will not address the case in which the sampling procedure is deterministic, but refer the reader to LaValle et al.
(2004), which contains an in-depth discussion of the relative merits of randomness and determinism in sampling-based
motion planning algorithms.

16

Figure 1: An illustration of the δ-interior of Xfree. The obstacle region Xobs is shown in dark grey
and the δ-interior of Xfree is shown in light grey. The distance between the dashed boundary of
intδ(Xfree) and the solid boundary of Xfree is precisely δ.

other words, the δ-interior of Xfree is the set of all states that are at least a distance δ away from any
point in the obstacle set (see Figure 1). A collision-free path σ : [0, 1]→ Xfree is said to have strong
δ-clearance, if σ lies entirely inside the δ-interior of Xfree, i.e., σ(τ) ∈ intδ(Xfree) for all τ ∈ [0, 1]. A
path planning problem (Xfree, xinit,Xgoal) is said to be robustly feasible if there exists a path with
strong δ-clearance, for some δ > 0, that solves it. In terms of the notation used in this paper, the
notion of probabilistic completeness can be stated as follows.

Definition 14 (Probabilistic Completeness) An algorithm ALG is probabilistically complete,
if, for any robustly feasible path planning problem (Xfree, xinit,Xgoal),

lim inf
n→∞

P
(
{∃xgoal ∈ V ALG

n ∩ Xgoal such that xinit is connected to xgoal in GALG
n }

)
= 1.

If an algorithm is probabilistically complete, and the path planning problem is robustly feasible,
the limit

limn→∞ P
(
{∃xgoal ∈ V ALG

n ∩ Xgoal such that xinit is connected to xgoal in GALG
n }

)
exists and is equal to 1. On the other hand, the same limit is equal to zero for any sampling-based
algorithm (including probabilistically complete ones) if the problem is not robustly feasible, unless
the samples are drawn from a singular distribution adapted to the problem.

It is known from the literature that the sPRM and RRT algorithms are probabilistically com-
plete, and that the probability of finding a solution if one exists approaches one exponentially fast
with the number of vertices in the graph returned by the algorithms. In other words,

Theorem 15 (Probabilistic completeness of sPRM (Kavraki et al., 1998)) Consider a ro-
bustly feasible path planning problem (Xfree, xinit,Xgoal). There exist constants a > 0 and n0 ∈ N,
dependent only on Xfree and Xgoal, such that

P
({
∃xgoal ∈ V sPRM

n ∩ Xgoal : xgoal is connected to xinit in GsPRM
n

})
> 1− e−an, ∀n > n0.

Theorem 16 (Probabilistic Completeness of RRT (LaValle and Kuffner, 2001)) Consider
a robustly feasible path planning problem (Xfree, xinit,Xgoal). There exist constants a > 0 and
n0 ∈ N, both dependent only on Xfree and Xgoal, such that

P
({
V RRT
n ∩ Xgoal 6= ∅

})
> 1− e−an, ∀n > n0.

On the other hand, the probabilistic completeness results do not necessarily extend to the
heuristics used in practical implementations of the (s)PRM algorithm, as detailed in Section 3. For

17

example, consider the k-nearest sPRM algorithm, where k = 1. That is, each vertex is connected
to its nearest neighbor and the resulting undirected graph is returned as the output. This sPRM
algorithm will be called the 1-nearest sPRM, and indicated with the label 1PRM. The RRT
algorithm can be thought of as the incremental version of the 1-nearest sPRM algorithm: the RRT
algorithm also connects each sample to its nearest neighbor, but forces connectivity of the graph by
an incremental construction. The following theorem shows that the 1-nearest sPRM algorithm is
not probabilistically complete, although the RRT is (see Theorem 16). Furthermore, the probability
that it fails to find a path converges to one as the number of samples approaches infinity.

Theorem 17 (Incompleteness of k-nearest sPRM for k = 1) The k-nearest sPRM algorithm
is not probabilistically complete for k = 1. Furthermore,

lim
n→∞

P
(
{∃xgoal ∈ V 1PRM

n ∩ Xgoal such that xinit is connected to xgoal in GALG
n }

)
= 0.

The proof of this theorem requires two intermediate results that are provided below. For simplicity
of presentation, consider the case when Xfree = X . Let G1PRM

n = (V 1PRM
n , E1PRM

n) denote the
graph returned by the 1-nearest sPRM algorithm, when the algorithm is run with n samples. Let
Ln denote the total length of all the edges present in G1PRM

n . Recall that ζd denotes the volume of
the unit ball in the d-dimensional Euclidean space. Let ζ ′d denote the volume of the union of two
unit balls whose centers are a unit distance apart.

Lemma 18 (Total length of the 1-nearest neighbor graph (Wade, 2007)) For all d ≥ 2,
Ln/n

1−1/d converges to a constant in mean square, i.e.,

lim
n→∞

E

[(
Ln

n1−1/d
−
(

1 +
1

d

)(
1

ζd
− ζd

2 (ζ ′d)
1+1/d

))2
]

= 0.

Proof This lemma is a direct consequence of Theorem 3 of Wade (2007). �

Let Nn denote the number of connected components of G1PRM
n .

Lemma 19 (Number of connected components of the 1-nearest neighbor graph) For all
d ≥ 2, Nn/n converges to a constant in mean square, i.e.,

lim
n→∞

E

[(
Nn

n
− ζd

2 ζ ′d

)2
]

= 0.

Proof A reciprocal pair is a pair of vertices each of which is the other one’s nearest neighbor. In a
graph formed by connecting each vertex to its nearest neighbor, any connected component includes
exactly one reciprocal pair whenever the number of vertices is greater than 2 (see, e.g., Eppstein
et al., 1997). The number of reciprocal pairs in such a graph was shown to converge to ζd/(2ζ

′
d) in

mean square in Henze (1987) (see also Remark 2 in Wade (2007)). �

Proof of Theorem 17 Let L̃n denote the average length of a connected component in G1PRM
n , i.e.,

L̃n = Ln/Nn. Let L′n denote the length of the connected component that includes xinit. Since the
samples are drawn independently and uniformly, the random variables L̃n and L′n have the same
distribution (although they are clearly dependent). Let γL denote the constant that Ln/n

1−1/d

converges to (see Lemma 18). Similarly, let γN denote the constant that Nn/n converges to (see
Lemma 19).

18

Recall that convergence in mean square implies convergence in probability and hence conver-
gence in distribution (Grimmett and Stirzaker, 2001). Since both Ln/n

1−1/d and Nn/n converge
in mean square to constants and P({Nn = 0}) = 0 for all n ∈ N, by Slutsky’s theorem (Resnick,

1999), n1/d L̃n = Ln/n1−1/d

Nn/n
converges to γ := γL/γN in distribution. In this case, it also converges

in probability, since γ is a constant (Grimmett and Stirzaker, 2001). Then, n1/d L′n also converges
to γ in probability, since L̃n and L′n are identically distributed for all n ∈ N. Thus, L′n converges
to 0 in probability, i.e., limn→∞ P ({L′n > ε}) = 0, for all ε > 0.

Let ε > 0 be such that ε < infx∈Xgoal
‖x−xinit‖. Let An denote the event that the graph returned

by the 1-nearest sPRM algorithm contains a feasible path, i.e., one that starts from xinit and reaches
the goal region Clearly, the event {L′n > ε} occurs whenever An does, i.e., An ⊆ {L′n > ε}. Then,
P(An) ≤ P({L′n > ε}). Taking the limit superior of both sides

lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ lim sup
n→∞

P({L′n > ε}) = 0.

In other words, the limit limn→∞ P(An) exists and is equal zero. �

Consider the variable-radius sPRM algorithm. The following theorem asserts that variable-
radius sPRM algorithm is not probabilistically complete in the subcritical regime.

Theorem 20 (Incompleteness of variable-radius sPRM with r(n) = γn−1/d) There exists a
constant γ > 0 such that the variable radius sPRM with connection radius r(n) = γn−1/d is not
probabilistically complete.

The proof of this result requires some intermediate results from random geometric graph theory.
Recall that λc is the critical density, or continuum percolation threshold (see Section 2.2). Given a
Borel set Γ ⊆ Rd, let Gdisc

Γ (n, r) denote the random r-disc graph formed with vertices independent
and uniformly sampled from Γ and edges connecting two vertices, v and v′, whenever ‖v−v′‖ < rn.

Lemma 21 (Penrose (2003)) Let λ ∈ (0, λc) and Γ ⊂ Rd be a Borel set. Consider a sequence
{rn}n∈N that satisfies n rdn ≤ λ, ∀n ∈ N. Let Nmax(Gdisc

Γ (n, rn)) denote the size of the largest
component in Gdisc

Γ (n, rn). Then, there exist constants a, b > 0 and m0 ∈ N such that for all
m ≥ m0,

P
({
Nmax(Gdisc

Γ (n, rn)) ≥ m
})
≤ n

(
e−am + e−b n

)
.

Proof of Theorem 20 Let ε > 0 such that ε < infx∈Xgoal
‖x−xinit‖ and that the 2 ε-ball centered

at xinit lies entirely within the obstacle-free space. Let GPRM
n = (V PRM

n , EPRM
n) denote the graph

returned by this variable radius sPRM algorithm, when the algorithm is run with n samples.
Let Gn = (Vn, En) denote the the restriction of GPRM

n to the 2 ε-ball centered at xinit defined as
Vn = V PRM

n ∩ Bxinit,2 ε and En = (Vn × Vn) ∩ EPRM
n .

Clearly, Gn is equivalent to the random r-disc graph on Γ = Bxinit,2 ε. Let Nmax(Gn) denote the
number of vertices in the largest connected component of Gn. By Lemma 21, there exists constants
a, b > 0 and m0 ∈ N such that

P({Nmax(Gn) ≥ m}) ≤ n
(
e−am + e−b n

)
,

for all m ≥ m0. Then, for all m = λ−1/d (ε/2)n1/d > m0,

P
({
Nmax(Gn) ≥ λ−1/d ε

2
n1/d

})
≤ n

(
e−aλ

−1/d (ε/2)n1/d
+ e−b n

)
.

19

Let Ln denote the total length of all the edges in the connected component that includes xinit.
Since rn = λ1/dn−1/d,

P
({
Ln ≥

ε

2

})
≤ n

(
e−aλ

−1/d (ε/2)n1/d
+ e−b n

)
.

Since the right hand side is summable, by the Borel-Cantelli lemma the event {Ln ≥ ε/2} occurs
infinitely often with probability zero, i.e., P(lim supn→∞{Ln ≥ ε/2}) = 0.

Given a graph G = (V,E) define the diameter of this graph as the distance between the farthest
pair of vertices in V , i.e., maxv,v′∈V ‖v− v′‖. Let Dn denote the diameter of the largest component
in Gn. Clearly, Dn ≤ Ln holds surely. Thus, P (lim supn→∞ {Dn ≥ ε/2}) = 0.

Let I ∈ N be the smallest number that satisfies rI ≤ ε/2. Notice that the edges connected
to the vertices V PRM

n ∩ Bxinit,ε coincide with those connected to Vn ∩ Bxinit,ε, for all n ≥ I. Let
Rn denote distance of the farthest vertex v ∈ V PRM

n to xinit in the component that contains xinit

in GPRM
n . Notice also that Rn ≥ ε only if Dn ≥ ε/2, for all n ≥ I. That is, for all n ≥ I,

{Rn ≥ ε} ⊆ {Dn ≥ ε/2}, which implies P (lim supn→∞ {Rn ≥ ε}) = 0.
Let An denote the event that the graph returned by this variable radius sPRM algorithm

includes a path that reaches the goal region. Clearly, {Rn ≥ ε} holds, whenever An holds. Hence,
P(An) ≤ P({Rn ≥ ε}). Taking the limit superior of both sides yields

lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ lim sup
n→∞

P ({Rn ≥ ε}) ≤ P
(

lim sup
n→∞

{Rn ≥ ε}
)

= 0.

Hence, limn→∞ P(An) = 0. �

Finally, the probabilistic completeness of the new algorithms proposed in Section 3 is established.
Probabilistic completeness of PRM∗ is implied by its asymptotic optimality, proved in Section 4.2.

Theorem 22 (Completeness of PRM∗) The PRM∗ algorithm is probabilistically complete.

Probabilistic completeness of RRG and RRT∗ is a straightforward consequence of the proba-
bilistic completeness of RRT:

Theorem 23 (Probabilistic completeness of RRG and RRT∗) The RRG and RRT∗ algo-
rithms are probabilistically complete. Furthermore, for any robustly feasible path planning problem
(Xfree, xinit,Xgoal), there exist constants a > 0 and n0 ∈ N, both dependent only on Xfree and Xgoal,
such that

P
({
V RRG
n ∩ Xgoal 6= ∅

})
> 1− e−an, ∀n > n0,

and
P
({
V RRT∗
n ∩ Xgoal 6= ∅

})
> 1− e−an, ∀n > n0.

Proof By construction, V RRG
n (ω) = V RRT∗

n (ω) = V RRT
n (ω), for all ω ∈ Ω and n ∈ N. Moreover,

the RRG and RRT∗ algorithms return connected graphs. Hence the result follows directly from
the probabilistic completeness of RRT. �

In particular, note that if the RRT algorithm returns a feasible solution by iteration n, so will
the RRG and RRT∗ algorithms, assuming the same sample sequence.

20

4.2 Asymptotic Optimality

In this section, the optimality problem of path planning is considered. The algorithms presented
in Section 3 are analyzed, in terms of their ability to return solutions whose cost converge to the
global optimum. First, a definition of asymptotic optimality is provided as almost-sure convergence
to optimal paths. Second, it is shown that the RRT algorithm lacks the asymptotic optimality
property. Third, the PRM∗, RRG, and RRT∗ algorithms, as well as their k-nearest implementations,
are shown to be asymptotically optimal.

Recall from Section 4.1 that an algorithm is probabilistically complete if the algorithm finds
with high probability a solution to path planning problems that are robustly feasible, i.e., for
which feasible path exists with strong δ-clearance. A similar approach is used to define asymptotic
optimality, relying on a notion of weak δ-clearance and on a continuity property for the cost of
paths, which will be introduced below.

Let σ1, σ2 ∈ Σfree be two collision-free paths with the same end points. A path σ1 is said to
be homotopic to σ2, if there exists a continuous function ψ : [0, 1] → Σfree, called the homotopy,
such that ψ(0) = σ1, ψ(1) = σ2, and ψ(τ) is a collision-free path in for all τ ∈ [0, 1]. Intuitively,
a path that is homotopic to σ can be continuously transformed to σ through Xfree (see Munkres,
2000). A collision-free path σ : [0, s] → Xfree is said to have weak δ-clearance, if there exists a
path σ′ that has strong δ-clearance and there exist a homotopy ψ, with ψ(0) = σ, ψ(1) = σ′, and
for all α ∈ (0, 1] there exists δα > 0 such that ψ(α) has strong δα-clearance. See Figure 2 for an
illustration of the weak δ-clearance property. A path that violates the weak δ-clearance property is
shown in Figure 3. Weak δ-clearance does not require points along a path to be at least a distance δ
away from the obstacles (see Figure 4). In fact, a collision-free path with uncountably many points
lying on the boundary of an obstacle can still have weak δ-clearance.

Figure 2: An illustration of a path σ with weak δ-clearance. The path σ′ that lies inside intδ(Xfree)
and is in the same homotopy class as σ is also shown in the figure. Note that σ does not have
strong δ-clearance.

Figure 3: An illustration of an example path σ that does not have weak δ-clearance. For any
positive value of δ, there is no path in intδ(Xfree) that is in the same homotopy class as σ.

Next, the set of all paths with bounded length is introduced as a normed space, which allows
taking the limit of a sequence of paths. Recall that Σ is the set of all paths, and TV (·) denotes the

21

Side viewFront view

Figure 4: An illustration of a path that has weak δ-clearance. The path passes through a point
where two spheres representing the obstacle region are in contact. Clearly, the path does not have
strong δ-clearance.

total variation, i.e., the length, of a path (see Section 2.1). Given σ1, σ2 ∈ Σ with σ1 : [0, 1] → X
and σ2 : [0, 1] → X , the addition operation is defined as (σ1 + σ2)(τ) = σ1(τ) + σ2(τ) for all
τ ∈ [0, 1]. The set of paths Σ is closed under addition. Given a path σ : [0, 1] → X and a scalar
α ∈ R, the multiplication by a scalar operation is defined as (ασ)(τ) := ασ(τ) for all τ ∈ [0, 1].
With these addition and multiplication by a scalar operations, the function space Σ is, in fact, a
vector space. On the vector space Σ, define the norm ‖σ‖BV :=

∫ 1
0 |σ(τ)| dτ + TV(σ), and denote

the function space Σ endowed with the norm ‖ · ‖BV by BV(X). The norm ‖ · ‖BV induces the
following distance function:

dist(σ1, σ2) = ‖σ1 − σ2‖BV =

∫ 1

0

∥∥(σ1 − σ2)(τ)
∥∥dτ + TV(σ1 − σ2)

where ‖ · ‖ is the usual Euclidean norm. A sequence {σn}n∈N of paths is said to converge to a path
σ̄, denoted as limn→∞ σn = σ̄, if the norm of the difference between σn and σ̄ converges to zero,
i.e., limn→∞ ‖σn − σ̄‖BV = 0.

A feasible path σ∗ ∈ Xfree that solves the optimality problem (Problem 3) is said to be a robustly
optimal solution if it has weak δ-clearance and, for any sequence of collision-free paths {σn}n∈N,
σn ∈ Xfree, ∀n ∈ N, such that limn→∞ σn = σ∗, limn→∞ c(σn) = c(σ∗). Clearly, a path planning
problem that has a robustly optimal solution is necessarily robustly feasible. Let c∗ = c(σ∗) be the
cost of an optimal path, and let Y ALG

n be the extended random variable corresponding to the cost
of the minimum-cost solution included in the graph returned by ALG at the end of iteration n.

Definition 24 (Asymptotic Optimality) An algorithm ALG is asymptotically optimal if, for
any path planning problem (Xfree, xinit,Xgoal) and cost function c : Σ → R≥0 that admit a robustly
optimal solution with finite cost c∗,

P
({

lim sup
n→∞

Y ALG
n = c∗

})
= 1.

Note that, since Y ALG
n ≥ c∗, ∀n ∈ N, asymptotic optimality of ALG implies that the limit

limn→∞ Y
ALG
n exists, and is equal to c∗. Clearly, probabilistic completeness is necessary for asymp-

totic optimality. Moreover, the probability that a sampling-based algorithm converges to an optimal
solution almost surely has probability either zero or one. That is, a sampling-based algorithm either
converges to the optimal solution in almost all runs, or the convergence does not occur in almost
all runs.

Lemma 25 Given that lim supn→∞ Y
ALG
n <∞, i.e., ALG finds a feasible solution eventually, the

probability that lim supn→∞ Y
ALG
n = c∗ is either zero or one.

22

Proof Conditioning on the event {lim supn→∞ Y
ALG
n < ∞} ensures that Y ALG

n is finite, thus a
random variable, for all large n. Given a sequence {Yn}n∈N of random variables, let F ′m denote
the σ-field generated by the sequence {Yn}∞n=m of random variables. The tail σ-field T is defined
as T =

⋂
n∈NF ′n. An event A is said to be a tail event if A ∈ T . Any tail event occurs with

probability either zero or one by the Kolmogorov zero-one law (Resnick, 1999). Consider the se-
quence {Y ALG

n }n∈N of random variables. Let F ′m denote the σ-fields generated by {Y ALG
n }∞n=m.

Then,
{

lim supn→∞ Y
ALG
n = c∗

}
=
{

lim supn→∞, n≥m Y
ALG
n = c∗

}
∈ F ′m for all n ∈ N. Hence,{

Y ALG
n = c∗

}
∈
⋂
n∈NF ′m is a tail event. The result follows by the Kolmogorov zero-one law.

�

Among the first steps in assessing the asymptotic optimality properties of an algorithm ALG
is determining whether the limit limn→∞ Y

ALG
n exists. It turns out that if the graphs returned by

ALG satisfy a monotonicity property, then the limit exists, and is in general a random variable,
indicated with Y ALG

∞ .

Lemma 26 If GALG
i (ω) ⊆ GALG

i+1 (ω), ∀ω ∈ Ω and ∀i ∈ N, then limn→∞ Y
ALG
n (ω) = Y ALG

∞ (ω).

Proof Since GALG
i (ω) ⊆ GALG

i+1 (ω), then Y ALG
i+1 (ω) ≤ Y ALG

i (ω), for all ω ∈ Ω. Since Y ALG
i ≥ c∗,

then the sequence converges to some limiting value, dependent on ω, i.e., Y ALG
∞ (ω). �

Of the algorithms presented in Section 3, it is easy to check that PRM, sPRM, RRT, RRG, and
RRT∗ satisfy the monotonicity property in Lemma 26. On the other hand, k-nearest sPRM and
PRM∗ do not: in these cases, the random variable Y ALG

i+1 is not necessarily dominated by Y ALG
i .

This is evident in numerical experiments, e.g., see Figures 10 and 11 in Section 5.
In order to avoid trivial cases of asymptotic optimality, it is necessary to rule out problems in

which optimal solutions can be computed after a finite number of samples. Let Σ∗ denote the set
of all optimal paths, i.e., the set of all paths that solve the optimal planning problem (Problem 3),
and Xopt denote the set of states that an optimal path in Σ∗ passes through, i.e.,

Xopt = {x ∈ Xfree | ∃σ∗ ∈ Σ∗, τ ∈ [0, 1] such that x = σ∗(τ)}.

Assumption 27 (Zero-measure Optimal Paths) The set of all points traversed by an optimal
trajectory has measure zero, i.e., µ (Xopt) = 0.

Most cost functions and problem instances of interest satisfy this assumption, including, e.g., the
Euclidean length of the path when the goal region is convex. This assumption does not imply that
there is a single optimal path; indeed, there are problem instances with uncountably many optimal
paths, for which Assumption 27 holds. (A simple example is the motion planning problem in three
dimensional Euclidean space where a ball shaped obstacle is placed between the initial state and
the goal region.) Assumption 27 implies that no sampling-based planning algorithm can find a
solution to the optimality problem in a finite number of iterations.

Lemma 28 If Assumption 27 holds, the probability that a sampling-based algorithm ALG returns
a graph containing an optimal path at a finite iteration n ∈ N is zero, i.e.,

P
(
∪n∈N{Y ALG

n = c∗}
)

= 0.

Proof Let Bn denote the event that ALG constructs a graph containing a path with cost exactly
equal to c∗ at the end of iteration i, i.e., Bn = {Y ALG

n = c∗}. Let B denote the event that ALG
returns a graph containing a path that costs exactly c∗ at some finite iteration i. Then, B can be

23

written as B = ∪n∈NBn. Since Bn ⊆ Bn+1, by monotonocity of measures, limi→∞ P(Bn) = P(B).
By Assumption 27 and the definition of the sampling procedure, P(Bn) = 0 for all n ∈ N, since the
probability that the set

⋃n
i=1{SampleFree(i)} of points contains a point from a zero-measure set

is zero. Hence, P(B) = 0. �

In the remainder of the paper, it will be tacitly assumed that Assumption 27, and hence Lemma
28, hold.

4.2.1 Existing algorithms

The algorithms in Section 3.2 were originally introduced to efficiently solve the feasibility problem,
relaxing the completeness requirement to probabilistic completeness. Nevertheless, it is of interest to
establish whether these algorithms are asymptotically optimal in addition to being probabilistically
complete. (The first two results in this section rely on results that will be proven in Section 4.2.2,
i.e., the fact that the RRT algorithm is not asymptotically optimal, and the PRM∗ algorithm is
asymptotically optimal)

First, consider the PRM algorithm and its variants. The PRM algorithm, in its original form,
is not asymptotically optimal.

Theorem 29 (Non-optimality of PRM) The PRM algorithm is not asymptotically optimal.

Proof The proof is based on a counterexample, establishing a form of equivalence between PRM
and RRT, which in turn will be proven not to be asymptotically optimal in Theorem 33. Consider
a convex obstacle-free environment, e.g., Xfree = X , and choose the connection radius for PRM and
the steering parameter for RRT such that r, η > diam(X). At each iteration, exactly one vertex
and one edge is added to the graph, since (i) all connection attempts using the local planner (e.g.,
straight line connections as considered in this paper) are collision-free, and (ii) at the end of each
iteration, the graph is connected (i.e., it contains only one connected component). In particular,
the graph returned by the PRM algorithm in this case is a tree, and the arborescence obtained by
choosing as the root the first sample point, i.e., SampleFree0, is an online nearest-neighbor graph
(see Section 2.2) coinciding with the graph returned by RRT with the random initial condition
xinit = SampleFree0.

Recall that the PRM algorithm is applicable for multiple-query planning problems: in other
words, the graph returned by the PRM algorithm is used to solve path planning problems from
arbitrary xinit ∈ Xfree and Xgoal ⊂ Xfree. (Note that all such problems admit robust optimal
solutions.) In particular, for xinit = SampleFree0, and any Xgoal, then Y PRM

n (ω) = Y RRT
n (ω), for

all ω ∈ Ω, n ∈ N. In particular, since both PRM and RRT satisfy the monotonicity condition in
Lemma 26, Theorem 33 implies that

P
({

lim sup
n→∞

Y PRM
n = c∗

})
= P

({
lim
n→∞

Y PRM
n = c∗

})
= P

({
lim
n→∞

Y RRT
n = c∗

})
= 0.

�

The lack of asymptotic optimality of PRM is due to its incremental construction, coupled with
the constraint eliminating edges making unnecessary connections within a connected component.
Such a constraint is not present in the batch construction of the sPRM algorithm, which is indeed
asymptotically optimal (at the expense of computational complexity, see Section 4.3).

24

Theorem 30 (Asymptotic Optimality of sPRM) The sPRM algorithm is asymptotically op-
timal.

Proof By construction, V sPRM
n (ω) = V PRM∗

n (ω), and EsPRM
n (ω) ⊇ EPRM∗

n (ω) for all ω ∈ Ω.
Hence, the graph returned by sPRM includes all the paths that are present in the graph returned
by PRM∗. Then, asymptotic optimality of sPRM follows from that of PRM∗, which will be proven
in Theorem 34. �

On the other hand, as in the case of probabilistic completeness, the heuristics that are often
used in the practical implementation of (s)PRM are not asymptotically optimal.

Theorem 31 (Non-optimality of k-nearest sPRM) The k-nearest sPRM algorithm is not asymp-
totically optimal, for any constant k ∈ N.

This theorem will be proven under the assumption that the underlying point process is Poisson.
More precisely, the algorithm is analyzed when it is run with Poisson(n) samples. That is, the real-
ization of the random variable Poisson(n) determines the number of points sampled independently
and uniformly in Xfree. Hence, the expected number of samples is equal to n, although its real-
ization may slightly differ. However, since the Poisson random variable has exponentially-decaying
tails, its large deviations from its mean is unlikely (see, e.g., Grimmett and Stirzaker (2001) for a
more precise statement). With a slight abuse of notation, the cost of the best path in the graph
returned by the k-nearest sPRM algorithm when the algorithm is run with Poisson(n) number of
samples is denoted by Y kPRM

n , and it is shown that P({lim supn→∞ Y
kPRM
n = c∗}) = 0.

Proof of Theorem 31 Let σ∗ denote an optimal path and s∗ denote its length, i.e., s∗ = TV (σ∗).
For each n, consider a tiling of σ∗ with disjoint open hypercubes, each with edge length 2n−1/d,
such that the center of each cube is a point on σ∗. See Figure 5. Let Mn denote the maximum
number of tiles that can be generated in this manner and note Mn ≥ s∗

2 n
1/d. Partition each tile

into several open cubes as follows: place an inner cube with edge length n−1/d at the center of the
tile and place several outer cubes each with edge length 1

2 n
−1/d around the cube at the center as

shown in Figure 5. Let Fd denote the number of outer cubes. The volumes of the inner cube and
each of the outer cubes are n−1 and 2−d n−1, respectively.

Inner cube

Outer cubes

. . .

Figure 5: An illustration of the tiles mention in the proof of Theorem 31. A single tile is shown in
the left; a tiling of the optimal trajectory σ∗ is shown on the right.

For n ∈ N and m ∈ {1, 2, . . . ,Mn}, consider the tile m when the algorithm is run with Poisson(n)
samples. Let In,m denote the indicator random variable for the event that the center cube of this
tile contains no samples, whereas every outer cube contains at least k + 1 samples, in tile m.

The probability that the inner cube contains no samples is e−1/µ(Xfree). The probability that
an outer cube contains at least k + 1 samples is 1 − P

(
{Poisson(2−d/µ(Xfree)) ≥ k + 1}

)
= 1 −

P({Poisson(2−d/µ(Xfree)) ≤ k}) = 1 − Γ(k+1,2−d/µ(Xfree))
k! , where Γ(·, ·) is the incomplete gamma

25

function (Abramowitz and Stegun, 1964). Then, noting that the cubes in a given tile are disjoint
and using the independence property of the Poisson process (see Lemma 11),

E [In,m] = e−1/µ(Xfree)

(
1− Γ(k + 1, 2−d/µ(Xfree))

k!

)Fd
> 0,

which is a constant that is independent of n; denote this constant by α.
Let Gn = (Vn, En) denote the graph returned by the k-nearest PRM algorithm by the end of

Poisson(n) iterations. Observe that if In,m = 1, then there is no edge of Gn crossing the cube of
side length 1

2 n
−1/d that is centered at the center of the inner cube in tile m (shown as the white

cube in Figure 6). To prove this claim, note the following two facts. First, no point that is outside
of the cubes can have an edge that crosses the inner cube. Second, no point in one of the outer

cubes has an edge that has length greater than
√
d

2 i−1/d. Thus, no edge can cross the white cube
illustrated in Figure 6.

Figure 6: The event that the inner cube contains no points and each outer cube contains at least
k points of the point process is illustrated. The cube of side length 1

2 n
−1/d is shown in white.

Let σn denote the path in Gn that is closest to σ∗ in terms of the bounded variation norm. Let
Un := ‖σn − σ∗‖BV. Notice that Un ≥ 1

2 n
−1/d

∑Mn
m=1 In,m = 1

2 n
−1/dMn In,1 = s∗

4 In,1. Then,

E
[
lim sup
n→∞

Un

]
≥ lim sup

n→∞
E [Un] ≥ lim sup

n→∞

s∗

4
E [In,m] ≥ α s∗

4
> 0,

where the first inequality follows from Fatou’s lemma (Resnick, 1999). This implies P({lim supn→∞ Un >
0}) > 0. Since Ui > 0 implies Yn > c∗ surely,

P ({lim supn→∞ Yn > c∗}) ≥ P ({lim supn→∞ Un > 0}) > 0.

That is, P ({lim supn→∞ Yn = c∗}) < 1. In fact, by Lemma 25, P ({lim supn→∞ Yn = c∗}) = 0. �

Second, asymptotic optimality of a large class of variable radius sPRM algorithms is considered.
Consider a variable radius sPRM in which connection radius satisfies r(n) ≤ γ n−1/d for some γ > 0
and for all n ∈ N. The next theorem shows that this algorithm lacks the asymptotic optimality
property.

Theorem 32 (Non-optimality of variable radius sPRM with r(n) = γ n−1/d) Consider a vari-
able radius sPRM algorithm with connection radius r(n) = γ n−1/d. This sPRM algorithm is not
asymptotic optimal for any γ ∈ R≥0.

Proof Let σ∗ denote a path that is a robust solution to the optimality problem. Let n de-
note the number of samples that the algorithm is run with. For all n, construct a set Bn =
{Bn,1, Bn,2, . . . , Bn,Mn} of openly disjoint balls as follows. Each ball in Bn has radius rn = γ n−1/d,

26

and lies entirely inside Xfree. Furthermore, the balls in Bn “tile” σ∗ such that the center of each
ball lies on σ∗ (see Figure 7). Let Mn denote the maximum number of balls, s̄ denote the length of
the portion of σ∗ that lies within the δ-interior of Xfree, and n0 ∈ N denote the number for which
rn ≤ δ for all n ≥ n0.

Then, for all n ≥ n0,

Mn ≥
s̄

2 γ
(

1
n

)1/d =
s̄

2 γ
n1/d.

Figure 7: An illustration of the covering of the optimal path, σ∗, with openly disjoint balls. The
balls cover only a portion of σ∗ that lies within the δ-interior of Xfree.

Indicate the graph returned by this sPRM algorithm as Gn = (Vn, En). Denote the event that
the ball Bn,m contains no vertex in Vn by An,m. Denote the indicator random variable for the event
An,m by In,m, i.e., In,m = 1 when An,m holds and In,m = 0 otherwise. Then, for all n ≥ n0,

E[In,m] = P(An,m) =

(
1− µ(Bn,m)

µ(Xfree)

)n
=

(
1− ζd γ

d

µ(Xfree)

1

n

)n
Let Nn be the random variable that denotes the total number of balls in Bn that contain no

vertex in Vn, i.e., Nn =
∑Mn

m=1 In,m. Then, for all n ≥ n0,

E[Nn] = E
[∑Mn

m=1
In,m

]
=

Mn∑
m=1

E[In,m] = Mn E[In,1] ≥ s̄

2 γ
n1/d

(
1− ζd γ

d

µ(Xfree)

1

n

)n
.

Consider a ball Bn,m that contains no vertices of this sPRM algorithm. Then, no edges of the

graph returned by this algorithm cross the ball of radius
√

3
2 rn centered at the center of Bn,m. See

Figure 8.
Let Pn denote the (finite) set of all acyclic paths that reach the goal region in the graph returned

by this sPRM algorithm when the algorithm is run with n samples. Let Un denote the total variation
of the path that is closest to σ∗ among all paths in Pn, i.e., Un := minσn∈Pn ‖σn − σ∗‖BV. Then,

E[Un] ≥ E

[
γ

(
1

n

)1/d

Nn

]
≥ s̄

2

(
1− ζd γ

d

µ(Xfree)

1

n

)n
.

Taking the limit superior of both sides, the following inequality can be established:

E
[
lim sup
n→∞

Un

]
≥ lim sup

n→∞
E [Un] ≥ lim sup

n→∞

s̄

2

(
1− ζd γ

d

µ(Xfree)

1

n

)n
=

s̄

2
e
− ζd γ

d

µ(Xfree) > 0,

where the first inequality follows from Fatou’s lemma (Resnick, 1999). Hence, P({lim supn→∞ Un >
0}) > 0, which implies that P

({
lim supn→∞ Y

ALG
n > c∗

})
> 0. That is, P

({
lim supn→∞ Y

ALG
n = c∗

})
<

1. In fact, P
({

lim supn→∞ Y
ALG
n = c∗

})
= 0 by the Kolmogorov zero-one law (see Lemma 25). �

27

Figure 8: If the outer ball does not contain vertices of the PRM graph, then no edge of the graph
corresponds to a path crossing the inner ball.

Rapidly-exploring Random Trees In this section, it is shown that the minimum-cost path in
the RRT algorithm converges to a certain random variable, however, under mild technical assump-
tions, this random variable is not equal to the optimal cost, with probability one.

Theorem 33 (Non-optimality of RRT) The RRT algorithm is not asymptotically optimal.

The proof of this theorem can be found in Appendix B. Note that, since at each iteration the RRT
algorithm either adds a vertex and an edge, or leaves the graph unchanged, GRRT

i (ω) ⊆ GRRT
i+1 (ω),

for all i ∈ N and all ω ∈ Ω, and hence the limit limn→∞ Y
RRT
n exists and is equal to the random

variable Y RRT
∞ . In conjunction with Lemma 25, Theorem 33 implies that this limit is strictly

greater than c∗ almost surely, i.e., P
(
{limn→∞ Y

RRT
n > c∗}

)
= 1. In other words, the cost of the

best solution returned by RRT converges to a suboptimal value, with probability one. In fact, it is
possible to construct problem instances such that the probability that the first solution returned by
the RRT algorithm has arbitrarily high cost is bounded away from zero (Nechushtan et al., 2010).

Since the cost of the best path returned by the RRT algorithm converges to a random variable,
Theorem 33 provides new insight explaining the effectiveness of approaches as in Ferguson and
Stentz (2006). In fact, running multiple instances of the RRT algorithm amounts to drawing
multiple samples of Y RRT

∞ .

4.2.2 Proposed algorithms

In this section, the proposed algorithms are analyzed for asymptotic optimality, i.e., almost sure
convergence to optimal solutions. It is shown that the PRM∗, RRG, and RRT∗ algorithms, as well
as their k-nearest implementations, are all asymptotically optimal. The proofs of the following
theorems are quite lengthy, and will be provided in the appendix.

Recall that d denotes the dimensionality of the configuration space, µ(Xfree) denotes the Lebesgue
measure of the obstacle-free space, and ζd denotes the volume of the unit ball in the d-dimensional
Euclidean space. Proofs of the following theorems can be found in Appendices C–G.

Theorem 34 (Asymptotic optimality of PRM∗) If γPRM > 2 (1 + 1/d)1/d
(
µ(Xfree)

ζd

)1/d
, then

the PRM∗ algorithm is asymptotically optimal.

Theorem 35 (Asymptotic optimality of k-nearest PRM∗) If kPRM > e (1 + 1/d), then the
k-nearest implementation of the PRM∗ algorithm is asymptotically optimal.

28

Theorem 36 (Asymptotic optimality of RRG) If γPRM > 2 (1 + 1/d)1/d
(
µ(Xfree)

ζd

)1/d
, then

the RRG algorithm is asymptotically optimal.

Theorem 37 (Asymptotic optimality of k-nearest RRG) If kRRG > e (1 + 1/d), then the
k-nearest implementation of the RRG algorithm is asymptotically optimal.

Theorem 38 (Asymptotic optimality of RRT∗) If γRRT∗ > (2 (1+1/d))1/d
(
µ(Xfree)

ζd

)1/d
, then

the RRT∗ algorithm is asymptotically optimal.

Theorem 39 (Asymptotic optimality of k-nearest RRT∗) If kRRT∗ > 2d+1 e (1 + 1/d), then
the k-nearest implementation of the RRT∗ algorithm is asymptotically optimal.

The proof of the latter theorem follows from those of Theorems 37 and 38.

4.3 Computational Complexity

The objective of this section is to compare the computational complexity of the algorithms provided
in Section 3. First, each algorithm is analyzed in terms of the number of calls to the CollisionFree
procedure. Second, the computational complexity of certain primitive procedures such as Nearest
and Near (see Section 3.1) are analyzed. Using these results, a thorough analysis of the computa-
tional complexity of the all the algorithms is given in terms of the number of simple operations,
such as comparisons, additions, multiplications. An analysis of the computational complexity of
the query phase, i.e., the complexity of extracting the optimal solution from the graph returned by
these algorithms, is also provided.

The following notation for asymptotic computational complexity will be used throughout this
section. Let WALG

n (P) be a function of the graph returned by algorithm ALG when ALG is run
with inputs P = (Xfree, xinit,Xgoal) and n. Clearly, WALG

n (P) is a random variable. Let f : N→ N
be an increasing function with limn→∞ f(n) = ∞. The random variable WALG

n is said belong to
Ω(f(n)), denoted as WALG

n ∈ Ω(f(n)), if there exists a problem instance P = (Xfree, xinit,Xgoal)
such that lim infn→∞ E[WALG

n (P)/f(n)] > 0. Similarly, WALG
n is said to belong to O(f(n)) if

lim supn→∞ E[WALG
n (P)/f(n)] <∞ for all problem instances P = (Xfree, xinit,Xgoal).

Number of calls to the CollisionFree procedure Let MALG
n denote the total number of

calls to the CollisionFree procedure by algorithm ALG in iteration n.
First, lower-bounds are established for the PRM and sPRM algorithms.

Lemma 40 (PRM) MPRM
n ∈ Ω(n).

Proof Consider the problem instance (Xfree, xinit,Xgoal), where Xfree is composed of two openly-
disjoint sets X1 and X2 (see Figure 9). The set X2 is designed to be a hyperrectangle shaped set
with one side equal to r/2, where r is the connection radius.

Any r-ball centered at a point in X2 will certainly contain a nonzero measure part of X2. Define
µ̄ as the volume of the smallest region in X2 that can be intersected by an r-ball centered at X2,
i.e., µ̄ := infx∈X2 µ(Bx,r ∩ X1). Clearly, µ̄ > 0.

Thus, for any sample Xn that falls into X2, the PRM algorithm will attempt to connect Xn to a
certain number of vertices that lies in a subset X ′1 of X1 such that µ(X ′1) ≥ µ̄. The expected number
of vertices in X ′1 is at least µ̄ n. Moreover, none of these vertices can be in the same connected
component with Xn. Thus, E[MPRM

n /n] > µ̄. The result is obtained by taking the limit inferior of
both sides. �

29

Figure 9: An illustration of Xfree = X1 ∪ X2.

Lemma 41 (sPRM) M sPRM
n ∈ Ω(n).

Proof The proof of a stronger result is provided. It is shown that for all problem instances
P = (Xfree, xinit,Xgoal), lim infn→∞ E[M sPRM

n /n] > 0, which implies the lemma. Recall from Al-
gorithm 2 that r denotes the connection radius. Let µ̄ denote the volume of the smallest re-
gion that can be formed by intersecting Xfree with an r-ball centered at a point inside Xfree, i.e.,
µ̄ := infx∈Xfree

µ(Bx,r ∩ Xfree). Recall that Xfree is the closure of an open set. Hence, µ̄ > 0.
Clearly, Mn, the number of calls to the CollisionFree procedure in iteration n, is equal to the

number of nodes inside the ball of radius r centered at the last sample point Xn. Moreover, the
volume of the Xfree that lies inside this ball is at least µ̄. Then, the expected value of Mn is lower
bounded by the expected value of a binomial random variable with parameters µ̄/µ(Xfree) and n,
since the underlying point process is binomial. Thus, E[M sPRM

n] ≥ µ̄
µ(Xfree) n. Then, E[Mn/n] ≥

µ̄/Xfree for all n ∈ N. Taking the limit inferior of both sides gives the result. �

Clearly, for k-nearest PRM, Mk-sPRM
n = k for all n ∈ N with n > k. Similarly, for the RRT,

MRRT
n = 1 for all n ∈ N.

The next lemma upper-bounds the number of calls to the CollisionFree procedure in the
proposed algorithms.

Lemma 42 (PRM∗, RRG, and RRT∗) MPRM∗
n , MRRG

n , MRRT∗
n ∈ O(log n).

Proof First, consider PRM∗. Recall that rn denotes the connection radius of the PRM∗ algorithm.
Recall that the rn interior of Xfree, denoted by intrn(Xfree), is defined as the set of all points x, for
which the rn-ball centered at x lies entirely inside Xfree. Let A denote the event that the sample
Xn drawn at the last iteration falls into the rn interior of Xfree. Then,

E
[
MPRM∗
n

]
= E

[
MPRM∗
n

∣∣A]P(A) + E
[
MPRM∗
n

∣∣Ac]P(Ac).

Let n0 ∈ N be the smallest number such that µ(intrn(Xfree)) > 0. Clearly, such n0 exists, since
limn→∞ rn = 0 and Xfree has non-empty interior. Recall that ζd is the volume of the unit ball
in the d-dimensional Euclidean space and that the connection radius of the PRM∗ algorithm is
rn = γPRM(log n/n)1/d. Then, for all n ≥ n0

E
[
MPRM∗
n

∣∣A] =
ζd γPRM

µ(intrn(Xfree))
log n.

On the other hand, given that Xn /∈ intrn(Xfree), the rn-ball centered at Xn intersects a fragment
of Xfree that has volume less than the volume of an rn-ball in the d-dimensional Euclidean space.
Then, for all n > n0, E

[
MPRM∗
n

∣∣Ac] ≤ E
[
MPRM∗
n

∣∣A].
30

Hence, for all n ≥ n0,

E
[
MPRM∗
n

log n

]
≤ ζd γPRM

µ(intrn(Xfree))
≤ ζd γPRM

µ(intrn0 (Xfree))
.

Next, consider the RRG. Recall that η is the parameter provided in the Steer procedure (see
Section 3.1). Let D denote the diameter of the set Xfree, i.e., D := supx,x′∈Xfree

‖x − x′‖. Clearly,

whenever η ≥ D, V PRM∗ = V RRG = V RRT∗ surely, and the claim holds.
To prove the claim when η < D, let Cn denote the event that for any point x ∈ Xfree the RRG

algorithm has a vertex x′ ∈ V RRG
n such that ‖x − x′‖ ≤ η. As shown in the proof of Theorem 36

(see Lemma 63), there exists a, b > 0 such that P(Ccn) ≤ a e−b n. Then,

E
[
MRRG
n

]
= E

[
MRRG
n

∣∣Cn] P(Cn) + E
[
MRRG
n

∣∣Ccn] P(Ccn),

Clearly, E
[
MRRG
n

∣∣Ccn] ≤ n. Hence, the second term of the sum on the right hand side converges
to zero as n approaches infinity. On the other hand, given that Cn holds, the new vertex that
will be added to the graph at iteration n, if such a vertex is added at all, will be the same as the
last sample, Xn. To complete the argument, given any set of n points placed inside µ(Xfree), let
Nn denote the number of points that are inside a ball of radius rn that is centered at a point Xn

sampled uniformly at random from µ(Xfree). The expected number of points inside this ball is no

more than ζd r
d
n

µ(Xfree) n. Hence, E[MRRG
n |Cn] < ζd γPRM

µ(Xfree) log n, which implies the existence of a constant

φ1 ∈ R≥0 such that lim supn→∞ E[MRRG
n /(log n)] ≤ φ1.

Finally, since MRRT∗
n = MRRG

n holds surely, lim supn→∞ E[MRRG
n /(log n)] ≤ φ1 also. �

Trivially, Mk-PRM∗
n = Mk-RRG

n = Mk-RRT∗
n = k log n for all n with n/ log n > k.

Complexity of the CollisionFree procedure In this section, complexity of the CollisionFree
procedure in terms of the number of obstacles in the environment is analyzed, which is a widely-
studied problem in the literature (see, e.g., Lin and Manocha (2004) for a survey). The main result
is based on Six and Wood (1982), which shows that checking collision with m obstacles can be
executed in O(logdm) time using data structures based on spatial trees (see also Edelsbrunner and
Maurer, 1981; Hopcroft et al., 1983).

Complexity of the Nearest procedure The nearest neighbor search problem has been widely
studied in the literature, since it has many applications in, e.g., computer graphics, database
systems, image processing, data mining, pattern recognition, etc. (Samet, 1989b,a). Clearly, a
brute-force algorithm that examines every vertex runs in O(n) time and requires O(1) space. How-
ever, in many online real-time applications such as robotics, it is highly desirable to reduce the
computation time of each iteration under sublinear bounds, e.g., in O(log n) time, especially for
anytime algorithms that provide better solutions as the number of iterations increase.

Fortunately, existing algorithms for computing an “approximate” nearest neighbor, if not an
exact one, are computationally very efficient. In the sequel, a vertex y is said to be an ε-approximate
nearest neighbor of a point x if ‖y − x‖ ≤ (1 + ε) ‖z − x‖, where z is the true nearest neighbor of
x. An approximate nearest neighbor can be computed using balanced-box decomposition (BBD)
trees, which achieves O(cd,ε log n) query time using O(dn) space (Arya et al., 1999), where cd,ε ≤
dd1+6d/εed. This algorithm is computationally optimal in fixed dimensions, since it closely matches
a lower bound for algorithms that use a tree structure stored in roughly linear space (Arya et al.,
1999). Using approximate nearest neighbor computation in the context of both PRMs and RRTs
was discussed very recently in Yershova and LaValle (2007); Plaku and Kavraki (2008).

31

Let G = (V,E) be a graph with V ⊆ X and let x ∈ X . The discussion above implies that
the number of simple operations executed by the Nearest(G, x) procedure is Θ(log |V |) in fixed
dimensions, if the Nearest procedure is implemented using a tree structure that is stored in linear
space.

Complexity of the Near procedure Problems similar to that solved by the Near procedure are
also widely-studied in the literature, generally under the name of range search problems, as they
have many applications in, for instance, computer graphics and spatial database systems (Samet,
1989a). In the worst case and in fixed dimensions, computing the exact set of vertices that reside
in a ball of radius rn centered at a query point x takes O(n1−1/d + m) time using k-d trees (Lee
and Wong, 1977), where m is the number of vertices returned by the search (see also Chanzy et al.
(2001) for an analysis of the average case).

Similar to the nearest neighbor search, computing approximate solutions to the range search
problem is computationally easier. A range search algorithm is said to be ε-approximate if it returns
all vertices that reside in the ball of size rn and no vertices outside a ball of radius (1+ε) rn, but may
or may not return the vertices that lie outside the former ball and inside the latter ball. Computing
ε-approximate solutions using BBD-trees requires O(2d log n + d2(3

√
d/ε)d−1) time when using

O(dn) space, in the worst case (Arya and Mount, 2000). Thus, in fixed dimensions, the complexity
of this algorithm is O(log n + (1/ε)d−1), which is known to be optimal, closely matching a lower
bound (Arya and Mount, 2000). More recently, algorithms that can provide trade-offs between
time and space were also proposed (Arya et al., 2005).

Note that the Near procedure can be implemented as an approximate range search while main-
taining the asymptotic optimality guarantee. Notice that the expected number of vertices returned
by the Near procedure also does not change, except by a constant factor. Hence, the Near proce-
dure can be implemented to run in order log n expected time in the limit and linear space in fixed
dimensions.

Time complexity of the processing phase The following results characterize the asymptotic
computational complexity of various sampling-based algorithms in terms of the number of simple
operations such as comparisons, additions, and multiplications.

Let n denote the total number of iterations (or, alternatively, the number of samples), and m
denote the number of obstacles in the environment. Then, by Lemmas 40 and 41, NPRM

n , N sPRM
n ∈

Ω(n2 logdm). In the k-nearest sPRM and RRT algorithms, Ω(log n) time is spent on finding the
(k-)nearest neighbor(s) and Ω(logdm) time is spent on collision checking at each iteration. Hence,
Nk-sPRM
n , NRRT

n ∈ Ω(n log n+ n logdm).
In all the proposed algorithms, O(log n) time is spent on finding the near neighbors, and

log n logdm time is spent on collision checking. Thus, NALG
n ∈ O(n log n logdm) for ALG ∈

{PRM∗, k-PRM∗, RRG, k-RRG,RRT∗, k-RRT∗}.

Time complexity of the query phase After algorithm ALG returns the graph GALG
n , the op-

timal path must be extracted from this graph using, e.g., Dijkstra’s shortest path algorithm (Schri-
jver, 2003). In this section, the complexity of this operation, called the query phase, is discussed.

The following lemma yields the asymptotic computational complexity of computing shortest
paths. Let G = (V,E) be a graph. A length function l : E → R>0 is a function that assigns each
edge in E a positive length. Given a vertex v ∈ V , the shortest paths tree for G, l, and v is a graph
G′ = (V,E′), where E′ ⊆ E such that for any v′ ∈ V \ {v}, there exists a unique path in G that
starts from v and reaches v′, moreover, this path is the optimal such path in G.

32

Lemma 43 (Complexity of shortest paths (Schrijver, 2003)) Given a graph G = (V,E), a
length function l : E → R>0, and a vertex v ∈ V , the shortest path tree for G, l, and v can be found
in time O(|V | log(|V |) + |E|).

It remains to determine the number of vertices and edges in GALG
n = (V ALG

n , EALG
n), for each

algorithm ALG.
Trivially, |EALG

n | ∈ Ω(n) holds for all the algorithms discussed in this paper, in particular,
for ALG ∈ {PRM, k-sPRM,RRT}. For the sPRM algorithm, a stronger bound can be provided:
|EsPRM

n | ∈ Ω(n2). To prove this claim, consider the problem instance (Xfree, xinit,Xgoal), where
Xfree = X = (0, 1)d. Then, the straight path between any two vertices will be collision-free. Thus,
the number of edges is exactly equal to the number of calls to the CollisionFree procedure. Then,
the result follows from Lemma 41.

For the proposed algorithms, |EPRM∗
n |, |ERRG

n | ∈ O(n log n). Since the number of edges is always
less than or equal to the total number of calls to the CollisionFree procedure, this claim follows
directly from Lemma 42. Finally, |Ek-PRM∗

n |, |Ek-RRG
n | ∈ O(n log n) and |ERRT∗

n |, |Ek-RRT∗
n | ∈ O(n)

all hold trivially.

Space complexity Space complexity of an algorithm ALG is defined as the amount of memory
that is used by ALG to compute the graph GALG

n = (V ALG
n , EALG

n). Clearly, in all algorithms
discussed in this paper, the space complexity is the size of GALG

n , i.e., |V ALG
n |+ |EALG

n |. Since the
number of edges is at least as much as the number of vertices in GALG

n for all algorithms discussed
in this paper, the space complexity of an algorithm, in this context, is the number edges in the
graph that it returns, which was determined in the previous section.

5 Numerical Experiments

This section is devoted to an experimental study of the algorithms considered in the paper. All
algorithms were implemented in C and run on a computer with 2.66 GHz processor and 4GB RAM
running the Linux operating system. Unless otherwise noted, total variation of a path is its cost.

A first set of experiments were run to illustrate the different performance of k-nearest PRM and
of PRM∗. The k-nearest PRM and the PRM∗ algorithms were run alongside in two dimensional
configuration-space and the cost of the best path in both algorithms is plotted versus the number of
iterations in Figure 10. The k-nearest PRM does not converge to optimal solutions, unlike PRM∗.
The performance of the PRM∗ algorithm is also shown in configuration spaces of dimensions up to
five in Figure 11.

The main bulk of the experiments were aimed at demonstrating the performance of the RRT∗

algorithm, especially in comparison with its “standard” counterpart, i.e., RRT. Three problem
instances were considered. In the first two, the cost function is the Euclidean path length.

The first scenario includes no obstacles. Both algorithms are run in a square environment. The
trees maintained by the algorithms are shown in Figure 12 at several stages. The figure illustrates
that, in this case, the RRT algorithm does not improve the feasible solution to converge to an
optimum solution. On the other hand, running the RRT∗ algorithm further improves the paths in
the tree to lower cost ones. The convergence properties of the two algorithms are also investigated
in Monte-Carlo runs. Both algorithms were run for 20,000 iterations 500 times and the cost of the
best path in the trees were averaged for each iteration. The results are shown in Figure 13, which
shows that in the limit the RRT algorithm has cost very close to a

√
2 factor the optimal solution

(see LaValle and Kuffner (2009) for a similar result in a deterministic setting), whereas the RRT∗

converges to the optimal solution. Moreover, the variance over different RRT runs approaches

33

2.5, while that of the RRT∗ approaches zero. Hence, almost all RRT∗ runs have the property of
convergence to an optimal solution, as expected.

In the second scenario, both algorithms are run in an environment in presence of obstacles.
In Figure 14, the trees maintained by the algorithms are shown after 20,000 iterations. The tree
maintained by the RRT∗ algorithm is also shown in Figure 15 in different stages. It can be observed
that the RRT∗ first rapidly explores the state space just like the RRT. Moreover, as the number
of samples increase, the RRT∗ improves its tree to include paths with smaller cost and eventually
discovers a path in a different homotopy class, which reduces the cost of reaching the target consid-
erably. Results of a Monte-Carlo study for this scenario is presented in Figure 16. Both algorithms
were run alongside up until 20,000 iterations 500 times and cost of the best path in the trees were
averaged for each iteration. The figures illustrate that all runs of the RRT∗ algorithm converges
to the optimum, whereas the RRT algorithm is about 1.5 of the optimal solution on average. The
high variance in solutions returned by the RRT algorithm stems from the fact that there are two
different homotopy classes of paths that reach the goal. If the RRT luckily converges to a path of
the homotopy class that contains an optimum solution, then the resulting path is relatively closer
to the optimum than it is on average. If, on the other hand, the RRT first explores a path of the
second homotopy class, which is often the case for this particular scenario, then the solution that
RRT converges to is generally around twice the optimum.

Finally, in the third scenario, where no obstacles are present, the cost function is selected to
be the line integral of a function, which evaluates to 2 in the high cost region, 1/2 in the low cost
region, and 1 everywhere else. The tree maintained by the RRT∗ algorithm is shown after 20,000
iterations in Figure 17. Notice that the tree either avoids the high cost region or crosses it quickly,
and vice-versa for the low-cost region. (Incidentally, this behavior corresponds to the well known
Snell-Descartes law for refraction of light, see Rowe and Alexander (2000) for a path-planning
application.)

To compare the running time, both algorithms were run alongside in an environment with no
obstacles for up to one million iterations. Figure 18, shows the ratio of the running time of RRT∗

and that of RRT versus the number of iterations averaged over 50 runs. As expected from the
complexity analysis of Section 4.3, this ratio converges to a constant value. A similar figure is
produced for the second scenario and provided in Figure 19.

The RRT∗ algorithm was also run in a 5-dimensional state space. The number of iterations
versus the cost of the best path averaged over 100 trials is shown in Figure 20. A comparison
with the RRT algorithm is provided in the same figure. The ratio of the running times of the
RRT∗ and the RRT algorithms is provided in Figure 21. The same experiment is carried out for a
10-dimensional configuration space. The results are shown in Figure 22.

6 Conclusion

This paper presented the results of a thorough analysis of sampling-based algorithms for optimal
path planning. It is shown that broadly used algorithms from the literature, while probabilistically
complete, are not asymptotically optimal, i.e., they will return a solution to the path planning
problem with high probability if one exists, but the cost of the solution returned by the algorithm
will not converge to the optimal cost as the number of samples increases. In particular, it is
proven that the PRM and RRT algorithms are not asymptotically optimal. A simplified version
of PRM is asymptotically optimal, but is computationally expensive. In addition, it is shown that
certain heuristic versions of PRM are not only not asymptotically complete, but also not necessarily
complete.

34

100 1,000 10,000 100,000 1,000,000
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

Number of iterations

N
or

m
al

iz
ed

 c
os

t

k=5

k=7

k=10

k=13

k=15
PRM*

Figure 10: The cost of the best path in the k-nearest sPRM algorithm, and that in the PRM∗

algorithm are shown versus the number of iterations in simulation examples with no obstacles. The
k-nearest sPRM algorithm was run for k = 5, 7, 10, 13, 15, each of which is shown separately in
blue, and the PRM∗ algorithm is shown in red. The values are normalized so that the cost of the
optimal path is equal to one. The iterations were stopped when the query phase of the algorithms
exceeded the memory limit (approximately 4GB).

In order to address these limitations of existing algorithms, a number of new algorithms are
introduced, and proven to be asymptotically optimal and computational efficient, with respect to
probabilistically complete algorithms in this class. In other words, asymptotic optimality imposes
only a constant factor increase in complexity with respect to probabilistic completeness. The first
algorithm, called PRM∗, is a variant of PRM, with a variable connection radius that scales as
log(n)/n, where n is the number of samples. In other words, the average number of connections
made at each iteration is proportional to log(n). The second new algorithm, called RRG, incremen-
tally builds a connected roadmap, augmenting the RRT algorithm with connections within a ball
scaling as log(n)/n. The third new algorithm, called RRT∗, is a version of RRG that incrementally
builds a tree. Experimental evidence that demonstrate the effectiveness of the algorithms proposed
and support the theoretical claims were also provided.

A common theme in the paper is that, in order to ensure both asymptotic optimality and
computational efficiency, connections between samples should be sought within balls of radius
scaling as log(n)/n. If these balls shrink faster as n increases, the algorithms are not asymptotically
optimal (but may still be probabilistically complete); on the other hand, if these balls shrink slower,
the complexity of the algorithms will suffer. On average, the proposed scaling laws will result in an
average number of connections per iteration that is proportional to log(n). Hence, it is natural to

35

10
2

10
3

10
4

10
5

1.2794

1.2844

1.2894

1.2944

1.2994

1.3044

1.3094

1.3144
1.3165

Number of samples

C
os

t

(a)

10
2

10
3

10
4

1.2005

1.2055

1.2105

1.2155

1.2205

1.2255

1.2305

1.2355

1.2384

Number of samples

C
os

t

(b)

10
2

10
3

10
4

1.1817

1.1867

1.1917

1.1967

1.2017

1.2067

1.2117

1.2167

1.2217

1.2267
1.228

Number of samples

C
os

t

(c)

10
2

10
3

10
4

1.1746

1.1796

1.1846

1.1896

1.1946

1.1996

1.2046

1.2096

1.2146

1.2173

Number of samples

C
os

t

(d)

Figure 11: Cost of the best path in the PRM∗ algorithm is shown in up to 2, 3, 4, and 5 dimensional
configuration spaces, in Figures (a), (b), (c), and (d), respectively. The initial condition and goal
region are on opposite vertices of the unit cube (0, 1)d. The obstacle region is a cube centered at
(0.5, 0.5, . . . , 0.5) and has volume 0.5 in all cases.

consider variants of these algorithms that make connections to k log(n) neighbors surely. Indeed,
it is shown that these algorithms do share the same asymptotic optimality and computational
efficiency properties of their counterparts, as long as k is no smaller than a constant k∗RRG. It
is remarkable that this constant only depends on the dimension of the space, and is otherwise
independent from the problem instance.

The analysis of the results in the paper relies on techniques used to analyze random geometric
graphs. Indeed, the algorithms considered in this paper build graphs that have many characteristics
in common with well known classes of random geometric graphs. Interestingly, such geometric
graphs exhibit phase transition phenomena, including percolation and connectivity, for thresholds
matching those found for probabilistic completeness and asymptotic optimality of sampling-based
algorithms. This leads to a natural conjecture that a sampling-based path planning algorithm is
probabilistically complete if and only if the underlying random geometric graph percolates, and is
asymptotically optimal if and only if the underlying random geometric graph is connected.

36

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(i)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(j)

Figure 12: A Comparison of the RRT∗ and RRT algorithms on a simulation example with no
obstacles. Both algorithms were run with the same sample sequence. Consequently, in this case,
the vertices of the trees at a given iteration number are the same for both of the algorithms; only
the edges differ. The edges formed by the RRT algorithm are shown in (a)-(d) and (i), whereas
those formed by the RRT∗ algorithm are shown in (e)-(h) and (j). The tree snapshots (a), (e)
contain 250 vertices, (b), (f) 500 vertices, (c), (g) 2500 vertices, (d), (h) 10,000 vertices and (i),
(j) 20,000 vertices. The goal regions are shown in magenta (in upper right). The best paths that
reach the target in all the trees are highlighted with red.37

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
9

10

11

12

13

14

Number of iterations

C
os

t

(a)

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.5

1

1.5

2

2.5

3

Number of iterations

V
ar

ia
nc

e

(b)

Figure 13: The cost of the best paths in the RRT (shown in red) and the RRT∗ (shown in blue)
plotted against iterations averaged over 500 trials in (a). The optimal cost is shown in black. The
variance of the trials is shown in (b).

The work presented in this paper can be extended in numerous directions. First of all, it would
be of interest to establish broader connections between sampling-based path planning algorithms
and random geometric graphs, e.g., by proving or disproving the conjecture above, and by possibly
improving on current algorithms through a better understanding of the underlying mathematical
objects. Similar analysis techniques can also be used to analyze other sampling-based path planning
algorithms that were not analyzed in this paper, such as EST. In addition, it is of interest to inves-
tigate deterministic sampling-based algorithms, in which samples are generated using deterministic
dense sequences of points with, e.g., low dispersion, as opposed to random sequences.

Second, it is of great practical interest to address motion planning problems subject to more
complex constraints. For example, motion planning problems for mobile robots should consider
the robot’s dynamics, and hence differential constraints on the feasible trajectories (these are also
called kino-dynamic planning problems). In addition, it is of interest to consider optimal planning
problems in the presence of temporal/logic constraints on the trajectories, e.g., expressed using
formal specification languages such as Linear Temporal Logic, or the µ-calculus. Such constraints
correspond to, e.g., rules of the road constraints for autonomous ground vehicles, mission spec-
ifications for autonomous robots, and rules of engagement in military applications. Ultimately,
incremental sampling-based algorithms with asymptotic optimality properties may provide the ba-

38

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

Figure 14: A Comparison of the RRT (shown in (a)) and RRT∗ (shown in (b)) algorithms on a
simulation example with obstacles. Both algorithms were run with the same sample sequence for
20,000 samples. The cost of best path in the RRT and the RRG were 21.02 and 14.51, respectively.

sic elements for the on-line solution of differential games, as those arising when planning in the
presence of dynamic obstacles.

Finally, it is noted that the proposed algorithms may have applications outside of the robotic
motion planning domain. In fact, the class of sampling-based algorithm described in this paper
can be readily extended to deal with problems described by partial differential equations, such as
the eikonal equation and the Hamilton-Jacobi-Bellman equation.

Acknowledgments

The authors are grateful to Professors M.S. Branicky, G.J. Gordon, and S. LaValle, as well as the
anonymous reviewers, for their insightful comments on draft versions of this paper. This research
was supported in part by the Michigan/AFRL Collaborative Center on Control Sciences, AFOSR
grant #FA 8650-07-2-3744, and by the National Science Foundation, grant CNS-1016213.

References

M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions. Dover, 1964.

R. Alterovitz, S. Patil, and A. Derbakova. Rapidly-exploring roadmaps: Weighing exploration
vs. reginement in optimal motion planning. In IEEE Conference on Robotics and Automation
(ICRA), 2011.

39

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

Figure 15: RRT∗ algorithm shown after 500 (a), 1,500 (b), 2,500 (c), 5,000 (d), 10,000 (e), 15,000
(f) iterations.

S. Arya and D. M. Mount. Approximate range searching. Computational Geometry: Theory and
Applications, 17:135–163, 2000.

S. Arya, D. M. Mount, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest
neighbor search in fixed dimensions. Journal of the ACM, 45(6):891–923, November 1999.

S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical range
counting. In Symposium on Discrete Algorithms, 2005.

P. Balister, B. Bollobás, A. Sarkar, and M. Walters. Connectivity of random k-nearest neighbour
graphs. Advances in Applied Probability, 37:1–24, 2005.

P. Balister, B. Bollobás, and A. Sarkar. Percolation, connectivity, coverage and colouring of random
geometric graphs. In B. Bollobás, R. Kozma, and D. Miklós, editors, Handbook of Large-Scale
Random Networks, volume 18 of Bolyai Society Mathematical Studies, chapter 2, pages 117–142.
Springer, 2009a.

40

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
14

16

18

20

22

24

Number of iterations
C

os
t

(a)

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

2

4

6

8

10

12

14

Number of iterations

V
ar

ia
nc

e

(b)

Figure 16: An environment cluttered with obstacles is considered. The cost of the best paths in
the RRT (shown in red) and the RRT∗ (shown in blue) plotted against iterations averaged over
500 trials in (a). The optimal cost is shown in black. The variance of the trials is shown in (b).

P. Balister, B. Bollobás, A. Sarkar, and M. Walters. A critical constant for the k nearest-neighbour
model. Advances in Applied Probability, 41(1):1–12, 2009b.

J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach.
International Journal of Robotics Research, 10(6):628–649, 1993.

J. Barraquand, L. E. Kavraki, J. C. Latombe, T. Li, R. Motwani, and P. Raghavan. A random
sampling scheme for path planning. International Journal of Robotics Research, 16:759–774,
1997.

D. Berenson, J. Kuffner, and H. Choset. An optimization approach to planning for mobile manip-
ulation. In IEEE International Conference on Robotics and Automation, 2008.

D. Berenson, T. Simeon, and S. Srinivasa. Addressing cost-space chasms in manipulation planning.
In IEEE Conference on Robotics and Automation (ICRA), 2011.

A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of continuous
and hybrid systems. In R. Alur and G.J. Pappas, editors, Hybrid Systems: Computation and
Control, number 2993 in Lecture Notes in Computer Science, pages 142–156. Springer-Verlag,
Philadelphia, PA, March 2004.

B. Bollobás. Random Graphs. Cambridge University Press, second edition, 2001.

41

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 17: RRT∗ algorithm at the end of iteration 20,000 in an environment with no obstacles.
The upper yellow region is the high-cost region, whereas the lower yellow region is low-cost.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Number of iterations (in millions)

R
un

ni
ng

 ti
m

e
ra

tio

Figure 18: A comparison of the running time of the RRT∗ and the RRT algorithms. The ratio of
the running time of the RRT∗ over that of the RRT up until each iteration is plotted versus the
number of iterations.

B. Bollobás and O. M. Riordan. Percolation. Cambridge University Press, 2006.

M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-randomized path planning. In IEEE
Conference on Robotics and Automation, 2001.

M. S. Branicky, M. M. Curtis, J. A. Levine, and S. B. Morgan. RRTs for nonlinear, discrete, and
hybrid planning and control. In IEEE Conference on Decision and Control, 2003.

M. S. Branicky, M. M. Curtis, J. Levine, and S. Morgan. Sampling-based planning, control, and

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Number of iterations (in millions)

R
un

ni
ng

 ti
m

e
ra

tio

Figure 19: A comparison of the running time of the RRT∗ and the RRT algorithms in an environ-
ment with obstacles. The ratio of the running time of the RRT∗ over that of the RRT up until
each iteration is plotted versus the number of iterations.

verification of hybrid systems. IEEE Proc. Control Theory and Applications, 153(5):575–590,
Sept. 2006.

R. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with
rotation. In International Joint Conference on Artificial Intelligence, 1983.

J. Bruce and M.M. Veloso. Real-Time Randomized Path Planning for Robot Navigation, volume
2752 of Lecture Notes in Computer Science, chapter RoboCup 2002: Robot Soccer World Cup
VI, pages 288–295. Springer, 2003.

A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning under uncertainty.
In IEEE Conference on Robotics and Automation (ICRA), 2011.

J. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In
IEEE Symposium on Foundations of Computer Science (FoCS), pages 49–60, Los Angeles, CA,
1987.

P. Chanzy, L. Devroye, and C. Zamora-Cura. Analysis of range search for random k-d trees. Acta
Informatica, 37:355–383, 2001.

H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston,
MA, 2005.

J. Cortes, L. Jailet, and T. Simeon. Molecular disassembly with RRT-like algorithms. In IEEE
International Conference on Robotics and Automation (ICRA), 2007.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Experimental Robotics, chapter Path Planning
for Autonomous Driving in Unknown Environments, pages 55–64. Springer, 2009.

D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

43

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
13

14

15

16

17

18

19

20

21

22

Number of iterations

C
os

t

(a)

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0

5

10

15

20

25

Number of iterations

V
ar

ia
nc

e

(b)

Figure 20: The cost of the best paths in the RRT (shown in red) and the RRT∗ (shown in blue)
run in a 5 dimensional obstacle-free configuration space plotted against iterations averaged over
100 trials in (a). The optimal cost is shown in black. The variance of the trials is shown in (b).

H. Edelsbrunner and H. A. Maurer. On the intersection of orthogonal objects. Information Pro-
cessing Letters, 13(4,5):177–181, April 1981.

D Eppstein, MS Paterson, and F F Yao. On nearest-neighbor graphs. Discrete and Com-
putational Geometry, 17:263–282, Jan 1997. URL http://www.springerlink.com/index/

RM3FJ00T9AD4WBX9.pdf.

D. Ferguson and A. Stentz. Anytime RRTs. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2006.

P. W. Finn and L. E. Kavraki. Computational approaches to drug design. Algorithmica, 25:347–371,
1999.

E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles.
Journal of Guidance, Control, and Dynamics, 25(1):116–129, 2002.

S. S. Ge and Y.J. Cui. Dynamic motion planning for mobile robots using potential field method.
Autonomous Robots, 13(3):207–222, 2002.

E. N. Gilbert. Random plane networks. J. Soc. Indust. Appl. Math., 9(4):533–543, 1961.

44

http://www.springerlink.com/index/RM3FJ00T9AD4WBX9.pdf
http://www.springerlink.com/index/RM3FJ00T9AD4WBX9.pdf

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0

5

10

15

20

25

30

35

Number of iterations

R
un

ni
ng

 ti
m

e
ra

tio

(a)

Figure 21: The ratio of the running time of the RRT and the RRT∗ algorithms is shown versus the
number of iterations.

G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, Third
edition, 2001.

P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In
W. M. McEneany, G. Yin, and Q. Zhang, editors, Stochastic Analysis, Control, Optimization
and Applications: A Volume in Honor of W.H. Fleming, pages 547–566. Birkhäuser, Boston,
MA, 1998.

P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. on Information
Theory, 46:388–404, 2000.

N. Henze. On the fraction of points with specified nearest-neighbour interrelations and degree of
attraction. Advances in Applied Probability, 19:873–895, 1987.

J.E. Hopcroft, J.T. Schwartz, and M. Sharir. Efficient detection of intersections among spheres.
Int. Journal of Robotics Research, 2:77–80, 1983.

D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In IEEE
Conference on Robotics and Automation, 1997.

D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J.
of Computational Geometry and Applications, 9(4&5):495–512, 1999.

D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic motion planning with
moving obstacles. International Journal of Robotics Research, 21(3):233–255, 2002.

D. Hsu, J. C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic
roadmap planning. International Journal of Robotics Research, 25:7, 2006.

L. Jaillet, J. Cortes, and T .Simeon. Sampling-based path planning on configuration-space
costmaps. IEEE Transactions on Robotics, 26(4):635–646, August 2010.

S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incremental sampling-
based methods. In IEEE Conf. on Decision and Control, 2010a.

45

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
18

20

22

24

26

28

30

32

Number of iterations

C
os

t

(a)

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
0

5

10

15

20

25

30

35

40

Number of iterations

V
ar

ia
nc

e

(b)

Figure 22: The cost of the best paths in the RRT (shown in red) and the RRT∗ (shown in blue)
run in a 10 dimensional configuration space involving obstacles plotted against iterations averaged
over 25 trials in (a). The variance of the trials is shown in (b).

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion planning.
In Robotics: Science and Systems (RSS), 2010b.

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for a class of pursuit-evasion
games. In Workshop on Algorithmic Foundations of Robotics (WAFR), pages 71–87, 2010c.

S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion planning using the
RRT∗. In IEEE Conference on Robotics and Automation (ICRA), 2011.

L. Kavraki and J. C. Latombe. Randomized preprocessing of configuration space for fast path
planning. In IEEE International Conference on Robotics and Automation, 1994.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 1996.

L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. Analysis of probabilistic roadmaps for path
planning. IEEE Transactions on Roborics and Automation, 14(1):166–171, 1998.

46

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal
of Robotics Research, 5(1):90–98, 1986.

Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot
navigation. In IEEE Conference on Robotics and Automation, 1991.

E. Koyuncu, N.K. Ure, and G. Inalhan. Integration of path/manuever planning in complex en-
vironments for agile maneuvering UCAVs. Jounal of Intelligent and Robotic Systems, 57(1–4):
143–170, 2010.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-quert path planning.
In Proceedings of the IEEE International Conference on Robotics and Automation, 2000.

J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-stable motion
planning for humanoid robots. Autonomous Robots, 15:105–118, 2002.

Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J.P. How. Real-time motion planning
with applications to autonomous urban driving. IEEE Transactions on Control Systems, 17(5):
1105–1118, 2009.

A. L. Ladd and L. Kavraki. Measure theoretic analysis of probabilistic path planning. IEEE
Transactions on Robotics and Automation, 20(2):229–242, 2004.

J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

J. C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and other artifacts.
International Journal of Robotics Research, 18(11):1119–1128, 1999.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International Journal of
Robotics Research, 20(5):378–400, May 2001.

S. M. LaValle and J. J. Kuffner. Space filling trees. Technical Report CMU-RI-TR-09-47, Carnegie
Mellon University, The Robotics Institute, 2009.

S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between classical grid
search and probabilistic roadmaps. International Journal of Robotics Research, 23(7–8):673–692,
2004.

D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in multidi-
mensional binary search trees and quad trees. Acta Informatica, 9:23–29, 1977.

M. Likhachev and D. Ferguson. Planning long dynamically-feasible maneuvers for autonomous
vehicles. International Journal of Robotics Research, 28(8):933–945, 2009.

M. Likhachev, G. Gordon, and S. Thrun. Anytime A* with provable bounds on sub-optimality. In
Advances in Neural Information Processing Systems, 2004.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime search in dynamic
graphs. Artificial intelligence Journal, 172(14):1613–1643, 2008.

M. C. Lin and D. Manocha. Collision and proximity queries. In J.E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC, second
edition, 2004.

47

S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion planning. In P. Dario
and R. Chatila, editors, Eleventh International Symposium on Robotics Research, pages 36–54.
Springer, 2005.

Y. Liu and N.I. Badler. Real-time reach planning for animated characters using hardware acceler-
ation. In IEEE International Conference on Computer Animation and Social Characters, pages
86–93, 2003.

T. Lozano-Perez and M. A. Wesley. An algorithm for planning collision-free paths among polyhedral
obstacles. Communications of the ACM, 22(10):560–570, 1979.

B. Luders, S. Karaman, E. Frazzoli, and J. P. How. Bounds on tracking error using closed-loop
rapidly-exploring random trees. In American Control Conference, 2010.

R. Meester and R. Roy. Continuum Percolation. Cambridge University Press, 1996.

J. R. Munkres. Topology. Prentice Hall, second edition, 2000.

O. Nechushtan, B. Raveh, and D. Halperin. Sampling-diagram automata: a tool for analyzing path
quality in tree planners. In D. Hsu, V. Isler, J. C. Latombe, and M.C. Lin, editors, Algorithmic
Foundations of Robotics IX, volume 68 of Springer tracts in advanced robotics, pages 285–301.
Springer, 2010.

H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods. Society for Indus-
trial and Applied Mathematics, 1992.

M. D. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

E. Plaku and L. E. Kavraki. Quantitative analysis of nearest-neighbors search in high-dimensional
sampling-based motion planning. In Workshop on Algorithmic Foundations of Robotics (WAFR),
2008.

E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, and L.E. Kavraki. Sampling-based roadmap of trees
for parallel motion planning. IEEE Transactions on Robotics, 21:597–608, 2005.

S. Prentice and N. Roy. The belief roadmap: Efficient planning in blief space by factoring the
covariance. International Journal of Robotics Research, 28(11–12):1448–1465, 2009.

J. Quintanilla, S. Torquato, and R.M. Ziff. Efficient measurement of the percolation threshold for
fully penetrable discs. Journal of Physics A, 33(42):L399–L407, 2000.

J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings of the IEEE
Symposium on Foundations of Computer Science, 1979.

S. I. Resnick. A probability path. Birkhäuser, 1999.

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential fields. IEEE
Transactions on Robotics and Automation, 8(5):501–518, 1992.

N. C. Rowe and R. S. Alexander. Finding optimal-path maps for path planning across weighted
regions. The International Journal of Robotics Research, 19:83–95, 2000.

M. Sahimi. Applications of Percolation Theory. Taylor & Francis, 1994.

48

H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989a.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processesing and
Gis. Addison-Wesley, 1989b.

A. Schrijver. Combinatorial Optimization, volume A. Springer, 2003.

J. T. Schwartz and M. Sharir. On the ‘piano movers’ problem: II. general techniques for computing
topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4:298–351,
1983.

A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake. Bounding on rough terrain with the
LittleDog robot. Submitted for publication, 2011.

H. Six and D. Wood. Counting and reporting intersections of D-ranges. IEEE Trans. on Computers,
pages 46–55, 1982.

D. Stentz. The focussed D* algorithm for real-time replanning. In International Joint Conference
on Artificial Intelligence, 1995.

M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour. Manipulation planning among movable
obstacles. In IEEE International Conference on Robotics and Automation, 2007.

D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and Its Applications. John Wiley &
Sons, 1995.

R. Tedrake, I. R. Manchester, M. M. Tobekin, and J. W. Roberts. LQR-trees: Feedback motion
planning via sums of squares verification. International Journal of Robotics Research (to appear),
2010.

S. Teller, M. R. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J.P. How,
A. S. Huang, J. Jeon, S. Karaman, B. Luders, N. Roy, and T. Sainath. A voice-commandable
robotic forklift working alongside humans in minimally-prepared outdoor environments. In IEEE
International Conference on Robotics and Automation, 2010.

C. Urmson and R. Simmons. Approaches for heuristically biasing RRT growth. In Proceedings of
the IEEE/RSJ International Conference on Robotics and Systems (IROS), 2003.

A. R. Wade. Explicit laws of large numbers for random nearest-neighbor-type graphs. Advances in
Applied Probability, 39:326–342, 2007.

A. R. Wade. Asymptotic theory for the multidimensional random on-line nearest-neighbour graph.
Stochastic Processes and their Applications, 119(6):1889–1911, 2009.

N. A. Wedge and M.S. Branicky. On heavy-tailed runtimes and restarts in rapidly-exploring random
trees. In Twenty-third AAAI Conference on Artificial Intelligence, 2008.

F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless networks.
Wireless Networks, 10:169–181, 2004.

A. Yershova and S. M. LaValle. Improving motion-planning algorithms by efficient nearest-neighbor
searching. IEEE Transactions on Robotics, 23(1):151–157, 2007.

49

A. Yershova and S. M. LaValle. Motion planning in highly constrained spaces. Technical report,
University of Illinois at Urbana-Champaign, 2008.

M. Zucker, J. J. Kuffner, and M. S. Branicky. Multiple RRTs for rapid replanning in dynamic
environments. In IEEE Conference on Robotics and Automation, 2007.

Appendix

A Notation

Let N denote the set of positive integers and R denote the set of reals. Let N0 = N ∪ {0}, and
R>0, R≥0 denote the sets of positive and non-negative reals, respectively. A sequence on a set A
is a mapping from N to A, denoted as {ai}i∈N, where ai ∈ A is the element that i ∈ N is mapped
to. Given a, b ∈ R, closed and open intervals between a and b are denoted by [a, b] and (a, b),
respectively. The Euclidean norm is denoted by ‖·‖. Given a set X ⊂ Rd, the closure of X is denoted
by cl(X). The closed ball of radius r > 0 centered at x ∈ Rd, i.e., , i.e., {y ∈ Rd | ‖y − x‖ ≤ r},
is denoted as Bx,r; Bx,r is also called the r-ball centered at x. Given a set X ⊆ Rd, the Lebesgue
measure of X is denoted by µ(X). The Lebesgue measure of a set is also referred to as its volume.
The volume of the unit ball in Rd, is denoted by ζd, i.e., ζd = µ(B0,1). The letter e is used to denote
the base of the natural logarithm, also called Euler’s number.

Given a probability space (Ω,F ,P), where Ω is a sample space, F ⊆ 2Ω is a σ−algebra, and
P is a probability measure, an event A is an element of F . The complement of an event A
is denoted by Ac. Given a sequence of events {An}n∈N, the event ∩∞n=1 ∪∞i=n Ai is denoted by
lim supn→∞An (also called the event that An occurs infinitely often); the event ∪∞n=1 ∩∞i=n Ai is
denoted by lim infn→∞An. A (real) random variable is a measurable function that maps Ω into R.
An extended (real) random variable can also take the values ±∞. The expected value of a random
variable Y is E[Y] =

∫
Ω Y dP. A sequence of random variables {Yn}n∈N is said to converge surely

to a random variable Y if limn→∞ Yn(ω) = Y (ω) for all ω ∈ Ω; the sequence is said to converge
almost surely if P({limn→∞ Yn = Y }) = 1. Finally, if ϕ(ω) is a property that is either true or
false for a given ω ∈ Ω, the event that denotes the set of all samples ω for which ϕ(ω) holds, i.e.,
{ω ∈ Ω |ϕ(ω) holds}, is written as {ϕ}, e.g., {ω ∈ Ω | limn→∞ Yn(ω) = Y (ω)} is simply written as
{limn→∞ Yn = Y }. The Poisson random variable with parameter λ is denoted by Poisson(λ). The
binomial random variable with parameters n and p is denoted by Binomial(n, p).

Let f(n) and g(n) be two functions with domain and range N or R. The function f(n) is
said to be O(g(n)), denoted as f(n) ∈ O(g(n)), if there exists two constants M and n0 such that
f(n) ≤Mg(n) for all n ≥ n0. The function f(n) is said to be Ω(g(n)), denoted as f(n) ∈ Ω(g(n)),
if there exists constants M and n0 such that f(n) ≥ Mg(n) for all n ≥ n0. The function f(n) is
said to be Θ(g(n)), denoted as f(n) ∈ Θ(g(n)), if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

Let X be a subset of Rd. A (directed) graph G = (V,E) on X is composed of a vertex set V
and an edge set E, such that V is a finite subset of X , and E is a subset of V ×V . A directed path
on G is a sequence (v1, v2, . . . , vn) of vertices such that (vi, vi+1) ∈ E for all 1 ≤ i ≤ n− 1. Given
a vertex v ∈ V , the sets {u ∈ V | (u, v) ∈ E} and {u ∈ V | (v, u) ∈ E} are said to be its incoming
neighbors and outgoing neighbors, respectively. A (directed) tree is a directed graph, in which each
vertex but one has a unique incoming neighbor; the vertex with no incoming neighbor is called the
root vertex. Vertices of a tree are often also called nodes.

50

B Proof of Theorem 33 (Non-optimality of RRT)

For simplicity, the theorem will be proven assuming that (i) the environment contains no obstacles,
i.e., Xfree = [0, 1]d, and (ii) the parameter η of the steering procedure is set large enough, e.g.,
η ≥ diam (Xfree) =

√
d. On one hand, considering this case is enough to prove that the RRT

algorithm is not asymptotically optimal, as it demonstrates a case for which the RRT algorithm
fails to converge to an optimal solution, although the problem instance is clearly robustly optimal.
On the other hand, these assumptions are not essential, and the claims extend to the more general
case, but the technical details of the proof are considerably more complicated.

The proof can be outlined as follows. Order the vertices in the RRT according to the iteration
at which they are added to the tree. The set of vertices that contains the k-th child of the root
along with all its descendants in the tree is called the k-th branch of the tree. First, it is shown
that a necessary condition for the asymptotic optimality of RRT is that infinitely many branches
of the tree contain vertices outside a small ball centered at the initial condition. Then, the RRT
algorithm is shown to violate this condition, with probability one.

B.1 A necessary condition

First, we provide a necessary condition for the RRT algorithm to be asymptotically optimal.

Lemma 44 Let 0 < R < infy∈Xgoal
‖y − xinit‖. The event {limN→∞ Y

RRT
n = c∗} occurs only if the

k-th branch of the RRT contains vertices outside the R-ball centered at xinit for infinitely many k.

Proof Let {x1, x2, . . . } denote the set of children to the root vertex in the order they are added
to the tree. Let Γ(xk) denote the optimal cost of a path starting from the root vertex, passing
through xk, and reaching the goal region. By our assumption that the measure of the set of all
points that are on the optimal path is zero (see Assumption 27 and Lemma 28), the probability
that Γ(xk) = c∗ is zero for all k ∈ N. Hence,

P
(⋃

k∈N
{Γ(xk) = c∗}

)
≤

∞∑
k=1

P
(
{Γ(xk) = c∗}

)
= 0.

Let Ak denote the event that at least one vertex in the k-th branch of the tree is outside the ball
of radius R centered at xinit in some iteration of the RRT algorithm. Consider the case when the
event {lim supk→∞Ak} does not occur and the events {Γ(xk) > c∗} occur for all k ∈ N. Then, Ak
occurs for only finitely many k. Let K denote the largest number such that AK occurs. Then, the
cost of the best path in the tree is at least sup{Γ(xk) | k ∈ {1, 2, . . . ,K}}, which is strictly larger
than c∗, since {Γ(xk) > c∗} for all finite k. Thus, limn→∞ Y

RRT
n > c∗ must hold. That is, we have

argued that (
lim sup
k→∞

Ak

)c
∩
(⋂
k∈N
{Γ(xk) > c∗}

)
⊆
{

lim
n→∞

Y RRT
n > c∗

}
.

Taking the complement of both sides and using monotonicity of probability measures,

P
({

lim
n→∞

Y RRT
n = c∗

})
≤ P

((
lim sup
k→∞

Ak
)
∪
(⋃

k∈N
{Γ(xk) = c∗}

))
,

≤ P
(

lim sup
k→∞

Ak

)
+ P

(⋃
k∈N
{Γ(xk) = c∗}

)
,

where the last inequality follows from the union bound. The lemma follows from the fact that the
last term in the right hand side is equal to zero as shown above. �

51

B.2 Length of the first path in a branch

The following result provides a useful characterization of the RRT structure.

Lemma 45 Let U = {X1, X2, . . . , Xn} be a set of independently sampled and uniformly distributed
points in the d-dimensional unit cube, [0, 1]d. Let Xn+1 be a point that is sampled independently
from all the other points according to the uniform distribution on [0, 1]d. Then, the probability that
among all points in U the point Xi is the one that is closest to Xn+1 is 1/n, for all i ∈ {1, 2, . . . , n}.
Moreover, the expected distance from Xn+1 to its nearest neighbor in U is n−1/d.

Proof Since the probability distribution is uniform, the probability that Xn+1 is closest to Xi is
the same for all i ∈ {1, 2, . . . , n}, which implies that this probability is equal to 1/n. The expected
distance to the closest point in U is an application of the order statistics of the uniform distribution.
�

An immediate consequence of this result is that each vertex of the RRT has unbounded degree,
almost surely, as the number of samples approaches infinity.

One can also define a notion of infinite paths in the RRT, as follows. Let Λ be the set of infinite
sequences of natural numbers α = (α1, α2, . . .). For any i ∈ N, let πi : Σ→ Ni, (α1, α2, . . . , αi, . . .) 7→
(α1, α2, . . . , αi), be a function returning the prefix of length i of an infinite sequence in Λ. The
lexicographic ordering of Λ is such that, given α, β ∈ Σ, α ≤ β if and only if there exists j ∈ N such
that αi = βi for all i ∈ N, i ≤ j − 1, and αj ≤ βj . This is a total ordering of Λ, since N is a totally
ordered set. Given α ∈ Λ and i ∈ N, let Lπi(α) be the sum of the distances from the root vertex xinit

to its α1-th child, from this vertex to its α2-th child, etc., for a total of i terms. Because of Lemma
45, this construction is well defined, almost surely, for a sufficiently large number of samples. For
any infinite sequence α ∈ Λ, let Lα = limi→+∞ Lπi(α); the limit exists since Lπi(α) is non-decreasing
in i.

Consider infinite strings of the form k = (k, 1, 1, . . .), k ∈ N, and introduce the shorthand
Lk := L(k,1,1,...). The following lemma shows that, for any k ∈ N, Lk has finite expectation, which
immediately implies that Lk takes only finite values with probability one. The lemma also provides
a couple of other useful properties of Lk, which will be used later on.

Lemma 46 The expected value E[Lk] is non-negative and finite, and monotonically non-increasing,
in the sense that E[Lk+1] ≤ E[Lk], for any k ∈ N. Moreover, limk→∞ E[Lk] = 0.

Proof Under the simplifying assumptions that there are no obstacles in the unit cube and η is
large enough, the vertex set V RRT

n of the graph maintained by the RRT algorithm is precisely the
first n samples and each new sample is connected to its nearest neighbor in V RRT

n .
Define Zi as a random variable describing the contribution to L1 realized at iteration i; in other

words, Zi is the distance of the i-th sample to its nearest neighbor among the first i− 1 samples if
the i-th sample is on the path used in computing L1, and zero otherwise. Then, using Lemma 45,

E[L1] = E

[∞∑
i=1

Zi

]
=
∞∑
i=1

E[Zi] =
∞∑
i=1

i−1/d i−1 = Zeta(1 + 1/d),

where the second equality follows from the monotone convergence theorem and Zeta is the Riemann
zeta function. Since Zeta(y) is finite for any y > 1, E[L1] is a finite number for all d ∈ N.

52

Let Nk be the iteration at which the first sample contributing to Lk is generated. Then, an
argument similar to the one given above yields

E[Lk+1] =
∞∑

i=Nk+1

i−(1+1/d) = E[L1]−
Nk∑
i=1

i−(1+1/d).

Then, clearly, E[Lk+1] < E[Lk] for all k ∈ N. Moreover, since Nk ≥ k, it is the case that
limk→∞ E[Lk] = 0. �

B.3 Length of the longest path in a branch

Given k ∈ N, and the sequence k = (k, 1, 1, . . .), the quantity supα≥k Lα is an upper bound on the
length of any path in the k-th branch of the RRT, or in any of the following branches. The next
result bounds the probability that this quantity is very large.

Lemma 47 For any ε > 0,

P

({
sup
α≥k
Lα > ε

})
≤ E[Lk]

ε
.

First, we state and prove the following intermediate result.

Lemma 48 E[Lα] ≤ E[Lk], for all α ≥ k.

Proof The proof is by induction. Since α ≥ k, then π1(α) ≥ k, and Lemma 46 implies that
E[L(π1(α),1,1,...)] ≤ E[Lk]. Moreover, it is also the case that, for any i ∈ N (and some abuse of
notation), E[L(πi+1(α),1,1,...)] ≤ E[L(πi(α),1,1,...)], by a similar argument considering a tree rooted
at the last vertex reached by the finite path πi(α). Since (πi+1(α), 1, 1, . . .) ≥ (πi(α), 1, 1, . . .) ≥
(k, 1, 1, . . .), the result follows. �

Proof of Lemma 47 Define the random variable ᾱ := inf{α ≥ k | Lα > ε}, and set ᾱ := k if
Lα ≤ ε for all α ≥ k. Note that ᾱ ≥ k holds surely. Hence, by Lemma 48, E[Lᾱ] ≤ E[Lk]. Let Iε
be the indicator random variable for the event Sε := {supα≥k Lα > ε}. Then,

E[Lk] ≥ E[Lᾱ] = E[LᾱIε] + E[Lᾱ(1− Iε)] ≥ εP(Sε),

where the last inequality follows from the fact that Lᾱ is at least ε whenever the event Sε occurs.
�

A useful corollary of Lemmas 46 and 47 is the following.

Corollary 49 For any ε > 0, limk→∞ P({supα≥k Lα > ε}) = 0.

B.4 Violation of the necessary condition

Recall from Lemma 44 that a necessary condition for asymptotic optimality is that the k-th branch
of the RRT contains vertices outside the R-ball centered at xinit for infinitely many k, where
0 < R < infy∈Xgoal

‖y − xinit‖. Clearly, the latter event can occur only if longest path in the k-th
branch of the RRT is longer than R for infinitely many k. That is,

P
({

lim
n→∞

Y RRT
n = c∗

})
≤ P

(
lim sup
k→∞

{
supα≥k Lα > R

})
.

53

The event on the right hand side is monotonic in the sense that {supα>k+1 Lα > R} ⊇ {supα≥k Lα >
R} for all k ∈ N. Hence, limk→∞{supα≥k Lα > R} exists. In particular, P(lim supk→∞{supα≥k Lα >
R}) = P(limk→∞{supα≥k Lα > R}) = limk→∞ P({supα≥k Lα > R}), where the last equality follows
from the continuity of probability measures. Since limk→∞ P

({
supα≥k Lα > R

})
= 0 for all R > 0

by Corollary 49, P({limn→∞ Y
RRT
n = c∗}) = 0.

C Proof of Theorem 34 (Asymptotic optimality of PRM∗)

An outline of the proof is given below, before the details are provided.

C.1 Outline of the proof

Let σ∗ denote a robustly optimal path. By definition, σ∗ has weak δ-clearance. First, define a
sequence {δn}n∈N such that δn > 0 for all n ∈ N and δn approaches zero as n approaches infinity.
Construct a sequence {σn}n∈N of paths such that σn has strong δn-clearance for all n ∈ N and σn
converges to σ∗ as n approaches infinity.

Second, define a sequence {qn}n∈N. For all n ∈ N, construct a set Bn = {Bn,1, Bn,2, . . . , Bn,Mn}
of overlapping balls, each with radius qn, that collectively “cover” the path σn. See Figures 23
and 24. Let xm ∈ Bn,m and xm+1 ∈ Bn,m+1 be any two points from two consecutive balls in
Bn. Construct Bn such that (i) xm and xm+1 have distance no more than the connection radius
r(n) and (ii) the straight path connecting xm and xm+1 lies entirely within the obstacle free space.
These requirements can be satisfied by setting δn and qn to certain constant fractions of r(n).

Let An denote the event that each ball in Bn contains at least one vertex of the graph returned
by the PRM∗ algorithm, when the algorithm is run with n samples. Third, show that An occurs
for all large n, with probability one. Clearly, in this case, the PRM∗ algorithm will connect the
vertices in consecutive balls with an edge, and any path formed in this way will be collision-free.

Finally, show that any sequence of paths generated in this way converges to the optimal path
σ∗. Using the robustness of σ∗, show that the cost of the best path in the graph returned by the
PRM∗ algorithm converges to c(σ∗) almost surely.

C.2 Construction of the sequence {σn}n∈N of paths

The following lemma establishes a connection between the notions of strong and weak δ-clearance.

Lemma 50 Let σ∗ be a path be a path that has strong δ-clearance. Let {δn}n∈N be a sequence of
real numbers such that limn→∞ δn = 0 and 0 ≤ δn ≤ δ for all n ∈ N. Then, there exists a sequence
{σn}n∈N of paths such that limn→∞ σn = σ∗ and σn has strong δn-clearance for all n ∈ N.

Proof First, define a sequence {Xn}n∈N of subsets of Xfree such that Xn is the closure of the
δn-interior of Xfree, i.e.,

Xn := cl(intδn(Xfree))

for all n ∈ N. Note that, by definition, (i) Xn are closed subsets of Xfree, and (ii) any point Xn has
distance at least δn to any point in the obstacle set Xobs.

Then, construct the sequence {σn}n∈N of paths, where σn ∈ ΣXn , as follows. Let ψ : [0, 1] →
Σfree denote the homotopy with ψ(0) = σ∗; the existence of ψ is guaranteed by weak δ-clearance of
σ∗. Define

αn := max
α∈[0,1]

{α |ψ(α) ∈ ΣXn} and σn := ψ(αn).

54

Since ΣXn is closed, the maximum in the definition of αn is attained. Moreover, since ψ(1) has
strong δ-clearance and δn ≤ δ, σn ∈ ΣXn , which implies the strong δn-clearance of σn.

Clearly,
⋃
n∈NXn = Xfree, since limn→∞ δn = 0. Also, by weak δ-clearance of σ∗, for any α ∈

(0, 1], there exists some δα ∈ (0, δ] such that ψ(α) has strong δα-clearance. Then, limn→∞ αn = 0,
which implies limn→∞ σn = σ∗. �

Recall that the connection radius of the PRM∗ algorithm was defined as

rn = γPRM

(
log n

n

)1/d

> 2(1 + 1/d)1/d

(
µ(Xfree)

ζd

)1/d(log n

n

)1/d

(see Algorithm 4 and the definition of the Near procedure in Section 3.1). Let θ1 be a small positive
constant; the precise value of θ1 will be provided shortly in the proof of Lemma 52. Define

δn := min

{
δ,

1 + θ1

2 + θ1
rn

}
, for all n ∈ N.

By definition, 0 ≤ δn ≤ δ holds. Moreover, limn→∞ δn = 0, since limn→∞ rn = 0. Then, by
Lemma 50, there exists a sequence {σn}n∈N of paths such that limn→∞ σn = σ∗ and σn has strong
δn-clearance for all n ∈ N.

C.3 Construction of the sequence {Bn}n∈N of sets of balls

First, a construction of a finite set of balls that collectively “cover” a path σn is provided. The
construction is illustrated in Figure 23.

Definition 51 (Covering balls) Given a path σn : [0, 1]→ X , and the real numbers qn, ln ∈ R>0,
the set CoveringBalls(σn, qn, ln) is defined as a set {Bn,1, Bn,2, . . . , Bn,Mn} of Mn balls of radius
qn such that Bn,m is centered at σ(τm), and

• the center of Bn,1 is σ(0), i.e., τ1 = 0,

• the centers of two consecutive balls are exactly ln apart, i.e., τm := min{τ ∈ [τm−1, 1] | ‖σ(τ)−
σ(τm−1)‖ ≥ ln} for all m ∈ {2, 3, . . . ,Mn},

• and M −1 is the largest number of balls that can be generated in this manner while the center
of the last ball, Bn,Mn is σ(1), i.e., τMn = 1.

For each n ∈ N, define

qn :=
δn

1 + θ1
.

Construct the set Bn = {Bn,1, Bn,2, . . . , Bn,Mn} of balls as Bn := CoveringBalls(σn, qn, θ1qn)
using Definition 51 (see Figure 23). By construction, each ball in Bn has radius qn and the centers
of consecutive balls in Bn are θ1qn apart (see Figure 24 for an illustration of covering balls with
this set of parameters). The balls in Bn collectively cover the path σn.

C.4 The probability that each ball in Bn contains at least one vertex

Recall that GPRM∗
n = (V PRM∗

n , EPRM∗
n) denotes the graph returned by the PRM∗ algorithm, when

the algorithm is run with n samples. Let An,m denote the event that the ball Bn,m contains at
least one vertex of the graph generated by the PRM∗ algorithm, i.e., An,m =

{
Bn,m ∩ V PRM∗

n 6= ∅
}

.
Let An denote the event that all balls in Bn contain at least one vertex of the PRM∗ graph, i.e.,
An =

⋂Mn
m=1An,m.

55

...

...

Figure 23: An illustration of the CoveringBalls construction. A set of balls that collectively cover
the trajectory σn is shown. All balls have the same radius, qn. The spacing between the centers of
two consecutive balls is ln.

Figure 24: An illustration of the covering balls for PRM∗ algorithm. The δn-ball is guaranteed
to be inside the obstacle-free space. The connection radius rn is also shown as the radius of the
connection ball centered at a vertex x ∈ Bn,m. The vertex x is connected to all other vertices that
lie within the connection ball.

Lemma 52 If γPRM > 2 (1 + 1/d)1/d
(
µ(Xfree)

ζd

)1/d
, then there exists a constant θ1 > 0 such that

the event that every ball in Bn contains at least one vertex of the PRM∗ graph occurs for all large
enough n with probability one, i.e.,

P
(

lim inf
n→∞

An

)
= 1.

Proof The proof is based on a Borel-Cantelli argument which can be summarized as follows. Recall
that Acn denotes the complement of An. First, the sum

∑∞
n=1 P(Acn) is shown to be bounded. By

the Borel-Cantelli lemma (Grimmett and Stirzaker, 2001), this implies that the probability that
An holds infinitely often as n approaches infinity is zero. Hence, the probability that An holds
infinitely often is one. In the rest of the proof, an upper bound on P(An) is computed, and this
upper bound is shown to be summable.

First, compute a bound on the number of balls in Bn as follows. Let sn denote the length of
σn, i.e., sn := TV(σn). Recall that the balls in Bn were constructed such that the centers of two
consecutive balls in Bn have distance θ1 qn. The segment of σn that starts at the center of Bn,m
and ends at the center of Bn,m+1 has length at least θ1qn, except for the last segment, which has

56

length less than or equal to θ1qn. Let n0 ∈ N be the number such that δn < δ for all n ≥ n0. Then,
for all n ≥ n0,

card (Bn) = Mn ≤ sn
θ1qn

=
(1 + θ1)sn
θ1δn

=
(2 + θ1) sn
θ1 rn

=
(2 + θ1) sn
θ1 γPRM

(
n

log n

)1/d

.

Second, compute the volume of a single ball in Bi as follows. Recall that µ(·) denotes the usual
Lebesgue measure, and ζd denotes the volume of a unit ball in the d-dimensional Euclidean space.
For all n ≥ n0,

µ(Bn,m) = ζd q
d
n = ζd

(
δn

1 + θ1

)d
= ζd

(
rn

2 + θ1

)d
= ζd

(
γPRM

2 + θ1

)d log n

n

For all n ≥ I, the probability that a single ball, say Bn,1, does not contain a vertex of the graph
generated by the PRM∗ algorithm, when the algorithm is run with n samples, is

P
(
Acn,1

)
=

(
1− µ(Bn,1)

µ(Xfree)

)n
=

(
1− ζd

µ(Xfree)

(
γPRM

2 + θ1

)d log n

n

)n
Using the inequality (1− 1/f(n))r ≤ e−r/f(n), the right-hand side can be bounded as

P(An,1) ≤ e−
ζd

µ(Xfree)

(
γPRM
2+θ1

)d
logn

= n
− ζd
µ(Xfree)

(
γPRM
2+θ1

)d
.

Hence,

P (Acn) = P
(⋃Mn

m=1
Acn,m

)
≤

Mn∑
m=1

P
(
Acn,m

)
= Mn P(Acn,1)

≤ (2 + θ1)sn
θ1 γPRM

(
n

log n

)1/d

i
− ζd
µ(Xfree)

(
γPRM
2+θ1

)d

=
(2 + θ1)sn
θ1 γPRM

1

(log n)d
n
−
(

ζd
µ(Xfree)

(
γPRM
2+θ1

)d
− 1
d

)

where the first inequality follows from the union bound.

Finally,
∑∞

n=1 P(Acn) < ∞ holds, if ζd
µ(Xfree)

(
γPRM
2+θ1

)d
− 1

d > 1, which can be satisfied for any

γPRM > 2(1 + 1/d)1/d
(
µ(Xfree)

ζd

)1/d
by appropriately choosing θ1. Then, by the Borel-Cantelli

lemma (Grimmett and Stirzaker, 2001), P(lim supn→∞A
c
n) = 0, which implies P(lim infn→∞An) =

1. �

C.5 Connecting the vertices in subsequent balls in Bn

Let Zn := {x1, x2, . . . , xMn} be any set of points such that xm ∈ Bn,m for each m ∈ {1, 2, . . . ,Mn}.
The following lemma states that for all n ∈ N and all m ∈ {1, 2, . . . ,Mn− 1}, the distance between
xm and xm+1 is less than the connection radius, rn, which implies that the PRM∗ algorithm will
attempt to connect the two points xm and xm+1 if they are in the vertex set of the PRM∗ algorithm.

57

Lemma 53 If xn,m ∈ Bn,m and xn,m+1 ∈ Bn,m+1, then ‖xn,m+1 − xn,m‖ ≤ rn, for all n ∈ N and
all m ∈ {1, 2, . . . ,Mi − 1}.

Proof Recall that each ball in Bn has radius qn = δn
(1+θ1) . Given any two points xm ∈ Bn,m and

xm+1 ∈ Bn,m+1, all of the following hold: (i) xm has distance qn to the center of Bn,m, (ii) xm+1

has distance qn to the center of Bn,m+1, and (iii) centers of Bn,m and Bn,m+1 have distance θ1 qn
to each other. Then,

‖xn,m+1 − xn,m‖ ≤ (2 + θ1) qn =
2 + θ1

1 + θ1
δn ≤ rn,

where the first inequality is obtained by an application of the triangle inequality and the last
inequality follows from the definition of δn = min{δ, 1+θ1

2+θ1
rn}. �

By Lemma 53, conclude that the PRM∗ algorithm will attempt to connect any two vertices in
consecutive balls in Bn. The next lemma shows that any such connection attempt will, in fact, be
successful. That is, the path connecting xn,m and xn,m+1 is collision-free for all m ∈ {1, 2, . . . ,Mn}.

Lemma 54 For all n ∈ N and all m ∈ {1, 2, . . . ,Mn}, if xm ∈ Bn,m and xm+1 ∈ Bn,m+1, then the
line segment connecting xn,m and xn,m+1 lies in the obstacle-free space, i.e.,

αxn,m + (1− α)xn,m+1 ∈ Xfree, for all α ∈ [0, 1].

Proof Recall that σn has strong δn-delta clearance and that the radius qn of each ball in Bn was
defined as qn = δn

1+θ1
, where θ1 > 0 is a constant. Hence, any point along the trajectory σn has

distance at least (1 + θ1) qn to any point in the obstacle set. Let ym and ym+1 denote the centers of
the balls Bn,m and Bn,m+1, respectively. Since ym = σ(τm) and ym+1 = σ(τm+1) for some τm and
τm+1, ym and ym+1 also have distance (1 + θ1)qn to any point in the obstacle set.

Clearly, ‖xm − ym‖ ≤ qn. Moreover, the following inequality holds:

‖xm+1−ym‖ ≤ ‖(xm−ym+1)+(ym+1−ym)‖ ≤ ‖xm+1−ym+1‖+‖ym+1−ym‖ ≤ qn+θ1 qn = (1+θ1) qn.

where the second inequality follows from the triangle inequality and the third inequality follows
from the construction of balls in Bn.

For any convex combination xα := αxm + (1− α)xm+1, where α ∈ [0, 1], the distance between
xα and ym can be bounded as follows:∥∥(αxm + (1 + α)xm+1

)
− ym

∥∥ =
∥∥α (xm − ym) + (1 + α) (xm+1 − ym)

∥∥
= α ‖xm − ym‖+ (1 + α) ‖xm+1 − ym‖
= α qn + (1 + α) (1 + qn) ≤ (1 + θ1) qn,

where the second equality follows from the linearity of the norm. Hence, any point along the line
segment connecting xm and xm+1 has distance at most (1 + θ1) qn to ym. Since, ym has distance
at least (1 + θ1)qn to any point in the obstacle set, the line segment connecting xm and xm+1 is
collision-free. �

58

C.6 Convergence to the optimal path

Let Pn denote the set of all paths in the graph GPRM∗
n = (V PRM∗

n , EPRM∗
n). Let σ′n be the path

that is closest to σn in terms of the bounded variation norm among all those paths in Pn, i.e.,
σ′n := minσ′∈Pn ‖σ′−σn‖. Note that the sequence {σ′n}n∈N is a random sequence of paths, since the
graph GPRM∗

n , hence the set Pn of paths is random. The following lemma states that the bounded
variation distance between σ′n and σn approaches to zero, with probability one.

Lemma 55 The random variable ‖σ′n − σn‖BV converges to zero almost surely, i.e.,

P
({

limn→∞ ‖σ′n − σn‖BV = 0
})

= 1.

Proof The proof of this lemma is based on a Borel-Cantelli argument. It is shown that
∑

n∈N P(‖σ′n−
σn‖BV > ε) is finite for any ε > 0, which implies that ‖σ′n − σn‖ converges to zero almost surely
by the Borel-Cantelli lemma (Grimmett and Stirzaker, 2001). This proof uses a Poissonization
argument in one of the intermediate steps. That is, a particular result is shown to hold in the
Poisson process described in Lemma 11. Subsequently, the result is de-Poissonized, i.e., shown to
hold also for the original process.

Fix some ε > 0. Let α, β ∈ (0, 1) be two constants, both independent of n. Recall that qn is
the radius of each ball in the set Bn of balls covering the path σn. Let In,m denote the indicator
variable for the event that the ball Bn,m has no point that is within a distance β qn from the center
of Bn,m. For a more precise definition, let β Bn,m denote the ball that is centered at the center of
Bn,m and has radius β rn. Then,

In,m :=

{
1, if (β Bn,m) ∩ V PRM∗ = ∅,
0, otherwise.

Let Kn denote the number of balls in Bn that do not contain a vertex that is within a β qn distance
to the center of that particular ball, i.e., Kn :=

∑Mn
m=1 In,m.

Consider the event that In,m holds for at most an α fraction of the balls in Bn, i.e., {Kn ≤ αMn}.
This event is important for the following reason. Recall that the vertices in subsequent balls in Bn
are connected by edges in GPRM∗

n by Lemmas 53 and 54. If only at most an α fraction of the balls
do not have a vertex that is less than a distance of β rn from their centers (hence, a (1−α) fraction
have at least one vertex within a distance of β rn from their centers), i.e., {Kn ≤ αMn} holds, then
the bounded variation difference between σ′n and σn is at most (

√
2α+ β(1−α))L ≤

√
2 (α+ β)L,

where L is a finite bound on the length of all paths in {σn}n∈N, i.e., L := supn∈N TV(σn). That is,

{Kn ≤ αMn} ⊆
{
‖σ′n − σn‖BV ≤

√
2 (α+ β)L

}
Taking the complement of both sides and using the monotonicity of probability measures,

P
({
‖σ′n − σn‖BV >

√
2 (α+ β)L

})
≤ P ({Kn ≥ αMn}) .

In the rest of the proof, it is shown that the right hand side of the inequality above is summable
for all small α, β > 0, which implies that P ({‖σ′n − σn ‖ > ε}) is summable for all small ε > 0.

For this purpose, the process that provides independent uniform samples from Xfree is approx-
imated by an equivalent Poisson process described in Section 2.2. A more precise definition is
given as follows. Let {X1, X2, . . . , Xn} denote the binomial point process corresponding to the
SampleFree procedure. Let ν < 1 be a constant independent of n. Recall that Poisson(ν n)

59

denotes the Poisson random variable with intensity ν n (hence, mean value ν n). Then, the pro-
cess Pν n := {X1, X2, . . . , XPoisson(ν n)} is a Poisson process restricted to µ(Xfree) with intensity
ν n/µ(Xfree) (see Lemma 11). Thus, the expected number of points of this Poisson process is ν n.

Clearly, the set of points generated by one process is a subset of the those generated by the
other. However, since ν < 1, in most trials the Poisson point process Pν n is a subset of the binomial
point process.

Define the random variable K̃n denote the number of balls of that fail to have one sample
within a distance β rn to their centers, when the underlying point process is Pν n (instead of the
independent uniform samples provided by the SampleFree procedure). In other words, K̃n is the
random variable that is defined similar to Kn, except that the former is defined with respect to the
points of Pν n whereas the latter is defined with respect to the n samples returned by SampleFree

procedure.
Since {K̃n > αMn} is a decreasing event, i.e., the probability that it occurs increases if Pνn

includes fewer samples, the following bound holds (see, e.g., Penrose, 2003)

P
(
{Kn ≥ αMn}

)
≤ P

(
{K̃n ≥ αMn}

)
+ P({Poisson(ν n) ≥ n}).

Since a Poisson random variable has exponentially-decaying tails, the second term on the right
hand side can be bounded as

P({Poisson(ν n) ≥ n}) ≤ e−cn,

where c > 0 is a constant.
The first term on the right hand side can be computed directly as follows. First, for all small

β, the balls of radius β rn are all disjoint (see Figure 25). Denote this set of balls by B̃n,m =

{B̃n,1, B̃n,2, . . . , B̃n,Mn}. More precisely, B̃n,m is the ball of radius β qn centered at the center of
Bn,m. Second, observe that the event {Kn > αMn} is equivalent to the event that at least an α

fraction of all the balls in B̃n include at least one point of the process Pν n. Since, the point process
Pν n is Poisson and the balls in B̃n are disjoint for all small enough β, the probability that a single
ball in B̃n does not contain a sample is pn := exp(−ζd (βqn)d ν n/µ(Xfree)) ≤ exp(−c β ν log n) for
some constant c. Third, by the independence property of the Poisson point process, the number
of balls in B̃n that do not include a point of the point process Pν n is a binomial random variable
with parameters Mn and pn. Then, for all large n,

P
({
K̃n ≥ αMn

})
≤ P ({Binomial(Mn, pn) ≥ αMn}) ≤ exp(−Mn pn).

Combining the two inequalities above, the following bound is obtained for the original sampling
process

P ({Kn ≥ αMn}) ≤ e−c n + e−Mn pn .

Summing up both sides,
∞∑
n=1

P ({Kn ≥ αn}) <∞.

This argument holds for all α, β, ν > 0. Hence, for all ε > 0,

∞∑
n=1

P
({
‖σ′n − σn‖BV > ε

})
<∞.

Then, by the Borel-Cantelli lemma, P ({limn→∞ ‖σ′n − σn‖BV = 0}) = 1. �

60

Figure 25: The set B̃n,m of non-intersection balls is illustrated.

Finally, the following lemma states that the cost of the minimum cost path in the graph returned
by the PRM∗ algorithm converges to the optimal cost c∗ with probability one. Recall that Y PRM∗

n

denotes the cost of the minimum-cost path in the graph returned by the PRM∗ algorithm, when
the algorithm is run with n samples.

Lemma 56 Under the assumptions of Theorem 34, the cost of the minimum-cost path present in
the graph returned by the PRM∗ algorithm converges to the optimal cost c∗ as the number of samples
approaches infinity, with probability one, i.e.,

P
({

lim
n→∞

Y PRM∗
n = c∗

})
= 1.

Proof Recall that σ∗ denotes the optimal path, and that limn→∞ σn = σ∗ holds surely. By
Lemma 55, limn→∞ ‖σ′n − σn‖BV = 0 holds with probability one. Thus, by repeated application of
the triangle inequality, limn→∞ ‖σ′n − σ∗‖BV = 0, i.e.,

P
({

lim
n→∞

‖σ′n − σ∗‖BV = 0
})

= 1.

Then, by the robustness of the optimal path σ∗, it follows that

P
({

lim
n→∞

c(σ′n) = c∗
})

= 1.

That is the costs of the paths {σ′n}n∈N converges to the optimal cost almost surely, as the number
of samples approaches infinity. �

D Proof of Theorem 35 (Asymptotic Optimality of k-nearest PRM∗)

The proof of this theorem is similar to that of Theorem 34. For the reader’s convenience, a complete
proof is provided at the expense of repeating some of the arguments.

61

D.1 Outline of the proof

Let σ∗ be a robust optimal path with weak δ-clearance. First, define the sequence {σn}n∈N of paths
as in the proof of Theorem 34.

Second, define a sequence {qn}n∈N and tile σn with a set Bn = {Bn,1, Bn,2, . . . , Bn,M} of over-
lapping balls of radius qn. See Figures 23 and 26. Let xm ∈ Bn,m and xm+1 ∈ Bn,m+1 be any
two points from subsequent balls in Bn. Construct Bn such that the straight path connecting xm
and xm+1 lies entirely inside the obstacle free space. Also, construct a set B′n of balls such that
(i) B′n,m and Bn,m are centered at the same point and (ii) Bn,m contains Bn,m, and Bn,m+1, for all
m ∈ {1, 2, . . . ,Mn − 1}.

Let An denote the event that each ball in Bn contains at least one vertex, and A′n denote the
event that each ball in B′n contains at most k(n) vertices of the graph returned by the k-nearest
PRM∗ algorithm. Third, show that An and A′n occur together for all large n, with probability one.
Clearly, this implies that the PRM∗ algorithm will connect vertices in subsequent ball in Bn with
an edge, and any path formed by connecting such vertices will be collision-free.

Finally, show that any sequence of paths formed in this way converges to σ∗. Using the ro-
bustness of σ∗, show that the best path in the graph returned by the k-nearest PRM∗ algorithm
converges to c(σ∗) almost surely.

D.2 Construction of the sequence {σn}n∈N of paths

Let θ1, θ2 ∈ R>0 be two constants, the precise values of which will be provided shortly. Define

δn := min

{
δ, (1 + θ1)

(
(1 + 1/d+ θ2)µ(Xfree)

ζd

)1/d(log n

n

)1/d
}
.

Since limn→∞ δn = 0 and 0 ≤ δn ≤ δ for all n ∈ N, by Lemma 50, there exists a sequence
{σn}n∈N of paths such that limn→∞ σn = σ∗ and σn is strongly δn-clear for all n ∈ N.

D.3 Construction of the sequence {Bn}n∈N of sets of balls

Define

qn :=
δn

1 + θ1
.

For each n ∈ N, use Definition 51 to construct a set Bn = {Bn,1, Bn,2, . . . , Bn,Mn} of overlapping
balls that collectively cover σn as Bn := CoveringBalls(σn, qn, θ1qn) (see Figures 23 and 26 for an
illustration).

D.4 The probability that each ball in Bn contains at least one vertex

Recall that GkPRM∗
n = (V kPRM∗

n , EkPRM∗
n) denotes the graph returned by the k-nearest PRM∗

algorithm, when the algorithm is run with n samples. Let An,m denote the event that the ball Bn,m
contains at least one vertex from V kPRM∗

n , i.e., An,m =
{
Bn,m ∩ V kPRM∗

n 6= ∅
}

. Let An denote the

event that all balls in Bn,m contains at least one vertex of GkPRM∗
n , i.e., An =

⋂Mn
m=1An,m.

Recall that Acn denotes the complement of the event An, µ(·) denotes the Lebesgue measure,
and ζd is the volume of the unit ball in the d-dimensional Euclidean space. Let sn denote the length
of σn.

62

Figure 26: An illustration of the covering balls for the k-nearest PRM∗ algorithm. The δn ball is
guaranteed to contain the balls Bn,m and Bn,m+1.

Lemma 57 For all θ1, θ2 > 0,

P(Acn) ≤ sn
θ1

(
ζd

θ1 (1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n1+θ2
.

In particular,
∑∞

n=1 P(Acn) <∞ for all θ1, θ2 > 0.

Proof Let n0 ∈ N be a number for which δn < δ for all n > n0. A bound on the number of balls
in Bn can computed as follows. For all n > n0,

Mn = |Bn| ≤
sn
θ1 qn

=
sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d(n

log n

)1/d

.

The volume of each ball Bn can be computed as

µ(Bn,m) = ζd(qn)d = (1 + 1/d+ θ2)µ(Xfree)
log n

n
.

The probability that the ball Bn,m does not contain a vertex of the k-nearest PRM∗ algorithm
can be bounded as

P(Acn,m) =

(
1− µ(Bn,m)

µ(Xfree)

)n
=

(
1− (1 + 1/d+ θ2)

log n

n

)n
≤ n−(1+1/d+θ2).

Finally, the probability that at least one of the balls in Bn contains no vertex of the k-nearest
PRM∗ can be bounded as

P(An) = P
(⋃Mn

m=1
An,m

)
≤

Mn∑
m=1

P(An,m) = Mn P(An,1)

≤ sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d(n

log n

)1/d

n−(1+1/d+θ2)

=
sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n1+θ2
.

Clearly,
∑∞

n=1 P(Acn) <∞ for all θ1, θ2 > 0. �

63

D.5 Construction of the sequence {B′n}n∈N of sets of balls

Construct a set B′n = {Bn,1, Bn,2, . . . , Bn,Mn} of balls as B′n := CoveringBalls(σn, δn, θ1qn) so that
each ball in B′n has radius δn and the spacing between two balls is θ1qn (see Figure 26).

Clearly, the centers of balls in B′n coincide with the centers of the balls in Bn, i.e., the center
of B′n,m is the same as the center of Bn,m for all m ∈ {1, 2, . . . ,Mn} and all n ∈ N. However, the
balls in B′n have a larger radius than those in Bn.

D.6 The probability that each ball in B′n contains at most k(n) vertices

Recall that the k-nearest PRM algorithm connects each vertex in the graph with its k(n) nearest
vertices when the algorithm is run with n samples, where k(n) = kPRM log n. Let A′n denote the
event that all balls in B′n contain at most k(n) vertices of GkPRM∗

n .
Recall that A′cn denotes the complement of the event An.

Lemma 58 If kPRM > e (1 + 1/d), then there exists some θ1, θ2 > 0 such that

P(A′cn) ≤ sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n−(1+θ1)d(1+1/d+θ2)
.

In particular,
∑∞

n=1 P(A′cn) <∞ for some θ1, θ2 > 0.

Proof Let n0 ∈ N be a number for which δn < δ for all n > n0. As shown in the proof of Lemma 57,
the number of balls in B′n satisfies

Mn = |B′n| ≤
sn
θ1qn

=
sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d(n

log n

)1/d

.

For all n > n0, the volume of B′n,m can be computed as

µ(B′n,m) = ζd (δn)d = (1 + θ1)d (1 + 1/d+ θ2)µ(Xfree)
log n

n
.

Let In,m,i denote the indicator random variable of the event that sample i falls into ball B′n,m.
The expected value of In,m,i can be computed as

E[In,m,i] =
µ(B′n,m)

µ(Xfree)
= (1 + θ1)d (1 + 1/d+ θ2)

log n

n
.

Let Nn,m denote the number of vertices that fall inside the ball B′n,m, i.e., Nn,m =
∑n

i=1 In,m,i.
Then,

E[Nn,m] =
n∑
i=1

E[In,m,i] = n E[In,m,1] = (1 + θ1)d(1 + 1/d+ θ2) log n.

Since {In,m,i}ni=1 are independent identically distributed random variables, large deviations of their
sum, Mn,m, can be bounded by the following Chernoff bound (Dubhashi and Panconesi, 2009):

P
({

Nn,m > (1 + ε)E[Nn,m]
})
≤
(

eε

(1 + ε)(1+ε)

)E[Nn,m]

,

for all ε > 0. In particular, for ε = e− 1,

P
({

Nn,m > eE[Nn,m]
})
≤ e−E[Nn,m] = e−(1+θ1)d(1+1/d+θ2) logn = n−(1+θ1)d(1+1/d+θ2).

64

Since k(n) > e (1+1/d) log n, there exists some θ1, θ2 > 0 independent of n such that eE[Nn,k] =
e (1 + θ1) (1 + 1/d+ θ2) log n ≤ k(n). Then, for the same values of θ1 and θ2,

P
({

Nn,m > k(n)
})
≤ P

({
Nn,m > eE[Nn,m]

})
≤ n−(1+θ1)d(1+1/d+θ2).

Finally, consider the probability of the event that at least one ball in Bn contains more than
k(n) nodes. Using the union bound together with the inequality above

P
(⋃Mn

m=1

{
Nn,m > k(n)

})
≤

Mn∑
m=1

P
({
Nn,m > k(n)

})
= Mn P

(
{Nn,1 > k(n)}

)
Hence,

P(A′cn) = P
(⋃Mn

m=1

{
Nn,m > k(n)

})
≤ sn

θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n−(1+θ1)d(1+1/d+θ2)
.

Clearly,
∑∞

n=1 P(A′cn) <∞ for the same values of θ1 and θ2. �

D.7 Connecting the vertices in the subsequent balls in Bn

First, note the following lemma.

Lemma 59 If kPRM > e (1 + 1/d)1/d, then there exists θ1, θ2 > 0 such that the event that each ball
in Bn contains at least one vertex and each ball in B′n contains at most k(n) vertices occurs for all
large n, with probability one, i.e.,

P
(

lim inf
n→∞

(An ∩A′n)
)

= 1.

Proof Consider the event Acn ∪A′cn , which is the complement of An ∩A′n. Using the union bound,

P
(
Acn ∪A′cn

)
≤ P(Acn) + P(A′cn).

Summing both sides,

∞∑
n=1

P(Acn ∪A′cN) ≤
∞∑
n=1

P(Acn) +

∞∑
n=1

P(A′cn) <∞,

where the last inequality follows from Lemmas 57 and 58. Then, by the Borel-Cantelli lemma,
P (lim supn→∞(Acn ∪A′cn)) = P (lim supn→∞(An ∩A′n)c) = 0, which implies P (lim infn→∞(An ∩A′n)) =
1. �

Note that for each m ∈ {1, 2, . . . ,Mn − 1}, both Bn,m and Bn,m+1 lies entirely inside the ball
B′n,m (see Figure 26). Hence, whenever the balls Bn,m and Bn,m+1 contain at least one vertex each,
and B′n,m contains at most k(n) vertices, the k-nearest PRM∗ algorithm attempts to connect all
vertices in Bn,m and Bn,m+1 with one another.

The following lemma guarantees that connecting any two points from two consecutive balls in
Bn results in a collision-free trajectory. The proof of the lemma is essentially the same as that of
Lemma 54.

Lemma 60 For all n ∈ N and all m ∈ {1, 2, . . . ,Mn}, if xm ∈ Bn,m and xm+1 ∈ Bn,m+1, then the
line segment connecting xm and xm+1 lies in the obstacle-free space, i.e.,

αxm + (1− α)xm+1 ∈ Xfree, for all α ∈ [0, 1].

65

D.8 Convergence to the optimal path

The proof of the following lemma is similar to that of Lemma 55, and is omitted here.
Let Pn denote the set of all paths in the graph returned by k-PRM∗ algorithm at the end of n

iterations. Let σ′n be the path that is closest to σn in terms of the bounded variation norm among
all those paths in Pn, i.e., σ′n := minσ′∈Pn ‖σ′ − σn‖.

Lemma 61 The random variable ‖σ′n − σn‖BV converges to zero almost surely, i.e.,

P
({

limn→∞ ‖σ′n − σn‖BV = 0
})

= 1.

A corollary of the lemma above is that limn→∞ σ
′
n = σ∗ with probability one. Then, the result

follows by the robustness of the optimal solution (see the proof of Lemma 56 for details).

E Proof of Theorem 36 (Asymptotic optimality of RRG)

E.1 Outline of the proof

The proof of this theorem is similar to that of Theorem 34. The main difference is the definition
of Cn that denotes the event that the RRG algorithm has sufficiently explored the obstacle free
space. More precisely, Cn is the event that for any point x in the obstacle free space, the graph
maintained by the RRG algorithm algorithm includes a vertex that can be connected to x.

Construct the sequence {σn}n∈N of paths and the sequence {Bn}n∈N of balls as in the proof of
Theorem 34. Let An denote the event that each ball in Bn contains a vertex of the graph maintained
by the RRG by the end of iteration n. Compute n by conditioning on the event that Ci holds for
all i ∈ {bθ3 nc, . . . , n}, where 0 < θ3 < 1 is a constant. Show that the probability that Ci fails to
occur for any such i is small enough to guarantee that An occurs for all large n with probability
one. Complete the proof as in the proof of Theorem 34.

E.2 Definitions of {σn}n∈N and {Bn}n∈N
Let θ1 > 0 be a constant. Define δn, σn, qn, and Bn as in the proof of Theorem 34.

E.3 Probability that each ball in Bn contains at least one vertex

Let An,m be the event that the ball Bn,m contains at least one vertex of the RRG at the end of n
iterations. Let An be the event that all balls in Bn contain at least one vertex of the RRG at the
end of iteration n, i.e., An =

⋂Mn
m=1An,m, where Mn is the number of balls in Bn. Recall that γRRG

is the constant used in defining the connection radius of the RRG algorithm (see Algorithm 5).

Lemma 62 If γRRG > 2(1 + 1/d)1/d
(
µ(Xfree)

ζd

)1/d
then there exists θ1 > 0 such that An occurs for

all large n with probability one, i.e.,

P (lim infn→∞An) = 1.

The proof of this lemma requires two intermediate results, which are provided next.
Recall that η is the parameter used in the Steer procedure (see the definition of Steer procedure

in Section 3.1). Let Cn denote the event that for any point x ∈ Xfree, the graph returned by the
RRG algorithm includes a vertex v such that ‖x− v‖ ≤ η and the line segment joining v and x is
collision-free. The following lemma establishes an bound on the probability that this event fails to
occur at iteration n.

66

Lemma 63 There exists constants a, b ∈ R>0 such that P (Ccn) ≤ a e−b n for all n ∈ N.

Proof Partition Xfree into finitely many convex sets such that each partition is bounded by a ball
a radius η. Such a finite partition exists by the boundedness of Xfree. Denote this partition by
X ′1, X

′
2, . . . , X

′
M . Since the probability of failure decays to zero with an exponential rate, for any

m ∈ {1, 2, . . . ,M}, the probability that X ′m fails to contain a vertex of the RRG decays to zero
with an exponential rate, i.e.,

P
({

@x ∈ V RRG
n ∩X ′m

})
≤ am e−bm n

The probability that at least one partition fails to contain one vertex of the RRG also decays to
zero with an exponential rate. That is, there exists a, b ∈ R>0 such that

P
(⋃M

m=1

{
@x ∈ V RRG

n ∩X ′m
})
≤

M∑
m=1

P
({

@x ∈ V RRG
n ∩X ′m

})
≤

M∑
m=1

am e
−bmn ≤ a e−b n,

where the first inequality follows from the union bound. �

Let 0 < θ3 < 1 be a constant independent of n. Consider the event that Ci occurs for all i that
is greater than θ3 n, i.e.,

⋂n
i=bθ3 ncCi. The following lemma analyzes the probability of the event

that
⋂n
i=bθ3 ncCi fails to occur.

Lemma 64 For any θ3 ∈ (0, 1),

∞∑
n=1

P
((⋂n

i=bθ3nc
Ci

)c)
< ∞.

Proof The following inequalities hold:

∞∑
n=1

P
((⋂n

i=bθ3 nc
Ci

)c)
=

∞∑
n=1

P
(⋃n

i=bθ3 nc
Cci

)
≤

∞∑
n=1

n∑
i=bθ3 ic

P(Cci) ≤
∞∑
n=1

n∑
i=bθ3 nc

a e−b i,

where the last inequality follows from Lemma 63. The right-hand side is finite for all a, b > 0. �

Proof of Lemma 62 It is shown that
∑∞

n=1 P (Acn) <∞, which, by the Borel-Cantelli Lemma (Grim-
mett and Stirzaker, 2001), implies that Acn occurs infinitely often with probability zero, i.e.,
P(lim supn→∞A

c
n) = 0, which in turn implies P(lim infn→∞An) = 1.

Let n0 ∈ N be a number for which δn < δ for all n > n0. First, for all n > n0, the number of
balls in Bn can be bounded by (see the proof of Lemma 52 for details)

Mn = |Bn| ≤
(2 + θ1) sn
θ1 γRRG

(
n

log n

)1/d

.

Second, for all n > n0, the volume of each ball in Bn can be calculated as (see the proof of
Lemma 52)

µ(Bn,m) = ζd

(
γPRM

2 + θ1

)d log n

n
,

where ζd is the volume of the unit ball in the d-dimensional Euclidean space.

67

Third, conditioning on the event
⋂n
i=bθ3 ncCi, each new sample will be added to the graph

maintained by the RRG algorithm as a new vertex between iterations i = bθ3 nc and i = n. Thus,

P
(
Acn,m

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
≤

(
1− µ(Bn,m)

µ(Xfree)

)n−bθ3 nc
≤
(

1− µ(Bn,m)

µ(Xfree)

)(1−θ3)n

≤

(
1− ζd

µ(Xfree)

(
γRRG

2 + θ1

)d log n

n

)(1−θ3)n

≤ e
− (1−θ3) ζd
µ(Xfree)

(
γRRG
2+θ1

)d
logn ≤ n−

(1−θ3) ζd
µ(Xfree)

(
γRRG
2+θ1

)d
,

where the fourth inequality follows from (1− 1/f(n))g(n) ≤ eg(n)/f(n).
Fourth,

P
(
Acn

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
≤ P

(⋃Mn

m=1
Acn,m

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
≤

Mn∑
m=1

P
(
Acn,m

∣∣ ⋂n

i=bθ3 nc
Ci

)
= Mn P

(
Acn,1

∣∣ ⋂n

i=bθ3 nc
Ci

)
≤ (2 + θ1) sn

θ1 γRRG

(
n

log n

)1/d

n
− (1−θ3) ζd
µ(Xfree)

(
γRRG
2+θ1

)d
.

Hence,
∞∑
n=1

P
(
Acn

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
< ∞,

whenever (1−θ3) ζd
µ(Xfree)

(
γRRG
2+θ1

)d
− 1/d > 1, i.e., γRRG > (2 + θ1)(1 + 1/d)1/d

(
µ(Xfree)
(1−θ3) ζd

)1/d
, which is

satisfied by appropriately choosing the constants θ1 and θ3, since γRRG > 2 (1+1/d)1/d
(
µ(Xfree)

ζd

)1/d
.

Finally,

P
(
Acn
∣∣ ⋂n

i=bθ3 nc
Ci

)
=

P
(
Acn ∩

(
∩ni=bθ3 ncCi

))
P
(⋂n

i=bθ3 ncCi

)
≥ P(Acn ∩ (∩ni=bθ3 ncCi))
= 1− P(An ∪ (∩ni=bθ3 ncCi)

c)

≥ 1− P(An)− P
(
(∩ni=bθ3 ncCi)

c
)

= P(Acn)− P
(
(∩ni=bθ3 ncCi)

c
)
.

Taking the infinite sum of both sides yields

∞∑
n=1

P(Acn) ≤
∞∑
n=1

P
(
Acn
∣∣ ⋂n

i=bθ3 nc
Cn

)
+
∞∑
n=1

P
((⋂n

i=bθ3 nc
Cn

)c)
.

The first term on the right hand side is shown to be finite above. The second term is finite by
Lemma 64. Hence,

∑∞
n=1 P(An) < ∞. Then, by the Borel Cantelli lemma, Acn occurs infinitely

often with probability zero, which implies that its complement An occurs for all large n, with
probability one. �

68

E.4 Convergence to the optimal path

The proof of the following lemma is similar to that of Lemma 55, and is omitted here.
Let Pn denote the set of all paths in the graph returned by RRG algorithm at the end of n

iterations. Let σ′n be the path that is closest to σn in terms of the bounded variation norm among
all those paths in Pn, i.e., σ′n := minσ′∈Pn ‖σ′ − σn‖.

Lemma 65 The random variable ‖σ′n − σn‖BV converges to zero almost surely, i.e.,

P
({

limn→∞ ‖σ′n − σn‖BV = 0
})

= 1.

A corollary of the lemma above is that limn→∞ σ
′
n = σ∗ with probability one. Then, the result

follows by the robustness of the optimal solution (see the proof of Lemma 56 for details).

F Proof of Theorem 37 (asymptotic optimality of k-nearest RRG)

F.1 Outline of the proof

The proof of this theorem is a combination of that of Theorem 35 and 36.
Define the sequences {σn}n∈N, {Bn}n∈N, and {B′n}n∈N as in the proof of Theorem 35. Define

the event Cn as in the proof of Theorem 36. Let An denote the event that each ball in Bn contains
at least one vertex, and A′n denote the event that each ball in B′n contains at most k(n) vertices of
the graph maintained by the RRG algorithm, by the end of iteration n. Compute An and A′n by
conditioning on the event that Ci holds for all i = θ3 n to n. Show that this is enough to guarantee
that An and A′n hold together for all large n, with probability one.

F.2 Definitions of {σn}n∈N, {Bn}n∈N, and {B′n}n∈N
Let θ1, θ2 > 0 be two constants. Define δn, σn, qn, Bn, and B′n as in the proof of Theorem 35.

F.3 The probability that each ball in Bn contains at least one vertex

Let An,m denote the event that the ball Bn,m contains at least one vertex of the graph maintained
by the k-nearest RRG algorithm by the end of iteration n. Let An denote the event that all balls
in Bn,m contain at least one vertex of the same graph, i.e., An =

⋃Mn
m=1An,m. Let sn denote the

length of σn, i.e., TV (σn). Recall η is the parameter in the Steer procedure. Let Cn denote the
event that for any point x ∈ Xfree, the k-nearest RRG algorithm includes a vertex v such that
‖x− v‖ ≤ η.

Lemma 66 For any θ1, θ2 > 0 and any θ3 ∈ (0, 1),

P
(
Acn

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
≤ sn

θ1

(
ζd

θ1 (1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n(1−θ3)(1+1/d+θ2)−1/d
.

In particular,
∑∞

n=1 P(Acn |
⋂n
i=bθ3 ncCi) <∞ for any θ1, θ2 > 0 and some θ3 ∈ (0, 1).

Proof Let n0 ∈ N be a number for which δn < δ for all n > n0. Then, for all n > n0,

Mn = |Bn| ≤
sn
θ1 qn

=
sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d(n

log n

)1/d

.

69

The volume of each ball Bn can be computed as

µ(Bn,m) = ζd(qn)d = (1 + 1/d+ θ2)µ(Xfree)
log n

n
.

Given
⋂n
i=dθ3 neCi, the probability that the ball Bn,m does not contain a vertex of the k-nearest

PRM∗ algorithm can be bounded as

P
(
Acn,m

∣∣ ⋂n

i=dθ3 ne
Ci

)
=

(
1− µ(Bn,m)

µ(Xfree)

)(1−θ3)n

=

(
1− (1 + 1/d+ θ2)

log n

n

)(1−θ3)n

≤ n−(1−θ3) (1+1/d+θ2).

Finally, the probability that at least one of the balls in Bn contains no vertex of the k-nearest
PRM∗ can be bounded as

P(An) = P
(⋃Mn

m=1
An,m

)
≤

Mn∑
m=1

P(An,m) = Mn P(An,1)

≤ sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n(1−θ3) (1+1/d+θ2)−1/d
.

Clearly, for all θ1, θ2 > 0, there exists some θ3 ∈ (0, 1) such that
∑∞

n=1 P(Acn) <∞. �

F.4 The probability that each ball in B′n contains at most k(n) vertices

Let A′n denote the event that all balls in B′n contain at most k(n) vertices of the graph maintained
by the RRG algorithm, by end of iteration n.

Lemma 67 If kPRM > e (1 + 1/d), then there exists θ1, θ2, θ3 > 0 such that

P
(
A′cn

∣∣∣ ⋂n

i=bθ3 nc
Ci

)
≤ sn

θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n−(1−θ3)(1+θ1)d(1+1/d+θ2)
.

In particular,
∑∞

n=1 P(Acn |
⋂n
i=bθ3 ncCi) <∞ for some θ1, θ2 > 0 and some θ3 > 0.

Proof Let n0 ∈ N be a number for which λn < δ for all n > n0. Then, the number of balls in B′n
and the volume of each ball can be computed as

Mn = |B′n| ≤
sn
θ1qn

=
sn
θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d(n

log n

)1/d

.

µ(B′n,m) = ζd (λn)d = (1 + θ1)d (1 + 1/d+ θ2)µ(Xfree)
log n

n
.

Let In,m,i denote the indicator random variable of the event that sample i falls into ball B′n,m.
The expected value of In,m,i can be computed as

E[In,m,i] =
µ(B′n,m)

µ(Xfree)
= (1 + θ1)d (1 + 1/d+ θ2)

log n

n
.

Let Nn,m denote the number of vertices that fall inside the ball B′n,m between iterations bθ3 nc and
n, i.e., Nn,m =

∑n
i=bθ3 nc In,m,i. Then,

E[Nn,m] =
n∑

i=bθ3 nc

E[In,m,i] = (1− θ3)n E[In,m,1] = (1− θ3) (1 + θ1)d (1 + 1/d+ θ2) log n.

70

Since {In,m,i}ni=1 are independent identically distributed random variables, large deviations of their
sum, Mn,m, can be bounded by the following Chernoff bound (Dubhashi and Panconesi, 2009):

P
({

Nn,m > (1 + ε)E[Nn,m]
})
≤
(

eε

(1 + ε)(1+ε)

)E[Nn,m]

,

for all ε > 0. In particular, for ε = e− 1,

P
({

Nn,m > eE[Nn,m]
})
≤ e−E[Nn,m] = n−(1−θ3) (1+θ1)d (1+1/d+θ2).

Since k(n) > e (1 + 1/d) log n, there exists some θ1, θ2 > 0 and θ3 ∈ (0, 1), independent of n,
such that eE[Nn,k] = e (1− θ3) (1 + θ1) (1 + 1/d+ θ2) log n ≤ k(n). Then, for the same values of θ1

and θ2,

P
({

Nn,m > k(n)
})
≤ P

({
Nn,m > eE[Nn,m]

})
≤ n−(1−θ3) (1+θ1)d (1+1/d+θ2).

Finally, consider the probability of the event that at least one ball in Bn contains more than
k(n) nodes. Using the union bound together with the inequality above

P
(⋃Mn

m=1

{
Nn,m > k(n)

})
≤

Mn∑
m=1

P
({
Nn,m > k(n)

})
= Mn P

(
{Nn,1 > k(n)}

)
Hence,

P
(
A′cn
∣∣ ⋂n

i=bθ3 nc
Ci

)
= P

(⋃Mn

m=1

{
Nn,m > k(n)

})
≤ sn

θ1

(
ζd

(1 + 1/d+ θ2)µ(Xfree)

)1/d 1

(log n)1/d n−(1−θ3) (1+θ1)d(1+1/d+θ2)
.

Clearly,
∑∞

n=1 P
(
A′cn | ∩ni=bθ3 nc Ci

)
<∞ for the same values of θ1, θ2, and θ3. �.

F.5 Connecting the vertices in subsequent balls in Bn

Lemma 68 If kPRM > e (1 + 1/d)1/d, then there exists θ1, θ2 > 0 such that the event that each ball
in Bn contains at least one vertex and each ball in B′n contains at most k(n) vertices occurs for all
large n, with probability one, i.e.,

P
(

lim inf
n→∞

(An ∩A′n)
)

= 1.

First note the following lemma.

Lemma 69 For any θ3 ∈ (0, 1),

∞∑
n=1

P
((⋂n

i=bθ3nc
Cn

)c)
< ∞.

Proof Since the RRG algorithm and the k-nearest RRG algorithm have the same vertex sets, i.e.,
V RRG
n = V kRRG

n surely for all n ∈ N, the lemma follows from Lemma 64. �

71

Proof of Lemma 68 Note that

P
(

(Acn ∪A′cn)
∣∣ ⋂n

i=bθ3 nc
Ci

)
=

P
(
Acn ∩

(
∩ni=bθ3 ncCi

))
P
(⋂n

i=bθ3 ncCi

)
≥ P

(
(Acn ∪A′cn) ∩

(
∩ni=bθ3 nc Ci

))
≥ P(Acn ∪A′cn)− P

(
(∩ni=bθ3 ncCi)

c
)
,

where the last inequality follows from the union bound. Rearranging and using the union bound,

P(Acn ∪A′cn) ≤ P
(
Acn
∣∣ ∩ni=bθ3 nc Ci)+ P

(
Acn
∣∣ ∩ni=bθ3 nc Ci)+ P

((
∩ni=bθ3 nc Ci

)c)
.

Summing both sides,

∞∑
n=1

P(Acn∪A′cn) ≤
∞∑
n=1

P
(
Acn
∣∣ ⋂n

i=bθ3 nc
Ci

)
+
∞∑
n=1

P
(
A′cn
∣∣ ⋂n

i=bθ3 nc
Ci

)
+
∞∑
n=1

P
((⋂n

i=bθ3 nc
Ci

)c)
,

where the right hand side is finite by Lemmas 66, 67, and 69, by picking θ3 close to one. Hence,∑∞
n=1 P(Acn ∪ A′cn) < ∞. Then, by the Borel-Cantelli lemma, P(lim supn→∞(Acn ∪ A′cn)) = 0, or

equivalently P(lim infn→∞(An ∩A′n)) = 1. �

F.6 Convergence to the optimal path

The proof of the following two lemmas are essentially the same as that of Lemma 55, and is omitted
here. Let Pn denote the set of all paths in the graph returned by k-RRG algorithm at the end of n
iterations. Let σ′n be the path that is closest to σn in terms of the bounded variation norm among
all those paths in Pn, i.e., σ′n := minσ′∈Pn ‖σ′ − σn‖.

Lemma 70 The random variable ‖σ′n − σn‖BV converges to zero almost surely, i.e.,

P
({

limn→∞ ‖σ′n − σn‖BV = 0
})

= 1.

A corollary of the lemma above is that limn→∞ σ
′
n = σ∗ with probability one. Then, the result

follows by the robustness of the optimal solution (see the proof of Lemma 56 for details).

G Proof of Theorem 38 (Asymptotic optimality of RRT∗)

For simplicity, the proof will assume the steering parameter η to be large enough, i.e., η ≥ diam(X),
although the results hold for any η > 0.

G.1 Marked point process

Consider the following marked point process. Let {X1, X2, . . . , Xn} be a independent uniformly
distributed points drawn from Xfree and let {Y1, Y2, . . . , Yn} be independent uniform random vari-
ables with support [0, 1]. Each point Xi is associated with a mark Yi that describes the order of
Xi in the process. More precisely, a point Xi is assumed to be drawn after another point Xi′ if
Yi′ < Yi. We will also assume that the point process includes the point xinit with mark Y = 0.

Consider the graph formed by adding an edge (Xi′ , Xi), whenever (i) Yi′ < Yi and (ii) ‖Xi −
Xi′‖ ≤ rn both hold. Notice that, formed in this way, Gn includes no directed cycles. Denote this

72

graph by Gn = (Vn, En). Also, consider a subgraph G′n of Gn formed as follows. Let c(Xi) denote
the cost of best path starting from xinit and reaching Xi. In G′n, each vertex Xi has a single parent
Xi with the smallest cost c(Xi). Since the graph is built incrementally, the cost of the best path
reaching Xi will be the same as the one reaching Xi′ in both Gn and G′n. Clearly, G′n is equivalent
to the graph returned by the RRT∗ algorithm at the end of n iterations, if the steering parameter
η is large enough.

Let Yn and the Y ′n denote the costs of the best paths starting from xinit and reaching the goal
region in Gn and G′n, respectively. Then, lim supn→∞ Yn = lim supn→∞ Y

′
n surely. In the rest of

the proof, it is shown that P({lim supn→∞ Yn}) = 1, which implies that P({lim supn→∞ Y
′
n}) = 1,

which in turn implies the result.

G.2 Definitions of {σn}n∈N and {Bn}n∈N
Let σ∗ denote an optimal path. Define

δn := min{δ, 4 rn},

where rn is the connection radius of the RRT∗ algorithm. Let {σn}n∈N be the sequence paths, the
existence of which is guaranteed by Lemma 50.

For each n ∈ N, construct a sequence {Bn}n∈N of balls that cover σn asBn = {Bn,1, Bn,2, . . . , Bn,Mn} :=
CoveringBalls(σn, rn, 2 rn) (see Definition 51), where rn is the connection radius of the RRT∗ al-

gorithm, i.e., rn = γRRT∗

(
logn
n

)1/d
. Clearly, the balls in Bn are openly disjoint, since the spacing

between any two consecutive balls is 2 rn.

G.3 Connecting the vertices in subsequent balls in Bn

For all m ∈ {1, 2, . . . ,Mn}, let An,m denote the event that there exists two vertices Xi, Xi′ ∈ V RRT∗
n

such that Xi ∈ Bn,m, Xi′ ∈ Bn,m+1 and Yi′ ≤ Yi, where Yi and Yi′ are the marks associated with
points Xi and Xi′ , respectively. Notice that, in this case, Xi and Xi′ will be connected with an edge
in Gn. Let An denote the event that An,m holds for all m ∈ {1, 2, . . . ,M}, i.e., An =

⋂M
m=1An,m.

Lemma 71 If γRRT∗ > 4
(
µ(Xfree)
ζd

)1/d
, then An occurs for all large n, with probability one, i.e.,

P
(

lim inf
n→∞

An

)
= 1.

Proof The proof of this result is based on a Poissonization argument. Let Poisson(λ) be a Poisson
random variable with parameter λ = θ n, where θ ∈ (0, 1) is a constant independent of n. Consider
the point process that consists of exactly Poisson(θ n) points, i.e., {X1, X2, . . . , XPoisson(θ n)}. This
point process is a Poisson point process with intensity θ n /µ(Xfree) by Lemma 11.

Let Ãn,m denote the event that there exists two vertices Xi and Xi′ in the vertex set of the
RRT∗ algorithm such that Xi and Xi′ are connected with an edge in G̃n, where G̃n is the graph
returned by the RRT∗ when the algorithm is run for Poisson(θ n) many iterations, i.e., Poisson(θ n)
samples are drawn from Xfree.

Clearly, P(Acn,m) = P(Ãcn,m | {Poisson(θ n) = n}). Moreover,

P(Acn,m) ≤ P(Ãcn,m) + P({Poisson(θ n) > n}).

since P(Acn,m) is non-increasing with n (see, e.g., Penrose, 2003). Since θ < 1, P({Poisson(θ n) >
n}) ≤ e−an, where a > 0 is a constant independent of n.

73

To compute P(Ãcn,m), a number of definitions are provided. Let Nn,m denote the number of

vertices that lie in the interior of Bn,m. Clearly, E[Nn,m] =
ζd γ

d
RRT∗

µ(Xfree) log n, for all m ∈ {1, 2, . . . ,Mn}.

For notational simplicity, define α :=
ζd γ

d
RRT∗

µ(Xfree) . Let ε ∈ (0, 1) be a constant independent of n. Define
the event

Cn,m,ε := {Nn,m ≥ (1− ε)E[Nn,m]} = {Nn,m ≥ (1− ε)α log n}

Since Nn,m,ε is binomially distributed, its large deviations from its mean can be bounded as fol-
lows (Penrose, 2003),

P
(
Ccn,m,ε

)
= P({Nn,m,ε ≤ (1− ε)E[Nn,m]}) ≤ e−αH(ε) logn = n−αH(ε),

where H(ε) = ε+ (1− ε) log(1− ε). Notice that H(ε) is a continuous function of ε with H(0) = 0
and H(1) = 1. Hence, H(ε) can be made arbitrary close to one by taking ε close to one.

Then,

P(Ãcn,m) = P(Ãcn,m |Cn,m,ε ∩ Cn,m+1,ε)P(Cn,m,ε ∩ Cn,m+1,ε)

+P(Ãcn,m | (Cn,m,ε ∩ Cn,m+1,ε)
c)P((Cn,m,ε ∩ Cn,m+1,ε)

c)

≤ P(Ãcn,m |Cn,m,ε ∩ Cn,m+1,ε)P(Cn,m,ε ∩ Cn,m+1,ε) + P(Ccn,m,ε) + P(Ccn,m+1,ε),

where the last inequality follows from the union bound.
First, using the spatial independence of the underlying point process,

P (Cn,m,ε ∩ Cn,m+1,ε) = P (Cn,m,ε) P (Cn,m+1,ε) ≤ n−2αH(ε).

Second, observe that P(Acn,m |Nn,m = k,Nn,m+1 = k′) is a non-increasing function of both k

and k′, since the probability of the event Ãn,m can not increase with the increasing number of
points in both balls, Bn,m and Bn,m+1. Then,

P(Ãcn,m |Cn,m,ε ∩ Cn,m+1,ε) = P(Ãcn,m | {Nn,m ≥ (1− ε)α logNn,m, Nn,m+1 ≥ (1− ε)α logNn,m+1})
≤ P(Ãcn,m | {Nn,m = (1− ε)α logNn,m, Nn,m+1 = (1− ε)α logNn,m+1})

The term on the right hand side is one minus the probability that the maximum of α log n
number of uniform samples drawn from [0, 1] is smaller than the minimum of α log n number of
samples again drawn from [0, 1], where all the samples are drawn independently. This probability
can be calculated as follows. From the order statistics of uniform distribution, the minimum
of α log n points sampled independently and uniformly from [0, 1] has the following probability
distribution function:

fmin(x) =
(1− x)α logn−1

Beta(1, α log(n))
,

where Beta(·, ·) is the Beta function (also called the Euler integral) (Abramowitz and Stegun, 1964).
The maximum of the same number of independent uniformly distributed random variables with
support [0, 1] has the following cumulative distribution function:

Fmax(x) = xα logn

74

Then,

P(Ãcn,m |Cn,m,ε ∩ Cn,m+1,ε) ≤
∫ 1

0
Fmax(x) fmin(x) dx

=
Gamma((1− ε)α log n) Gamma((1− ε) ε log n)

2 Gamma(2(1− ε)α log(n))

≤ ((1− ε)α log n)! ((1− ε)α log n)!

2 (2 (1− ε)α log n)!

=
((1− ε)α log n)!

2(2(1− ε)α log n)(2(1− ε)α log n− 1) · · · 1

≤ 1

2(1−ε)α logn
= n− log(2) (1−ε)α ,

where Gamma(·) is the gamma function (Abramowitz and Stegun, 1964).
Then,

P(Ãcn,m) ≤ n−α
(

2H(ε)+log(2) (1−ε)
)

+ 2n−αH(ε).

Since 2H(ε) + log(2) (1 − ε) and H(ε) are both continuous and increasing in the interval (0.5, 1),
the former is equal to 2− log(4) > 0.5 and the latter is equal to 1 as ε approaches one from below,
there exists some ε̄ ∈ (0.5, 1) such that both 2H(ε̄) + log(2) (1− ε̄) > 0.5 and H(ε̄) > 0.5. Thus,

P(Ãcn,m) ≤ n−α/2 + 2n−α/2 = 3n−α/2.

Hence,

P(Acn,m) ≤ P(Ãcn,m) + P(Poisson(θ n) > n)

≤ 3n−α/2 + e−an

Recall that An denotes the event that An,m holds for all m ∈ {1, 2, . . . ,Mn}. Then,

P(Acn) = P
((⋂Mn

m=1
An,m

)c)
= P

(⋃Mn

m=1
Acn,m

)
≤

Mn∑
m=1

P
(
Acn,m

)
= Mn P(Acn,1),

where the last inequality follows from the union bound. The number of balls in Bn can be bounded
as

|Bn| = Mn ≤ β

(
n

log n

)1/d

,

where β is a constant. Combining this with the inequality above,

P(Acn) ≤ β

(
n

log n

)1/d (
3n−α/2 + e−an

)
,

which is summable for α > 2 (1 + 1/d). Thus, by the Borel-Cantelli lemma, the probability that
Acn occurs infinitely often is zero, i.e., P(lim supn→∞A

c
n) = 0, which implies that An occurs for all

large n with probability one, i.e., P(lim infn→∞An) = 1. �

75

G.4 Convergence to the optimal path

The proof of the following lemma is similar to that of Lemma 55, and is omitted here.
Let Pn denote the set of all paths in the graph returned by RRT∗ algorithm at the end of n

iterations. Let σ′n be the path that is closest to σn in terms of the bounded variation norm among
all those paths in Pn, i.e., σ′n := minσ′∈Pn ‖σ′ − σn‖.

Lemma 72 The random variable ‖σ′n − σn‖BV converges to zero almost surely, i.e.,

P
({

limn→∞ ‖σ′n − σn‖BV = 0
})

= 1.

A corollary of the lemma above is that limn→∞ σ
′
n = σ∗ with probability one. Then, the result

follows by the robustness of the optimal solution (see the proof of Lemma 56 for details).

76

	1 Introduction
	1.1 Sampling-Based Algorithms
	1.2 Optimal Motion Planning
	1.3 Statement of Contributions
	1.4 Paper Organization

	2 Preliminary Material
	2.1 Problem Formulation
	2.2 Random Geometric Graphs

	3 Algorithms
	3.1 Primitive Procedures
	3.2 Existing Algorithms
	3.3 Proposed algorithms

	4 Analysis
	4.1 Probabilistic Completeness
	4.2 Asymptotic Optimality
	4.2.1 Existing algorithms
	4.2.2 Proposed algorithms

	4.3 Computational Complexity

	5 Numerical Experiments
	6 Conclusion
	A Notation
	B Proof of Theorem 33 (Non-optimality of RRT)
	B.1 A necessary condition
	B.2 Length of the first path in a branch
	B.3 Length of the longest path in a branch
	B.4 Violation of the necessary condition

	C Proof of Theorem 34 (Asymptotic optimality of PRM*)
	C.1 Outline of the proof
	C.2 Construction of the sequence {n}nN of paths
	C.3 Construction of the sequence { Bn}nN of sets of balls
	C.4 The probability that each ball in Bn contains at least one vertex
	C.5 Connecting the vertices in subsequent balls in Bn
	C.6 Convergence to the optimal path

	D Proof of Theorem 35 (Asymptotic Optimality of k-nearest PRM*)
	D.1 Outline of the proof
	D.2 Construction of the sequence {n}nN of paths
	D.3 Construction of the sequence {Bn}nN of sets of balls
	D.4 The probability that each ball in Bn contains at least one vertex

	D.5 Construction of the sequence {Bn'}nN of sets of balls
	D.6 The probability that each ball in Bn' contains at most k(n) vertices
	D.7 Connecting the vertices in the subsequent balls in Bn
	D.8 Convergence to the optimal path
	E Proof of Theorem 36 (Asymptotic optimality of RRG)
	E.1 Outline of the proof
	E.2 Definitions of {n}nN and {Bn}nN
	E.3 Probability that each ball in Bn contains at least one vertex
	E.4 Convergence to the optimal path

	F Proof of Theorem 37 (asymptotic optimality of k-nearest RRG)
	F.1 Outline of the proof
	F.2 Definitions of {n}nN, {Bn}nN, and {Bn'}nN
	F.3 The probability that each ball in Bn contains at least one vertex
	F.4 The probability that each ball in Bn' contains at most k(n) vertices
	F.5 Connecting the vertices in subsequent balls in Bn
	F.6 Convergence to the optimal path

	G Proof of Theorem 38 (Asymptotic optimality of RRT*)
	G.1 Marked point process
	G.2 Definitions of {n}nN and {Bn}nN
	G.3 Connecting the vertices in subsequent balls in Bn
	G.4 Convergence to the optimal path

