
CS287 Backpropagation and Guided Policy Search Problem Set 1

CS 287, Fall 2015 Problem Set
Backpropagation, RMSProp, and Guided Policy
Search

Deliverable: pdf write-up by Friday Dec 11th, 11:59pm, submitted through Gradescope. Your
pdf write-up should be typeset as follows: answers to Question 1 an page 1; answer
to Question 2 on page 2; answer to Question 3 on pages 3 and 4. Make sure to follow
the requested typesetting, and insert blank regions (or blank pages) as necessary.
Thanks!

Refer to the class webpage for the homework policy.

Various starter files are provided on the course website.

1. Backpropagation

In this question we will explore the backpropagation algorithm. We begin with a short tutorial
on the algorithm and its relation to neural networks. For more detail there are a host of online
resources available by searching for neural networks.

A neural network is a mathematical function that is constructed by composing simple mathe-
matical functions such as matrix multiplication, addition, and simple nonlinearities. Typically,
this function inputs a vector of some dimension and outputs a vector of some other (possibly
the same) dimension and is parameterized by variables in the function, such as the matrices to
multiply by. This is a general and flexible class of functions when there are many parameters
and several layers of composition. The collection of operations in a neural network forms a
computation graph where each node is an input, intermediate, or output variable and the edges
into a node are the input variables to that particular computation.

In order to utilize neural networks, we wish to optimize the parameters of some fixed neural
network structure in order to minimize some scalar loss function on the output of the neu-
ral network that measures performance of the neural network on some dataset on some task,
such as classification or regression. Assuming the loss function is differentiable, the standard
approaches to optimization will utilize the gradient. A typical neural network could contain
anywhere from hundreds to billions of parameters and so calculating the gradient through finite
differences, where the number of function evaluations required to compute a single gradient eval-
uation scales linearly with the number of parameters, quickly becomes intractable.

Fortunately, since neural networks are a composition of simple functions, and our loss function
outputs a scalar, we can utilize the chain rule of calculus in order to calculate the gradient of
the loss efficiently. We wish to compute ∂L

∂θi
for each θi parameter in the network and L the

loss function. We calculate ∂L
∂vi

analytically for each intermediate variable vi in the computa-
tion graph in reverse topological order using dynamic programming. That is, we calculate that
quantity for the each variable that depends on a given variable before that variable itself.

To begin with, ∂L∂L = 1. Assume that we want to calculate ∂L
∂vi

for a variable vi and have already

calculated ∂L
∂vj

for each vj that has an edge from vi to vj in the computation graph that represents

the neural network (vi’s children). Then we can utilize the chain rule of calculus to calculate:

CS287 Backpropagation and Guided Policy Search Problem Set 2

∂L

∂vi
=

∑
vj

∂L

∂vj

∂vj
∂vi

where the sum is over the children vj of vi. The first quantity we have already computed, and

so we only need to calculate
∂vj
∂vi

. That quantity is simply the derivative of one intermediate
calculation in the network with respect to that calculation’s inputs. We restrict ourselves to
the composition of simple functions, where we can calculate the derivatives in closed form, and
so we can compute that efficiently. This process proceeds until we have calculated ∂L

∂θi
for each

parameter θi and then we have the gradient we desire.

Asymptotically, this allows us to compute the gradient with respect to every parameter (even
every variable in the graph) with the same computational complexity as one function evaluation.
This is incredible since the network could have a billion parameters and evaluating the approx-
imate gradient would cost two billion function evaluations using finite differences but here we
get the exact gradient for no more than the cost of 5 function evaluations (the constant varies
slightly based off of which functions are used but most are less than 5). The tradeoff is that the

calculation of
∂vj
∂vi

often requires the value of vi and vj ’s other inputs, so we have to record the
intermediate variables in memory where we could otherwise discard them after using them.

Question For this question you will familiarize yourself with the backpropagation algorithm by
performing it on a simple fixed neural network for regression. The inputs are vectors x and y,
and parameters are the matrix A and vector b. There are intermediate variables v = Ax + b,
vp =rect(v) where the rect function acts elementwise on the input: rect(v) = max(v, 0) and
keeps the positive part of v. The output of the network would be vp and we want to optimize the
network such that vp when the network is applied to x is close to the input y (a regression task).
Thus we calculate the error= vp−y and want to minimize the loss: sqerror= 1

2 ||error||
2
2. For this

problem you will look in q1_starter.m for the main file and will calculate the derivatives for the
fixed neural network in simple_backprop_net.m. Note that the code uses the variable naming
convention: ∂L

∂variable = variable bar. You should implement backpropagation to calculate ∂L
∂vi

for each variable vi in the network. The correct values for a given input are provided to debug
and you can utillize finite differences to check your work (but that approach wouldn’t scale as
the network got larger). Look for TODO and REPORT for the parts you need to write. Report the
values calculated for the variable_bar_test variables.

2. RMSProp

In this question you get to implement a variant of gradient descent called RMSProp. This
algorithm is a descent update rule that takes a step along a rescaled gradient. The scaling
is done separately for each dimension of the gradient by keeping a running average of recent
gradient components squared and dividing each component of the gradient by the square root of
those averages, hence Root Mean Square (RMSProp). The RMSprop update rule is as follows.
Let t be the iteration and ∇f t(xt) ∈ Rn be the gradient of some function f at the current point
xt and ∆t ∈ Rn be the rmsprop descent vector. Let vtms ∈ Rn be the mean square vector and
ε ∈ (0, 1). Then we define:

vtms = (1− ε)(∇f t)2 + εvt−1
ms

for the elementwise square of ∇f t. Then, for some small τ ∼ 1e − 10 to prevent numerical

CS287 Backpropagation and Guided Policy Search Problem Set 3

overflow, we define:

∆t =
∇f t√
vtms + τ

where the square root is elementwise and the division is elementwise between ∇f t and
√
vtms.

Then the RMSProp update rule is: xt+1 = xt − α∆t for some global learning rate α ∈ R+.

Question You will be using a limited but simple neural net library for this and question 3. The
neural network library is limited to feedforward networks, those that have one vector input at
the bottom and all functions are applied on to the previous function’s output. Implement the
RMSProp update rule in rmsprop_update.m and use q2_starter.m to verify its correctness.
Look for TODO and REPORT for the parts you need to write. Report the value of the RMSProp
update for delta2_test in the code and the learning rate plot. Don’t forget to admire the
beautiful plots that are generated.

3. Guided Policy Search (lite)

In this question you get to train a neural network policy for helicopters. We have provided a
dataset of 3000 simulated helicopter trajectories that were generated from the following process:

The helicopter starts at some initial position and orientation with zero velocity. Generate a
nearby goal position and orientation relative to the current position and orientation. A tenta-
tive trajectory is generated that interpolates between the current and goal positions with extra
zero velocity padding around the ends that has a proportional duration to the magnitude of
the distance between the start and goal positions. The SCP-based trajectory optimization from
problem set 3 is used to attempt to stay close to the tentative trajectory while satisfying dynam-
ics. Then the generated trajectory is followed by utilizing the LQR based trajectory following.
Then the position origin is recentered around the ending position and the end state is used as
the beginning state for the next trajectory. A new goal is generated and the above process is
repeated. If the trajectory optimization fails to find a path to the goal, a new goal is generated.
If 3 failures happen from the same state, the state is reset to the initial state.

This process was chosen to generate a wide range of (current state, current goal, control action)
triplets. You will utilize the neural network library and the above dataset as supervision in order
to train a neural network that inputs current state and current goal and outputs control action
to try to mimic what the trajectory optimizer would do in that situation. This training will be
performed using your RMSProp implementation in Q2. The result is a neural network control
policy that can be used to guide the helicopter to nearby positions for very little computational
cost.

Normally, in guided policy search, there is an alternation between trajectory optimization and
supervised neural net training that repeats for several iterations. We omit the alternation here
for simplicity. Usually we need this alternation since the neural network fails to reduce the
error between its control output and the trajectory optimization’s control output to zero. This
error means that during execution, the neural network’s trajectory will diverge from what the
trajectory optimization’s trajectory would be and the neural network wouldn’t necessarily be
able to recover unless there was extra training data for how to recover from that state that the
neural net has driven the system to. We generate a large diversity of training data from many
initial states to many goals, however, so that hopefully the neural net stays within the regime of
states that we have training data for and errors don’t compound. Note also that the formulation

CS287 Backpropagation and Guided Policy Search Problem Set 4

presented here where the neural network is trying to minimize mean squared distance from its
control output to the trajectory optimization’s control output is different from the guided policy
search presentation in class since the form of trajectory optimization utilized in problem set 3 is
deterministic instead of stochastic.

Question Experiment with different neural network architectures and hyperparameters using
the provided neural network library and different values of stepsizes and minibatch sizes and ep-
silons for rmsprop to train the neural network. Provide the desired reports and write a paragraph
or two about the different experiments you ran. You can visualize the resulting trajectories for
executions of the neural net and tentative trajectories that the trajectory optimizer would try to
follow in the code. Report the plot showing learning performance over iteration count and the
two histograms showing position error and orientation error magnitudes after executing many
trajectories.

See q3_starter.m and look for TODO and REPORT for the parts you need to write. Note this
questions relies on your solution to Question 2, and you’ll need to make sure that your code for
Question 2 is in the matlab path (should happen by default unless your paths are nonstandard).

