Bellman’s curse of dimensionality

- n-dimensional state space
- Number of states grows exponentially in n (assuming some fixed number of discretization levels per coordinate)
- In practice
 - Discretization is considered only computationally feasible up to 5 or 6 dimensional state spaces even when using
 - Variable resolution discretization
 - Highly optimized implementations
Goal: find a sequence of control inputs (and corresponding sequence of states) that solves:

\[
\min_{u,x} \sum_{t=0}^{H} g(x_t, u_t)
\]

subject to \(x_{t+1} = f(x_t, u_t) \quad \forall t\)

\(u_t \in U_t \quad \forall t\)

\(x_t \in X_t \quad \forall t\)

Generally hard to do. In this set of slides we will consider convex problems, which means \(g\) is convex, the sets \(U_t\) and \(X_t\) are convex, and \(f\) is linear. Next set of slides will relax these assumptions.

Note: iteratively applying LQR is one way to solve this problem if there were no constraints on the control inputs and state.

In principle (though not in our examples), \(u\) could be parameters of a control policy rather than the raw control inputs.
Convex Optimization

Pieter Abbeel
UC Berkeley EECS

Many slides and figures adapted from Stephen Boyd

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 – 11
[optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming
Outline

- Convex optimization problems
- Unconstrained minimization
 - Gradient Descent
 - Newton’s Method
- Equality constrained minimization
- Inequality and equality constrained minimization
A function is $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if

$$\forall x_1, x_2 \in \text{Domain}(f), \forall t \in [0, 1]:
\quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$$

Image source: wikipedia
Convex Functions

- Unique minimum
- Set of points for which $f(x) \leq a$ is convex

Source: Thomas Jungblut’s Blog
Convex Optimization Problems

- Convex optimization problems are a special class of optimization problems, of the following form:

\[
\min_{x \in \mathbb{R}^n} f_0(x) \\
\text{s.t.} \quad f_i(x) \leq 0 \quad i = 1, \ldots, n \\
Ax = b
\]

with \(f_i(x) \) convex for \(i = 0, 1, \ldots, n \)

- A function is \(f \) is convex if and only if

\[
\forall x_1, x_2 \in \text{Domain}(f), \forall \lambda \in [0, 1] \\
f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)
\]
Outline

- Convex optimization problems
- Unconstrained minimization
 - Gradient Descent
 - Newton’s Method
- Equality constrained minimization
- Inequality and equality constrained minimization
Unconstrained Minimization

\[
\min_{x} f(x) \quad (1)
\]

(Implicitly assumed \(x\) can be chosen from the entire domain of \(f\), often \(\mathbb{R}^n\).)

- If \(x^*\) satisfies:

\[
\begin{align*}
\nabla_x f(x^*) &= 0 \quad (2) \\
\nabla^2_x f(x^*) &\succeq 0 \quad (3)
\end{align*}
\]

then \(x^*\) is a local minimum of \(f\).

- In simple cases we can directly solve the system of \(n\) equations given by (2) to find candidate local minima, and then verify (3) for these candidates.

- In general however, solving (2) is a difficult problem. Going forward we will consider this more general setting and cover numerical solution methods for (1).
Steepest Descent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the steepest descent direction

Figure source: Mathworks
Steepest Descent Algorithm

1. Initialize x
2. Repeat
 1. Determine the steepest descent direction Δx
 2. Line search. Choose a step size $t > 0$.
 3. Update. $x := x + t \Delta x$.
3. Until stopping criterion is satisfied
What is the Steepest Descent Direction?

Assuming a smooth function, we have that

\[f(x_0 + \Delta x) \approx f(x_0) + \nabla_x f(x_0)^\top \Delta x \]

The (locally at \(x_0 \)) direction of steepest descent is given by:

\[
\Delta x^* = \arg \min_{\Delta x: \|\Delta x\|_2 = 1} f(x_0) + \nabla_x f(x_0)^\top \Delta x
\]

\[
= \arg \min_{\Delta x: \|\Delta x\|_2 = 1} \nabla_x f(x_0)^\top \Delta x
\]

As we have all \(a, b \in \mathbb{R}^n \) that \(\min_{b: \|b\|_2 = 1} a^\top b \) is achieved for \(b = -\frac{a}{\|a\|_2} \), we have that the steepest descent direction

\[
\Delta x^* = -\nabla_x f(x_0)
\]

\(\rightarrow \) Steepest Descent = Gradient Descent
Steps size Selection: Exact Line Search

\[t = \arg \min_{s \geq 0} f(x + s \Delta x) \]

- Used when the cost of solving the minimization problem with one variable is low compared to the cost of computing the search direction itself.
Inexact: step length is chose to approximately minimize f along the ray $\{x + t \Delta x \mid t \geq 0\}$

Backtracking Line Search.

given a descent direction Δx for f at $x \in \text{dom} f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$.

$t := 1$

while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)\top \Delta x$, $t := \beta t$.

Figure 9.1 Backtracking line search. The curve shows \(f \), restricted to the line over which we search. The lower dashed line shows the linear extrapolation of \(f \), and the upper dashed line has a slope a factor of \(\alpha \) smaller. The backtracking condition is that \(f \) lies below the upper dashed line, i.e., \(0 \leq t \leq t_0 \).
Steepest Descent (= Gradient Descent)

Algorithm 9.3 Gradient descent method.

given a starting point \(x \in \text{dom} \, f \).
repeat
 1. \(\Delta x := -\nabla f(x) \).
 2. Line search. Choose step size \(t \) via exact or backtracking line search.
 3. Update. \(x := x + t\Delta x \).
until stopping criterion is satisfied.

The stopping criterion is usually of the form \(\|\nabla f(x)\|_2 \leq \eta \), where \(\eta \) is small and positive. In most implementations, this condition is checked after step 1, rather than after the update.
Gradient Descent: Example 1

\[f(x_1, x_2) = e^{x_1+3x_2-0.1} + e^{x_1-3x_2-0.1} + e^{-x_1-0.1} \]

Figure source: Boyd and Vandenberghe
Gradient Descent: Example 2

A problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

‘linear’ convergence, i.e., a straight line on a semilog plot

Figure source: Boyd and Vandenberghe
Gradient Descent: Example 3

\[f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0) \]

with exact line search, starting at \(x^{(0)} = (\gamma, 1) \):

\[x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k \]

- very slow if \(\gamma \gg 1 \) or \(\gamma \ll 1 \)
- example for \(\gamma = 10 \):

Figure source: Boyd and Vandenberghe
For quadratic function, convergence speed depends on ratio of highest second derivative over lowest second derivative ("condition number")

In high dimensions, almost guaranteed to have a high (=bad) condition number

Rescaling coordinates (as could happen by simply expressing quantities in different measurement units) results in a different condition number
Outline

- Unconstrained minimization
 - Gradient Descent
 - Newton’s Method
- Equality constrained minimization
- Inequality and equality constrained minimization
Newton’s Method

- 2nd order Taylor Approximation rather than 1st order:

\[f(x + \Delta x) \approx f(x) + \nabla f(x) \Delta x + \frac{1}{2} \Delta x^\top \nabla^2 f(x) \Delta x \]

assuming $\nabla^2 f(x) \succeq 0$, the minimum of the 2nd order approximation is achieved at: $\Delta x_{nt} = - (\nabla^2 f(x))^{-1} \nabla f(x)$

Figure source: Boyd and Vandenberghe
Algorithm 9.5 Newton’s method.

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$.
repeat
1. Compute the Newton step and decrement.
 \[\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x). \]
2. Stopping criterion. quit if $\lambda^2 / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x := x + t \Delta x_{nt}$.

Figure source: Boyd and Vandenberghe
Affine Invariance

- Consider the coordinate transformation \(y = A^{-1} x \) \((x = Ay) \)

- If running Newton’s method starting from \(x^{(0)} \) on \(f(x) \) results in \(x^{(0)}, x^{(1)}, x^{(2)}, \ldots \)

- Then running Newton’s method starting from \(y^{(0)} = A^{-1} x^{(0)} \) on \(g(y) = f(Ay) \), will result in the sequence \(y^{(0)} = A^{-1} x^{(0)}, y^{(1)} = A^{-1} x^{(1)}, y^{(2)} = A^{-1} x^{(2)}, \ldots \)

- Exercise: try to prove this!
Affine Invariance --- Proof

\[\frac{\partial g}{\partial y_i} = \sum_j \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial y_i} \]
\[= \sum_j \frac{\partial f}{\partial x_j} A_{ji} \]
\[= \left(A^\top \right)_{i,:} \nabla f \]
\[\nabla g = A^\top \nabla f \]

\[\frac{\partial^2 g}{\partial y_k \partial y_i} = \frac{\partial}{\partial y_i} \left(\sum_j \frac{\partial f}{\partial x_j} A_{j,i} \right) \]
\[= \sum_j \frac{\partial}{\partial y_k} \left(\frac{\partial f}{\partial x_j} \right) A_{j,i} \]
\[= \sum_j \sum_l \frac{\partial^2 f}{\partial x_l \partial x_j} \frac{\partial x_l}{\partial y_k} A_{j,i} \]
\[= \sum_j \sum_l \frac{\partial^2 f}{\partial x_l \partial x_j} A_{l,k} A_{j,i} \]
\[\nabla^2 g = A^\top \nabla^2 f A \]

\[\Delta y = - (\nabla^2 g)^{-1} \nabla g \]
\[= - \left(A^\top \nabla^2 f A \right)^{-1} A^\top \nabla f \]
\[= - A^{-1} \left(\nabla^2 f \right)^{-1} A^{-T} A^\top \nabla f \]
\[= - A^{-1} \left(\nabla^2 f \right)^{-1} \nabla f \]
\[= A^{-1} \Delta x \]
Example 1

\[f(x_1, x_2) = e^{x_1+3x_2-0.1} + e^{x_1-3x_2-0.1} + e^{-x_1-0.1} \]

Gradient descent with backtracking line search

Newton's method with backtracking line search

Figure source: Boyd and Vandenberghe
Example 2

A problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

Gradient Descent

Newton's method

Figure source: Boyd and Vandenberghe
Larger Version of Example 2

Example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = - \sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples.
Gradient Descent: Example 3

\[f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0) \]

with exact line search, starting at \(x^{(0)} = (\gamma, 1) \):

\[x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(\frac{-\gamma - 1}{\gamma + 1} \right)^k \]

- very slow if \(\gamma \gg 1 \) or \(\gamma \ll 1 \)
- example for \(\gamma = 10 \):

Figure source: Boyd and Vandenberghe
Example 3

- Gradient descent
- Newton’s method (converges in one step if f convex quadratic)
Quasi-Newton Methods

- Quasi-Newton methods use an approximation of the Hessian
 - Example 1: Only compute diagonal entries of Hessian, set others equal to zero. Note this also simplifies computations done with the Hessian.
 - Example 2: natural gradient --- see next slide
Consider a standard maximum likelihood problem:

$$\max_{\theta} f(\theta) = \max_{\theta} \sum_{i} \log p(x^{(i)}; \theta)$$

Gradient:

$$\frac{\partial f(\theta)}{\partial \theta_p} = \sum_{i} \frac{\partial \log p(x^{(i)}; \theta)}{\partial \theta_p} = \sum_{i} \frac{\partial p(x^{(i)}; \theta)}{\partial \theta_p} \frac{1}{p(x^{(i)}; \theta)}$$

Hessian:

$$\frac{\partial^2 f(\theta)}{\partial \theta_q \partial \theta_p} = \sum_{i} \frac{\partial^2 p(x^{(i)}; \theta)}{\partial \theta_q \partial \theta_p} \frac{1}{p(x^{(i)}; \theta)} - \frac{\partial p(x^{(i)}; \theta)}{\partial \theta_q} \frac{1}{p(x^{(i)}; \theta)} \frac{\partial p(x^{(i)}; \theta)}{\partial \theta_p} \frac{1}{p(x^{(i)}; \theta)}$$

$$\nabla^2 f(\theta) = \sum_{i} \frac{\nabla^2 p(x^{(i)}; \theta)}{p(x^{(i)}; \theta)} - \left(\nabla \log p(x^{(i)}; \theta) \right) \left(\nabla \log p(x^{(i)}; \theta) \right)^\top$$

Natural gradient:

$$= \left(\sum_{i} \left(\nabla \log p(x^{(i)}; \theta) \right) \left(\nabla \log p(x^{(i)}; \theta) \right)^\top \right)^{-1} \left(\sum_{i} \nabla \log p(x^{(i)}; \theta) \right)$$

only keeps the 2nd term in the Hessian. Benefits: (1) faster to compute (only gradients needed); (2) guaranteed to be negative definite; (3) found to be superior in some experiments; (4) invariant to re-parametrization
Property: Natural gradient is invariant to parameterization of the family of probability distributions $p(x; \theta)$.

Hence the name.

Note this property is stronger than the property of Newton’s method, which is invariant to affine re-parameterizations only.

Exercise: Try to prove this property!
Natural Gradient Invariant to Reparametrization --- Proof

- Natural gradient for parametrization with \(\theta \):

\[
\bar{g}_\theta = \left(\sum_i \left(\nabla_\theta \log p(x^{(i)}; \theta) \right) \left(\nabla_\theta \log p(x^{(i)}; \theta) \right)^\top \right)^{-1} \left(\sum_i \nabla_\theta \log p(x^{(i)}; \theta) \right)
\]

- Let \(\phi = f(\theta) \), and let \(J = \frac{\partial \theta}{\partial \phi} \) i.e., \(J_{i,j} = \frac{\partial \theta_i}{\partial \phi_j} \)

\[
\bar{g}_\phi = \left(\sum_i \left(\nabla_\phi \log p(x^{(i)}; \phi) \right) \left(\nabla_\phi \log p(x^{(i)}; \phi) \right)^\top \right)^{-1} \left(\sum_i \nabla_\phi \log p(x^{(i)}; \phi) \right)
\]

\[
= \left(\sum_i \left(J^\top \nabla_\theta \log p(x^{(i)}; \phi) \right) \left(J^\top \nabla_\theta \log p(x^{(i)}; \phi) \right)^\top \right)^{-1} \left(J^\top \sum_i \nabla_\theta \log p(x^{(i)}; \phi) \right)
\]

\[
= J^\top \bar{g}_\theta
\]

→ the natural gradient direction is the same independent of the (invertible, but otherwise not constrained) reparametrization \(f \)
Outline

- Unconstrained minimization
 - Gradient Descent
 - Newton’s Method
- Equality constrained minimization
- Inequality and equality constrained minimization
Equality Constrained Minimization

- Problem to be solved:

\[
\min_x f(x) \\
\text{s.t. } Ax = b
\]

- We will cover three solution methods:
 - Elimination
 - Newton’s method
 - Infeasible start Newton method
From linear algebra we know that there exist a matrix F (in fact infinitely many) such that:

$$\{x \mid Ax = b\} = \{x \mid x = \hat{x} + Fz\}$$

\hat{x} can be any solution to $Ax = b$

F spans the nullspace of A

A way to find an F: compute SVD of A, $A = U S V'$, for A having k nonzero singular values, set $F = U(:, k+1:end)$

So we can solve the equality constrained minimization problem by solving an **unconstrained minimization problem over a new variable** z:

$$\min_z f(\hat{x} + Fz)$$

Potential cons: (i) need to first find a solution to $Ax=b$, (ii) need to find F, (iii) elimination might destroy sparsity in original problem structure
Methods 2 and 3 Require Us to First Understand the Optimality Condition

- Recall problem to be solved:

\[
\begin{align*}
\min_x & \quad f(x) \\
\text{s.t.} & \quad Ax = b
\end{align*}
\]

\[x^* \text{ with } Ax^* = b \text{ is (local) optimum iff: } \forall \Delta x \quad \text{if } A\Delta x = 0 \text{ then } \nabla f(x^*)^\top \Delta x = 0.\]

Equivalently:

\[\nabla f(x^*)^\top = \nu^\top A\]
Recall the problem to be solved:

\[\min_x f(x) \quad \text{s.t.} \quad Ax = b \]

Optimality Condition: \(Ax^* = b \) and \(\nabla f(x^*) + A^\top \nu = 0 \)
Method 2: Newton’s Method

- Problem to be solved:
 \[\min_x f(x) \]
 \[\text{s.t. } Ax = b \]

- Optimality Condition: \(Ax^* = b \) and \(\nabla f(x^*) + A^\top \nu = 0 \)

- Assume \(x \) is feasible, i.e., satisfies \(Ax = b \), now use \(2^{\text{nd}} \) order approximation of \(f \):
 \[\min_{\Delta x} f(x) + \nabla f(x)^\top \Delta x + \frac{1}{2} \Delta x^\top \nabla^2 f(x) \Delta x \]
 \[\text{s.t. } A(x + \Delta x) = b \]

- \(\rightarrow \) Optimality condition for \(2^{\text{nd}} \) order approximation:
 \[\begin{bmatrix} \nabla^2 f(x) & A^\top \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \nu \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix} \]
Method 2: Newton’s Method

Given starting point $x \in \text{dom } f$ with $Ax = b$, tolerance $\epsilon > 0$.

repeat

1. Compute the Newton step and decrement Δx_{nt}, $\lambda(x)$.
2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x := x + t \Delta x_{nt}$.

With Newton step obtained by solving a linear system of equations:

$$
\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x_{nt} \\
v
\end{bmatrix}
=
\begin{bmatrix}
-\nabla f(x) \\
0
\end{bmatrix}
$$

Feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) \leq f(x^{(k)})$
Problem to be solved:
\[
\min_x \ f(x) \\
\text{s.t.} \quad Ax = b
\]

Optimality Condition: \(Ax^* = b \) and \(\nabla f(x^*) + A^\top \nu = 0 \)

Use 1\(^{st}\) order approximation of the optimality conditions at current \(x \):

\[
A(x + \Delta x) = b \\
\nabla f(x) + \nabla^2 f(x) \Delta x + A^\top \nu = 0
\]

\[
\begin{bmatrix}
\nabla^2 f(x) & A^\top \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\nu
\end{bmatrix}
=
\begin{bmatrix}
-\nabla f(x) \\
b - Ax
\end{bmatrix}
\]
Outline

- Unconstrained minimization
- Equality constrained minimization
- Inequality and equality constrained minimization
Recall the problem to be solved:

$$\min_{x} \quad f_0(x)$$

s.t. \quad f_i(x) \leq 0, \quad i = 1, \ldots, m

$$Ax = b$$
Equality and Inequality Constrained Minimization

- Problem to be solved:

\[
\begin{align*}
\min_x & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- Reformulation via indicator function,

\[
\begin{align*}
\min_x & \quad f_0(x) + \sum_{i=1}^{m} I_-(f_i(x)) \\
& \quad Ax = b
\end{align*}
\]

\[I_-(u) = \begin{cases}
0 & \text{if } u \leq 0 \\
\infty & \text{otherwise}
\end{cases}\]

→ No inequality constraints anymore, but very poorly conditioned objective function
Equality and Inequality Constrained Minimization

- Problem to be solved:
 \[
 \begin{align*}
 \min_x & \quad f_0(x) \\
 \text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad Ax = b
 \end{align*}
 \]

- Reformulation via indicator function
 \[
 \begin{align*}
 \min_x & \quad f_0(x) + \sum_{i=1}^{m} I_{-}(f_i(x)) \\
 & \quad Ax = b
 \end{align*}
 \]
 → No inequality constraints anymore, but very poorly conditioned objective function

- Approximation via logarithmic barrier:
 \[
 \begin{align*}
 \min_x & \quad f_0(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-f_i(x)) \\
 \text{s.t.} & \quad Ax = b
 \end{align*}
 \]
 for \(t > 0 \), \(-\frac{1}{t} \log(-u) \) is a smooth approximation of \(I_-(u) \)
 approximation improves for \(t \to \infty \), better conditioned for smaller \(t \)
Equality and Inequality Constrained Minimization

$-(1/t) \log(-u)$

Graph showing the function $-(1/t) \log(-u)$ against u with values ranging from -5 to 10 on the y-axis and from -3 to 1 on the x-axis.
Barrier Method

- Given: strictly feasible \(\mathbf{x}, t=t^{(0)} > 0, \mu > 1, \) tolerance \(\epsilon > 0 \)

- Repeat
 1. Centering Step. Compute \(\mathbf{x}^*(t) \) by solving

 \[
 \min_{\mathbf{x}} \quad f_0(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-f_i(x)) \\
 \text{s.t.} \quad A\mathbf{x} = \mathbf{b}
 \]

 starting from \(\mathbf{x} \)

 2. Update. \(\mathbf{x} := \mathbf{x}^*(t) \).

 3. Stopping Criterion. Quit if \(m/t < \epsilon \)

 4. Increase \(t \). \(t := \mu \cdot t \)
Example 1: Inequality Form LP

inequality form LP \((m = 100 \text{ inequalities}, \ n = 50 \text{ variables})\)

- starts with \(x\) on central path \((t^{(0)} = 1, \text{ duality gap } 100)\)
- terminates when \(t = 10^8\) (gap \(10^{-6}\))
- centering uses Newton’s method with backtracking
- total number of Newton iterations not very sensitive for \(\mu \geq 10\)
Example 2: Geometric Program

geometric program \((m = 100 \text{ inequalities and } n = 50 \text{ variables})\)

minimize \[\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right) \]

subject to \[\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \leq 0, \quad i = 1, \ldots, m \]
Example 3: Standard LPs

A family of standard LPs \((A \in \mathbb{R}^{m \times 2m})\)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \geq 0
\end{align*}
\]

\(m = 10, \ldots, 1000\); for each \(m\), solve 100 randomly generated instances

Number of iterations grows very slowly as \(m\) ranges over a 100 : 1 ratio
Initialization

- Basic phase I method:

 Initialize by first solving:

 \[
 \min_{x,s} \quad s \\
 \text{s.t.} \quad f_i(x) \leq s, \quad i = 1, \ldots, m \\
 Ax = b
 \]

- Easy to initialize above problem, pick some \(x \) such that \(Ax = b \), and then simply set \(s = \max_i f_i(x) \)

- Can stop early---whenever \(s < 0 \)
Initialization

- Sum of infeasibilities phase I method:

- Initialize by first solving:

\[
\begin{align*}
\min_{x,s} & \quad \sum_{i=1}^{m} s_i \\
\text{s.t.} & \quad f_i(x) \leq s_i, \quad i = 1, \ldots, m \\
& \quad s_i \geq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- Easy to initialize above problem, pick some \(x \) such that \(Ax = b \), and then simply set \(s_i = \max(0, f_i(x)) \)

- For infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method
Other methods

- We have covered a primal interior point method
 - one of several optimization approaches
- Examples of others:
 - Primal-dual interior point methods
 - Primal-dual infeasible interior point methods
For convex g_t and f_i, we can now solve:

$$
\min_{x,u} \sum_{i=0}^{T} g_t(x_t, u_t) \\
\text{s.t.} \quad x_{t+1} = A_t x_t + B_t u_t \quad \forall t \\
\quad f_i(x, u) \leq 0, \quad i = 1, \ldots, m
$$

Which gives an open-loop sequence of controls.
Given: \(\bar{x}_0 \)

For \(k=0, 1, 2, \ldots, T \)

- Solve

\[
\min_{x,u} \sum_{t=k}^{T} g_t(x_t, u_t)
\]

s.t.
\[
x_{t+1} = A_t x_t + B_t u_t \quad \forall t \in \{k, k+1, \ldots, T-1\}
\]
\[
f_i(x, u) \leq 0, \quad \forall i \in \{1, \ldots, m\}
\]
\[
x_k = \bar{x}_k
\]

- Execute \(u_k \)

- Observe resulting state, \(\bar{x}_{k+1} \)

\(\rightarrow \) = an instantiation of Model Predictive Control.

\(\rightarrow \) Initialization with solution from iteration \(k-1 \) can make solver very fast (and would be done most conveniently with infeasible start Newton method)
CVX

- Disciplined convex programming
 - = convex optimization problems of forms that it can easily verify to be convex

- Convenient high-level expressions

- Excellent for fast implementation

- Designed by Michael Grant and Stephen Boyd, with input from Yinyu Ye.

- Current webpage: http://cvxr.com/cvx/
Matlab Example for Optimal Control, see course webpage