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Queue-Based Search 

Pieter Abbeel – UC Berkeley 

Many slides from Dan Klein  

State Space Graphs 

§  State space graph: A 
mathematical 
representation of a 
search problem 
§  For every search problem, 

there’s a corresponding 
state space graph 

§  The successor function is 
represented by arcs 

§  We can rarely build this 
graph in memory (so 
we don’t) 
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Ridiculously tiny search graph 
for a tiny search problem 
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Search Trees 

§  A search tree: 
§  This is a “what if” tree of plans and outcomes 
§  Start state at the root node 
§  Children correspond to successors 
§  Nodes contain states, correspond to PLANS to those states 
§  For most problems, we can never actually build the whole tree 

“E”, 
1.0 

“N”, 1.0 

Another Search Tree 

§  Search: 
§  Expand out possible plans 
§ Maintain a fringe of unexpanded plans 
§  Try to expand as few tree nodes as possible 
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General Tree Search 

§  Important ideas: 
§  Fringe 
§  Expansion 
§  Exploration strategy 

§  Main question: which fringe nodes to explore? 

Example: Tree Search 
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State Graphs vs. Search Trees 
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We construct both 
on demand – and 
we construct as 
little as possible. 

Each NODE in in the 
search tree is an 
entire PATH in the 
problem graph. 

Depth First Search 

S 

a 

b 

d p 

a 

c 

e 

p 

h 

f 

r 

q 

q c G 

a 

q e 

p 

h 

f 

r 

q 

q c G 

a 

S 

G 

d 

b 

p q 

c 

e 

h 

a 

f 

r q p 

h 
f d 

b 
a 

c 

e 

r 

Strategy: expand 
deepest node first 

Implementation: 
Fringe is a LIFO 
stack 



5 

Breadth First Search 
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Search 

Tiers 

Strategy: expand 
shallowest node first 

Implementation: 
Fringe is a FIFO 
queue 

Costs on Actions 

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path. 
We will quickly cover an algorithm which does find the least-cost path.   
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Uniform Cost Search 
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Expand cheapest node first: 

Fringe is a priority queue 
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Priority Queue Refresher 

pq.push(key, value) inserts (key, value) into the queue. 

pq.pop() returns the key with the lowest value, and 
removes it from the queue. 

§  You can decrease a key’s priority by pushing it again 
§  Unlike a regular queue, insertions aren’t constant time, 

usually O(log n) 

§  We’ll need priority queues for cost-sensitive search methods 

§  A priority queue is a data structure in which you can insert and 
retrieve (key, value) pairs with the following operations: 
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Uniform Cost Issues 
§  Remember: explores 

increasing cost contours 

§  The good: UCS is 
complete and optimal! 

§  The bad: 
§  Explores options in every 
“direction” 

§  No information about goal 
location Start Goal 

…

c ≤ 3 

c ≤ 2 
c ≤ 1 

Search Heuristics 

§  Any estimate of how close a state is to a goal 
§  Designed for a particular search problem 
§  Examples: Manhattan distance, Euclidean distance 
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Heuristics 

Combining UCS and a Heuristic 
§  Uniform-cost orders by path cost, or backward cost  g(n) 

§  A* Search orders by the sum: f(n) = g(n) + h(n) 
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Example: Teg Grenager 
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§  Should we stop when we enqueue a goal? 

§  No: only stop when we dequeue a goal 

When should A* terminate? 
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§  What went wrong? 
§  Actual bad goal cost < estimated good goal cost 
§  We need estimates to be less than actual costs! 
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Admissible Heuristics 

§  A heuristic h is admissible (optimistic) if: 

 where             is the true cost to a nearest goal 
 
§  Examples: 

§  Coming up with admissible heuristics is most of 
what’s involved in using A* in practice. 

15 366 

Optimality of A*: Blocking 
Proof: 
§  What could go wrong? 
§  We’d have to have to pop a 

suboptimal goal G off the 
fringe before G* 

§  This can’t happen: 
§  Imagine a suboptimal 

goal G is on the queue 
§  Some node n which is a 

subpath of G* must also 
be on the fringe (why?) 

§  n will be popped before G 

…
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UCS vs A* Contours 

§  Uniform-cost expanded 
in all directions 

§  A* expands mainly 
toward the goal, but 
does hedge its bets to 
ensure optimality 

Start Goal 

Start Goal 

Comparison 

Uniform Cost 

Greedy 

A star 
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Creating Admissible Heuristics 
§  Most of the work in solving hard search problems optimally 

is in coming up with admissible heuristics 

§  Often, admissible heuristics are solutions to relaxed 
problems, with new actions (“some cheating”) available 

§  Inadmissible heuristics are often useful too (why?) 

15 
366 

Example: 8 Puzzle 

§  What are the states? 
§  How many states? 
§  What are the actions? 
§  What states can I reach from the start state? 
§  What should the costs be? 
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8 Puzzle I 

§  Heuristic: Number of 
tiles misplaced 

§  Why is it admissible? 

§  h(start) = 

§  This is a relaxed-
problem heuristic 

8 Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

UCS 112 6,300 3.6 x 106 

TILES 13 39 227 

8 Puzzle II 
§  What if we had an 

easier 8-puzzle where 
any tile could slide any 
direction at any time, 
ignoring other tiles? 

§  Total Manhattan 
distance 

§  Why admissible? 

§  h(start) = 

3 + 1 + 2 + … 

          = 18 

Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

TILES 13 39 227 
 

MANHATTAN 12 25 73 
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8 Puzzle III 

§  How about using the actual cost as a 
heuristic? 
§ Would it be admissible? 
§ Would we save on nodes expanded? 
§ What’s wrong with it? 

§  With A*: a trade-off between quality of 
estimate and work per node! 

Tree Search: Extra Work! 

§  Failure to detect repeated states can cause 
exponentially more work.  Why? 
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287 Graph Search (~=188!) 
§  Very simple fix: check if state worth expanding again: 

§  Keep around “expanded list”, which stores pairs  
 (expanded node, g-cost the expanded node was reached with) 
§  When about to expand a node, only expand it if  
either (i) it has not been expanded before (in 188 lingo: are not in the 
closed list) 
 or (ii) it has been expanded before, but the new way of reaching this node 
is cheaper than the cost it was reached with when expanded before 

§  How about “consistency” of the heuristic function? 
§  = condition on heuristic function 
§  If heuristic is consistent, then the “new way of reaching the node” is 

guaranteed to be more expensive, hence a node never gets expanded 
twice;  

§  In other words: if heuristic is consistent then when a node is expanded, 
the shortest path from the start state to that node has been found 

 

§  Can this wreck completeness?  Optimality? 

Consistency 
§  Wait, how do we know parents have better f-vales than 

their successors? 
§  Couldn’t we pop some node n, and find its child n’ to 

have lower f value? 
§  YES: 

§  What can we require to prevent these inversions? 

§  Consistency: 
§  Real cost must always exceed reduction in heuristic 
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Optimality 
§  Tree search: 

§  A* optimal if heuristic is admissible (and non-
negative) 

§  UCS is a special case (h = 0) 

§  287 Graph search: 
§  A* optimal if heuristic is admissible 

§  A* expands every node only once if heuristic also consistent 
§  UCS optimal (h = 0 is consistent) 

§  Consistency implies admissibility 

§  In general, natural admissible heuristics tend to 
be consistent 

37 

§  Weighted A*: expands states in the order of  
 f = g+εh values,  
 ε > 1 = bias towards states that are closer to goal 

Weighted A* f = g+εh  
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University of Pennsylvania 38 

Weighted A* f = g+εh : ε = 0  --- Uniform Cost Search  

sgoal 

sstart 

… … 
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Weighted A* f = g+εh : ε = 1 --- A* 

sgoal 

sstart 

… … 
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40 

Weighted A* f = g+εh : ε > 1 

sstart 
sgoal 

… 
… 

key to finding solution fast: 
shallow minima for h(s)-h*(s) function 

41 

Weighted A* f = g+εh : ε > 1 

§  Trades off optimality for speed 
§  ε-suboptimal: 

§  cost(solution) ≤ ε·cost(optimal solution) 
§  Test your understanding by trying to prove this! 

§  In many domains, it has been shown to be 
orders of magnitude faster than A* 

§  Research becomes to develop a heuristic 
function that has shallow local minima 
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Anytime A* 

§  Weighted A* 
§  Trades off optimality for speed 
§  ε-suboptimal 

§  Anytime A* 
§  For ² 2 { ²1, ²2, …, 1} 

§  Run weighted A* with current ² 

§  Anytime Repairing A* [Likhachev, Gordon, Thrun 
2004] 
§  efficient version of above that reuses state values within 

each iteration 

Anytime Repairing A* (ARA*) 

§  Starting point: 
 Anytime A* 

§  For ² 2 { ²1, ²2, …, 1} 
§  Run weighted A* 

with current ² 

§  When about to expand node, if already 
expanded before, don’t expand again to 
save time, instead put on INCON list (for 
consistent heuristic this is fine and will 
still give us epsilon optimality guarantee) 

§  When epsilon decreased 
§  Initialize priority queue with current 

priority queue union INCON 
§  Update priorities 

§  Why is this “union INCON” needed? 
epsilon*h need not be consistent, hence 
need to keep track of potential optimality 
violations and re-consider later  
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Anytime Nonparametric A* (ANA*) [van 
den Berg, Shah, Huang, Goldberg, 2011]   

§  Tricky issue with ARA*: 
§  How much to decrease epsilon in each step? 
§  In practice: some tweaking 

§  ANA*: provides a theoretically justified and 
empirically shown to be superior scheme that can 
(a bit crudely) be thought of as always picking the 
right next epsilon 

Lifelong Planning A* (LPA*) 
[Koenig, Likhachev, Furcy, 2004] 

§  LPA* is able to handle changes in edge costs 
efficiently 
§  Example application: find out a road has been blocked 
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Lifelong Planning A* (LPA*) 
[Koenig, Likhachev, Furcy, 2004] 

Lifelong Planning A* (LPA*) 
[Koenig, Likhachev, Furcy, 2004] 

§  First search (when no search has been done before) = A* search 
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Lifelong Planning A* (LPA*) 
[Koenig, Likhachev, Furcy, 2004] 

§  Once (D,1) is 
blocked à re-
search: 

Lifelong 
Planning A* 

(LPA*) 
[Koenig, Likhachev, 

Furcy, 2004] 
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A* From Goal to Start 

§  A* with consistent heuristic finds shortest path from 
start state to all expanded states 

§  à If we flip roles of goal and start, it gives us 
shortest paths from all expanded states to the goal 
à We obtain a closed-loop policy! 
à Can account for dynamics noise 
 

§  Lifelong Planning A* + Flip-Start-Goal + some other 
optimizations à D* Lite    [Koenig and Likhachev] 
à Can account for observations, which can be encoded 
into changes in edge costs!  (e.g., blocked path, etc.) 


