
1

Queue-Based Search

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

State Space Graphs

§  State space graph: A
mathematical
representation of a
search problem
§  For every search problem,

there’s a corresponding
state space graph

§  The successor function is
represented by arcs

§  We can rarely build this
graph in memory (so
we don’t)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

2

Search Trees

§  A search tree:
§  This is a “what if” tree of plans and outcomes
§  Start state at the root node
§  Children correspond to successors
§  Nodes contain states, correspond to PLANS to those states
§  For most problems, we can never actually build the whole tree

“E”,
1.0

“N”, 1.0

Another Search Tree

§  Search:
§  Expand out possible plans
§ Maintain a fringe of unexpanded plans
§  Try to expand as few tree nodes as possible

3

General Tree Search

§  Important ideas:
§  Fringe
§  Expansion
§  Exploration strategy

§  Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

4

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r q p

h
f d

b
a

c

e

r

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

5

Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

8 1

8

2

3

1

4

4

15

1

3
2

2

6

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue
S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost
contours

2

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

§  You can decrease a key’s priority by pushing it again
§  Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

§  We’ll need priority queues for cost-sensitive search methods

§  A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

7

Uniform Cost Issues
§  Remember: explores

increasing cost contours

§  The good: UCS is
complete and optimal!

§  The bad:
§  Explores options in every
“direction”

§  No information about goal
location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Search Heuristics

§  Any estimate of how close a state is to a goal
§  Designed for a particular search problem
§  Examples: Manhattan distance, Euclidean distance

10

5
11.2

8

Heuristics

Combining UCS and a Heuristic
§  Uniform-cost orders by path cost, or backward cost g(n)

§  A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

5

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

9

§  Should we stop when we enqueue a goal?

§  No: only stop when we dequeue a goal

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

Is A* Optimal?

A

G S

1
3

h = 6

h = 0

5

h = 7

§  What went wrong?
§  Actual bad goal cost < estimated good goal cost
§  We need estimates to be less than actual costs!

10

Admissible Heuristics

§  A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

§  Examples:

§  Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15 366

Optimality of A*: Blocking
Proof:
§  What could go wrong?
§  We’d have to have to pop a

suboptimal goal G off the
fringe before G*

§  This can’t happen:
§  Imagine a suboptimal

goal G is on the queue
§  Some node n which is a

subpath of G* must also
be on the fringe (why?)

§  n will be popped before G

…

11

UCS vs A* Contours

§  Uniform-cost expanded
in all directions

§  A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

Comparison

Uniform Cost

Greedy

A star

12

Creating Admissible Heuristics
§  Most of the work in solving hard search problems optimally

is in coming up with admissible heuristics

§  Often, admissible heuristics are solutions to relaxed
problems, with new actions (“some cheating”) available

§  Inadmissible heuristics are often useful too (why?)

15
366

Example: 8 Puzzle

§  What are the states?
§  How many states?
§  What are the actions?
§  What states can I reach from the start state?
§  What should the costs be?

13

8 Puzzle I

§  Heuristic: Number of
tiles misplaced

§  Why is it admissible?

§  h(start) =

§  This is a relaxed-
problem heuristic

8 Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

8 Puzzle II
§  What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

§  Total Manhattan
distance

§  Why admissible?

§  h(start) =

3 + 1 + 2 + …

 = 18

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

14

8 Puzzle III

§  How about using the actual cost as a
heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§  With A*: a trade-off between quality of
estimate and work per node!

Tree Search: Extra Work!

§  Failure to detect repeated states can cause
exponentially more work. Why?

15

287 Graph Search (~=188!)
§  Very simple fix: check if state worth expanding again:

§  Keep around “expanded list”, which stores pairs
 (expanded node, g-cost the expanded node was reached with)
§  When about to expand a node, only expand it if
either (i) it has not been expanded before (in 188 lingo: are not in the
closed list)
 or (ii) it has been expanded before, but the new way of reaching this node
is cheaper than the cost it was reached with when expanded before

§  How about “consistency” of the heuristic function?
§  = condition on heuristic function
§  If heuristic is consistent, then the “new way of reaching the node” is

guaranteed to be more expensive, hence a node never gets expanded
twice;

§  In other words: if heuristic is consistent then when a node is expanded,
the shortest path from the start state to that node has been found

§  Can this wreck completeness? Optimality?

Consistency
§  Wait, how do we know parents have better f-vales than

their successors?
§  Couldn’t we pop some node n, and find its child n’ to

have lower f value?
§  YES:

§  What can we require to prevent these inversions?

§  Consistency:
§  Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

16

Optimality
§  Tree search:

§  A* optimal if heuristic is admissible (and non-
negative)

§  UCS is a special case (h = 0)

§  287 Graph search:
§  A* optimal if heuristic is admissible

§  A* expands every node only once if heuristic also consistent
§  UCS optimal (h = 0 is consistent)

§  Consistency implies admissibility

§  In general, natural admissible heuristics tend to
be consistent

37

§  Weighted A*: expands states in the order of
 f = g+εh values,
 ε > 1 = bias towards states that are closer to goal

Weighted A* f = g+εh

17

University of Pennsylvania 38

Weighted A* f = g+εh : ε = 0 --- Uniform Cost Search

sgoal

sstart

… …

39

Weighted A* f = g+εh : ε = 1 --- A*

sgoal

sstart

… …

18

40

Weighted A* f = g+εh : ε > 1

sstart
sgoal

…
…

key to finding solution fast:
shallow minima for h(s)-h*(s) function

41

Weighted A* f = g+εh : ε > 1

§  Trades off optimality for speed
§  ε-suboptimal:

§  cost(solution) ≤ ε·cost(optimal solution)
§  Test your understanding by trying to prove this!

§  In many domains, it has been shown to be
orders of magnitude faster than A*

§  Research becomes to develop a heuristic
function that has shallow local minima

19

Anytime A*

§  Weighted A*
§  Trades off optimality for speed
§  ε-suboptimal

§  Anytime A*
§  For ² 2 { ²1, ²2, …, 1}

§  Run weighted A* with current ²

§  Anytime Repairing A* [Likhachev, Gordon, Thrun
2004]
§  efficient version of above that reuses state values within

each iteration

Anytime Repairing A* (ARA*)

§  Starting point:
 Anytime A*

§  For ² 2 { ²1, ²2, …, 1}
§  Run weighted A*

with current ²

§  When about to expand node, if already
expanded before, don’t expand again to
save time, instead put on INCON list (for
consistent heuristic this is fine and will
still give us epsilon optimality guarantee)

§  When epsilon decreased
§  Initialize priority queue with current

priority queue union INCON
§  Update priorities

§  Why is this “union INCON” needed?
epsilon*h need not be consistent, hence
need to keep track of potential optimality
violations and re-consider later

20

Anytime Nonparametric A* (ANA*) [van
den Berg, Shah, Huang, Goldberg, 2011]

§  Tricky issue with ARA*:
§  How much to decrease epsilon in each step?
§  In practice: some tweaking

§  ANA*: provides a theoretically justified and
empirically shown to be superior scheme that can
(a bit crudely) be thought of as always picking the
right next epsilon

Lifelong Planning A* (LPA*)
[Koenig, Likhachev, Furcy, 2004]

§  LPA* is able to handle changes in edge costs
efficiently
§  Example application: find out a road has been blocked

21

Lifelong Planning A* (LPA*)
[Koenig, Likhachev, Furcy, 2004]

Lifelong Planning A* (LPA*)
[Koenig, Likhachev, Furcy, 2004]

§  First search (when no search has been done before) = A* search

22

Lifelong Planning A* (LPA*)
[Koenig, Likhachev, Furcy, 2004]

§  Once (D,1) is
blocked à re-
search:

Lifelong
Planning A*

(LPA*)
[Koenig, Likhachev,

Furcy, 2004]

23

A* From Goal to Start

§  A* with consistent heuristic finds shortest path from
start state to all expanded states

§  à If we flip roles of goal and start, it gives us
shortest paths from all expanded states to the goal
à We obtain a closed-loop policy!
à Can account for dynamics noise

§  Lifelong Planning A* + Flip-Start-Goal + some other
optimizations à D* Lite [Koenig and Likhachev]
à Can account for observations, which can be encoded
into changes in edge costs! (e.g., blocked path, etc.)

