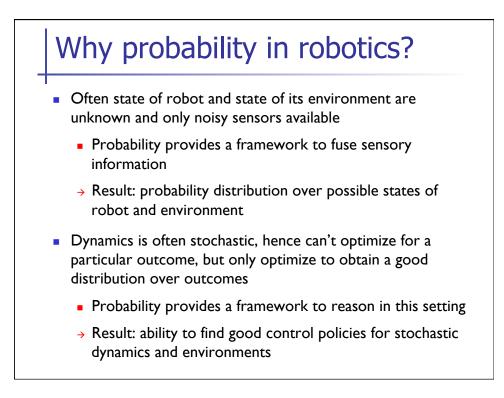
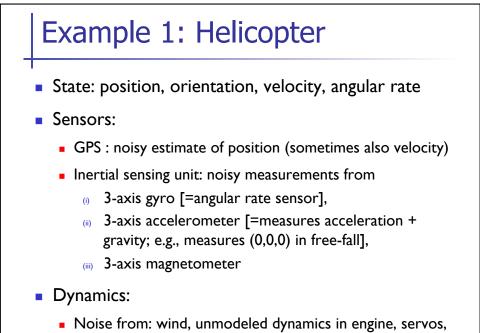
Probability: Review

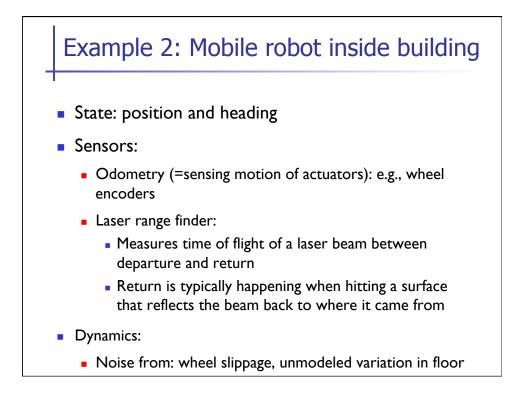
Pieter Abbeel UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

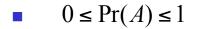




blades



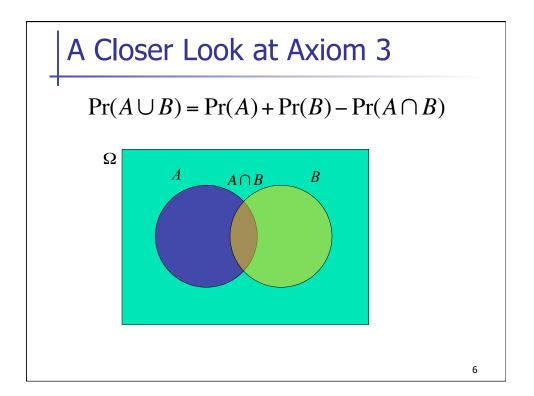
Axioms of Probability Theory



- Pr(Ω) = 1 Pr(ϕ) = 0
- Pr($A \cup B$) = Pr(A) + Pr(B) Pr($A \cap B$)

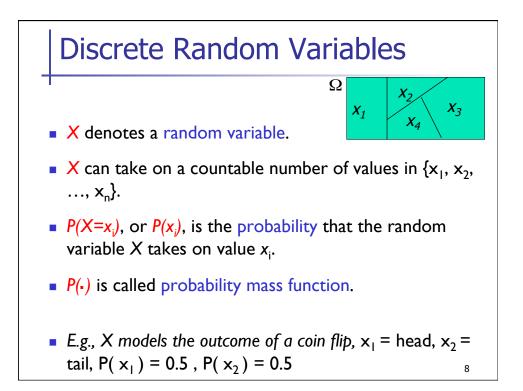
Pr(A) denotes probability that the outcome ω is an element of the set of possible outcomes A. A is often called an event. Same for B.
Ω is the set of all possible outcomes.
φ is the empty set.

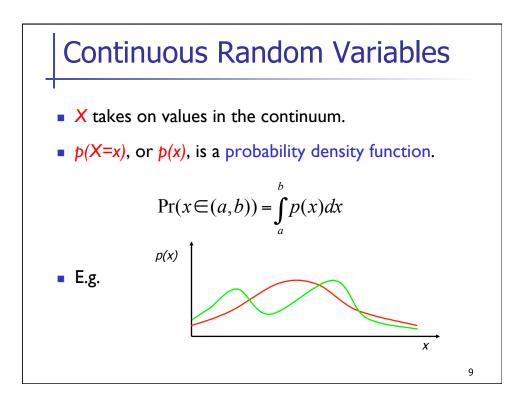
5

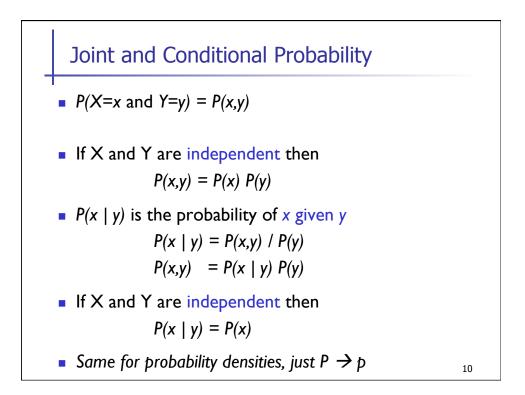


Using the Axioms

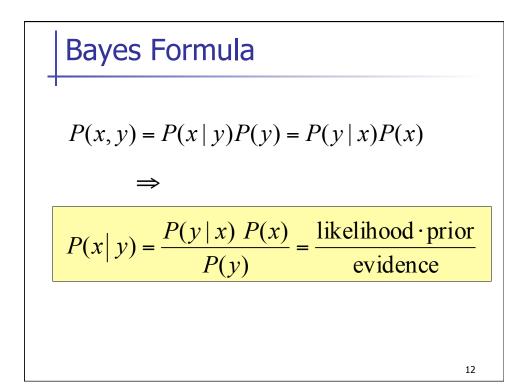
 $Pr(A \cup (\Omega \setminus A)) = Pr(A) + Pr(\Omega \setminus A) - Pr(A \cap (\Omega \setminus A))$ $Pr(\Omega) = Pr(A) + Pr(\Omega \setminus A) - Pr(\phi)$ $1 = Pr(A) + Pr(\Omega \setminus A) - 0$ $Pr(\Omega \setminus A) = 1 - Pr(A)$ 7







Law of Total Probability, Marginals	
Discrete case	Continuous case
$\sum_{x} P(x) = 1$	$\int p(x) dx = 1$
$P(x) = \sum_{y} P(x, y)$	$p(x) = \int p(x, y) dy$
$P(x) = \sum_{y} P(x \mid y) P(y)$	$p(x) = \int p(x \mid y) p(y) dy$
	11



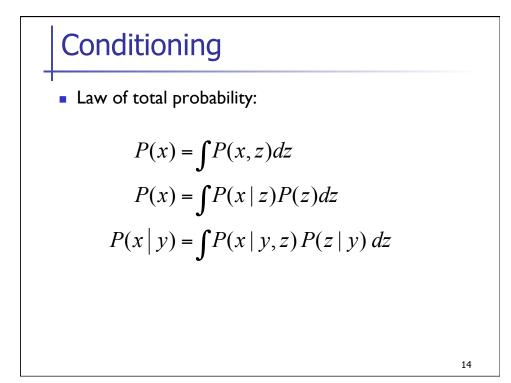
Normalization

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta P(y \mid x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y \mid x) P(x)}$$

Algorithm:

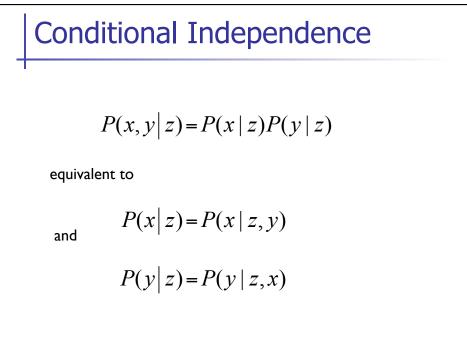
$$\forall x : \operatorname{aux}_{x|y} = P(y \mid x) \ P(x)$$
$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

 $\forall x : P(x \mid y) = \eta \operatorname{aux}_{x \mid y}$

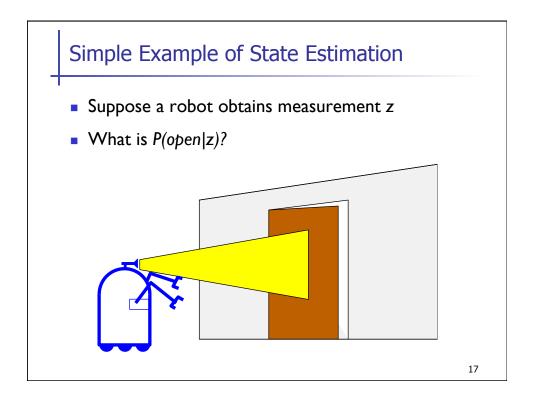


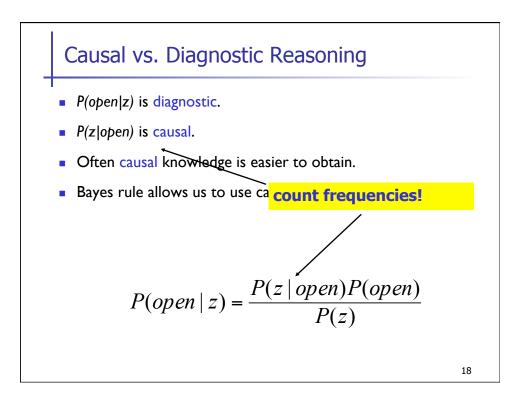
Bayes Rule with Background Knowledge

$$P(x | y, z) = \frac{P(y | x, z) P(x | z)}{P(y | z)}$$

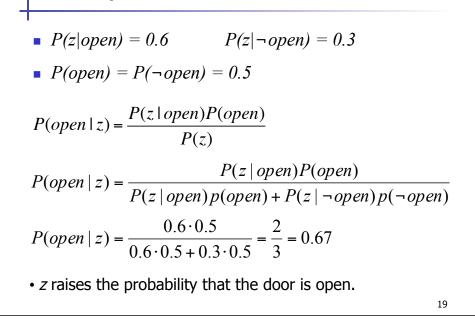


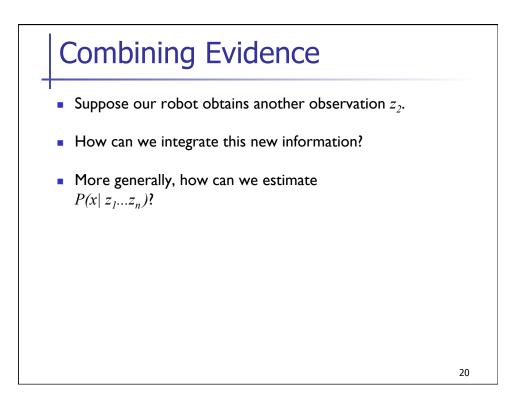
16





Example





Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if we know *x*.

$$P(x | z_1,...,z_n) = \frac{P(z_n | x) P(x | z_1,...,z_{n-1})}{P(z_n | z_1,...,z_{n-1})}$$

= $\eta P(z_n | x) P(x | z_1,...,z_{n-1})$
= $\eta_{1...n} \left(\prod_{i=1...n} P(z_i | x)\right) P(x)$

21

Example: Second Measurement

$$P(z_2|open) = 0.5 \qquad P(z_2|\neg open) = 0.6$$

$$P(open|z_2,z_1) = \frac{P(z_2|open)P(open|z_1)}{P(z_2|open)P(open|z_1) + P(z_2|\neg open)P(\neg open|z_1)}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$
otherwise the probability that the door is open.

