Markov Decision Processes
and
Exact Solution Methods:
Value Iteration
Policy Iteration
Linear Programming

Pieter Abbeel
UC Berkeley EECS
Markov Decision Process

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]
Markov Decision Process (S, A, T, R, H)

Given

- **S**: set of states
- **A**: set of actions
- **T**: \(S \times A \times S \times \{0, 1, \ldots, H\} \rightarrow [0, 1] \), \(T_t(s,a,s') = P(S_{t+1} = s' | S_t = s, A_t = a) \)
- **R**: \(S \times A \times S \times \{0, 1, \ldots, H\} \rightarrow \mathbb{R} \), \(R_t(s,a,s') = \text{reward for } (S_{t+1} = s', S_t = s, A_t = a) \)
- **H**: horizon over which the agent will act

Goal:

- Find \(\pi : S \times \{0, 1, \ldots, H\} \rightarrow A \) that maximizes expected sum of rewards, i.e.,

\[
\pi^* = \arg \max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi \right]
\]
MDP \((S, A, T, R, H)\),

\[
\text{goal: } \max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} R(S_t, A_t, S_{t+1}) | \pi \right]
\]

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people
Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end
In an MDP, we want an optimal policy \(\pi^*: S \times 0:H \rightarrow A \). A policy \(\pi \) gives an action for each state for each time step. An optimal policy maximizes expected sum of rewards. Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal.
Optimal Control

= given an MDP \((S, A, T, R, \gamma, H)\)

find the optimal policy \(\pi^*\)

Exact Methods:

- Value Iteration
- Policy Iteration
- Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!
Value Iteration

Algorithm:
- Start with $V_0^*(s) = 0$ for all s.
- For $i=1, \ldots, H$
 - Given V_i^*, calculate for all states $s \in S$:
 $$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$
- This is called a value update or Bellman update/back-up

- $V_i^*(s) = \text{the expected sum of rewards accumulated when starting from state } s \text{ and acting optimally for a horizon of } i \text{ steps}$
Value Iteration in Gridworld

noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 3 ITERATIONS
Value Iteration in Gridworld

$\text{noise} = 0.2, \gamma = 0.9$, two terminal states with $R = +1$ and -1
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 5 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 100 ITERATIONS

0.64 0.74 0.85 1.00

0.57 ▲

0.57 ▲ 0.57 ▲

0.49 ▲ 0.43 ▲ 0.48 ▲

0.28 ▲
Value Iteration in Gridworld

noise = 0.2, \(\gamma = 0.9 \), two terminal states with \(R = +1 \) and \(-1\)
Exercise 1: Effect of discount, noise

(a) Prefer the close exit (+1), risking the cliff (-10) (1) \(\gamma = 0.1 \), noise = 0.5
(b) Prefer the close exit (+1), but avoiding the cliff (-10) (2) \(\gamma = 0.99 \), noise = 0
(c) Prefer the distant exit (+10), risking the cliff (-10) (3) \(\gamma = 0.99 \), noise = 0.5
(d) Prefer the distant exit (+10), avoiding the cliff (-10) (4) \(\gamma = 0.1 \), noise = 0
(a) Prefer close exit (+1), risking the cliff (-10) --- $\gamma = 0.1$, noise = 0
Exercise 1 Solution

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.03</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

(b) Prefer close exit (+1), avoiding the cliff (-10) -- $\gamma = 0.1$, noise = 0.5
Exercise 1 Solution

(c) Prefer distant exit (+1), risking the cliff (-10) -- \(\gamma = 0.99 \), noise = 0
(d) Prefer distant exit (+1), avoid the cliff (-10) -- $\gamma = 0.99$, noise = 0.5
Now we know how to act for infinite horizon with discounted rewards!

- Run value iteration till convergence.
- This produces V^*, which in turn tells us how to act, namely following:

\[\pi^*(s) = \arg \max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

- Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)
Convergence and Contractions

- Define the max-norm: \(\|U\| = \max_s |U(s)| \)

- Theorem: For any two approximations \(U \) and \(V \)

\[
\|U_{i+1} - V_{i+1}\| \leq \gamma \|U_i - V_i\|
\]

 I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution

- Theorem:

\[
\|V_{i+1} - V_i\| < \epsilon, \Rightarrow \|V_{i+1} - V^*\| < 2\epsilon\gamma/(1 - \gamma)
\]

 I.e. once the change in our approximation is small, it must also be close to correct
Optimal Control

= given an MDP \((S, A, T, R, \gamma, H)\)

find the optimal policy \(\pi^*\)

Exact Methods:

- Value Iteration

- Policy Iteration

- Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!
Policy Evaluation

- Recall value iteration iterates:

\[V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V_i^*(s')] \]

- Policy evaluation:

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- At convergence:

\[\forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct value iteration update to perform policy evaluation for this stochastic policy?

1. $V_{i+1}^\mu(s) \leftarrow \max_a \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

2. $V_{i+1}^\mu(s) \leftarrow \sum_{s'} \sum_a \mu(a|s)T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

3. $V_{i+1}^\mu(s) \leftarrow \sum_a \mu(a|s) \max_{s'} T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$
Policy Iteration

- Alternative approach:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions
Policy Evaluation Revisited

- **Idea 1:** modify Bellman updates

\[
V_0^\pi(s) = 0
\]

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]

- **Idea 2:** it’s just a linear system, solve with Matlab (or whatever), variables: \(V^\pi(s)\), constants: \(T, R\)

\[
\forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
\]
Policy Iteration Guarantees

Proof sketch:

(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., \(\text{number actions} \times \text{number states} \), we must be done and hence have converged.

(2) Optimal at convergence: by definition of convergence, at convergence \(\pi_{k+1}(s) = \pi_k(s) \) for all states \(s \).
This means \(\forall s \, V^{\pi_k}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right] \).
Hence \(V^{\pi_k} \) satisfies the Bellman equation, which means \(V^{\pi_k} \) is equal to the optimal value function \(V^* \).
Optimal Control

= given an MDP \((S, A, T, R, \gamma, H)\)

find the optimal policy \(\pi^*\)

Exact Methods:

- Value Iteration
- Policy Iteration

Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!
Recall, at value iteration convergence we have

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

LP formulation to find \(V^* \):

\[
\begin{align*}
\min_V & \quad \sum_s \mu_0(s) V(s) \\
\text{s.t.} & \quad \forall s \in S, \forall a \in A : \\
& \quad V(s) \geq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\end{align*}
\]

\(\mu_0 \) is a probability distribution over \(S \), with \(\mu_0(s) > 0 \) for all \(s \in S \).

Theorem. \(V^* \) is the solution to the above LP.
Theorem Proof

Let F be the Bellman operator, i.e., $V_{i+1}^* = F(V_i)$. Then the LP can be written as:

$$\min_V \quad \mu_0^TV$$

$$\text{s.t.} \quad V \geq F(V)$$

Property: Monotonicity. If $U \geq V$ then $F(U) \geq F(V)$.

Hence, if $V \geq F(V)$ then $F(V) \geq F(F(V))$, and by repeated application, $V \geq F(V) \geq F^2V \geq F^3V \geq \ldots \geq F^\infty V = V^*$. Any feasible solution to the LP must satisfy $V \geq F(V)$, and hence must satisfy $V \geq V^*$. Hence, assuming all entries in μ_0 are positive, V^* is the optimal solution to the LP.
Dual Linear Program

\[
\max_{\lambda} \sum_{s \in S} \sum_{a \in A} \sum_{s' \in S} \lambda(s, a) T(s, a, s') R(s, a, s')
\]

s.t. \(\forall s' \in S : \sum_{a' \in A} \lambda(s', a') = \mu_0(s) + \gamma \sum_{s \in S} \sum_{a \in A} \lambda(s, a) T(s, a, s') \)

- **Interpretation:**
 - \(\lambda(s, a) = \sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a) \)

- **Equation 2:** ensures \(\lambda \) has the above meaning

- **Equation 1:** maximize expected discounted sum of rewards

- **Optimal policy:** \(\pi^*(s) = \arg \max_a \lambda(s, a) \)
Optimal Control

= given an MDP (S, A, T, R, γ, H)

find the optimal policy π^*

Exact Methods:

- Value Iteration
- Policy Iteration
- Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!
Today and forthcoming lectures

- Optimal control: provides general computational approach to tackle control problems.
 - Dynamic programming / Value iteration
 - Exact methods on discrete state spaces (DONE!)
 - Discretization of continuous state spaces
 - Function approximation
 - Linear systems
 - LQR
 - Extensions to nonlinear settings:
 - Local linearization
 - Differential dynamic programming
 - Optimal Control through Nonlinear Optimization
 - Open-loop
 - Model Predictive Control
 - Examples: