

Kalman Filter (aka Linear Gaussian) setting

- Summations → integrals
- But: can't enumerate over all instantiations
- However, we can still find solution efficiently:
 - the joint conditional $P(\boldsymbol{x}_{0:T} \mid \boldsymbol{z}_{0:T})$ is a multivariate Gaussian
 - for a multivariate Gaussian the most likely instantiation equals the mean
 - \rightarrow we just need to find the mean of P(X_{0:T} | Z_{0:T})
 - the marginal conditionals $P(x_t | z_{0:T})$ are Gaussians with mean equal to the mean of x_t under the joint conditional, so it suffices to find all marginal conditionals
 - We already know how to do so: marginal conditionals can be computed by running the Kalman smoother.
- Alternatively: solve convex optimization problem