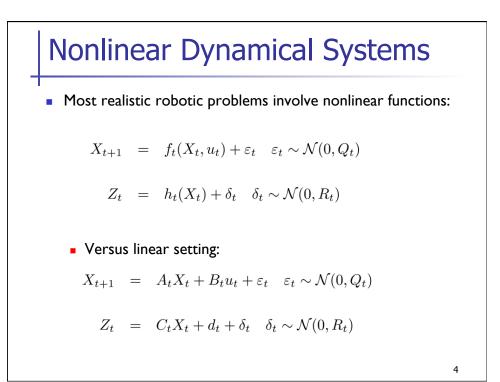
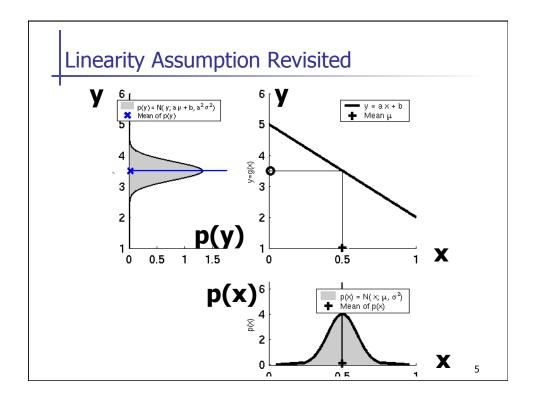
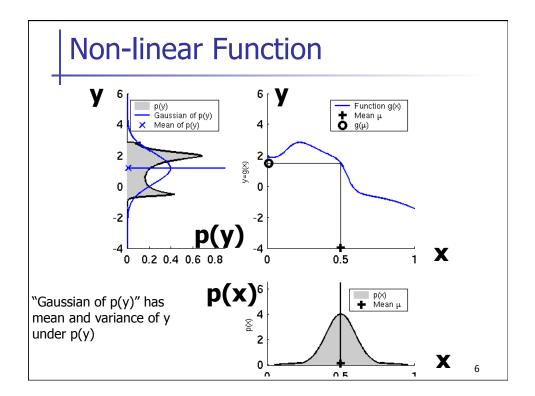
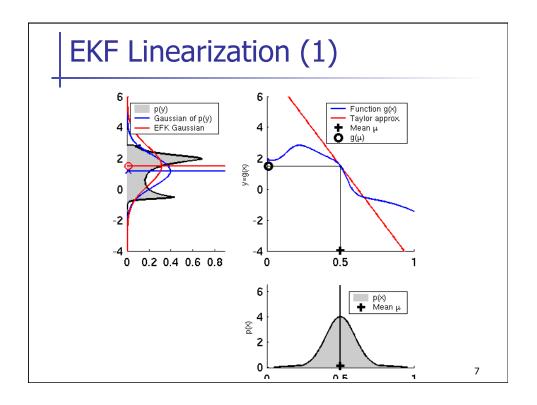


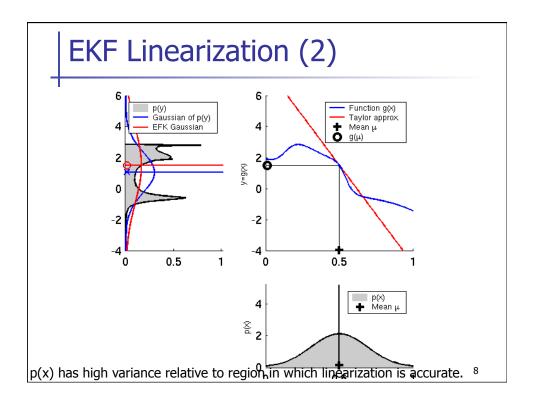
At time 0: $X_0 \sim \mathcal{N}(\mu_{0|0}, \Sigma_{0|0})$ • At time 0: $X_0 \sim \mathcal{N}(\mu_{0|0}, \Sigma_{0|0})$ • For t = 1, 2, ... • Dynamics update: $\mu_{t+1|0:t} = A_t \mu_{t|0:t} + B_t u_t$ $\Sigma_{t+1|0:t} = A_t \Sigma_{t|0:t} A_t^\top + Q_t$ • Measurement update: $K_{t+1} = \Sigma_{t+1|0:t} C_{t+1}^\top (C_{t+1} \Sigma_{t+1|0:t} C_{t+1}^\top + R_{t+1})^{-1}$ $\mu_{t+1|0:t+1} = \mu_{t+1|0:t} + K_{t+1} (z_{t+1} - (C_{t+1} \mu_{t+1|0:t} + d))$ $\Sigma_{t+1|0:t+1} = (I - K_{t+1} C_{t+1}) \Sigma_{t+1|0:t}$

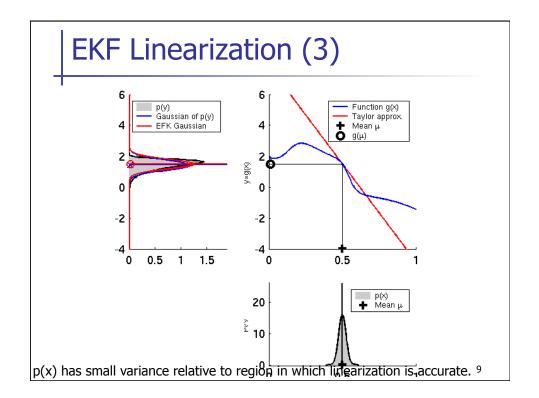












EKF Linearization: First Order Taylor Series Expansion

• Dynamics model: for X_t "close to" μ_t we have:

$$f_t(x_t, u_t) \approx f_t(\mu_t, u_t) + \frac{\partial f_t(\mu_t, u_t)}{\partial x_t} (x_t - \mu_t)$$
$$= f_t(\mu_t, u_t) + F_t(x_t - \mu_t)$$

• Measurement model: for X_t "close to" μ_t we have:

$$h_t(x_t) \approx h_t(\mu_t) + \frac{\partial h_t(\mu_t)}{\partial x_t}(x_t - \mu_t)$$
$$= h_t(\mu_t) + H_t(x_t - \mu_t)$$

10

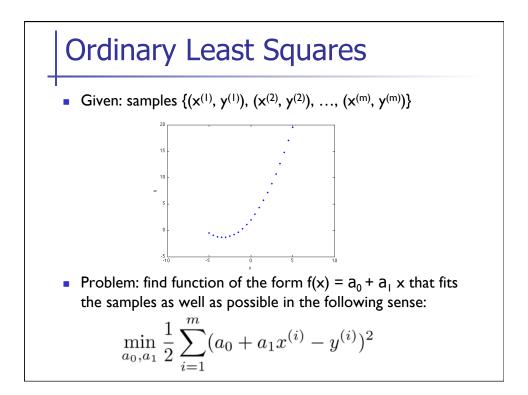
EKF Linearization: Numerical

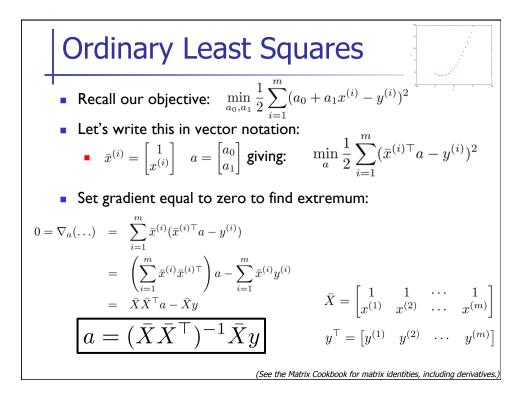
$$f_t(x_t, u_t) \approx f_t(\mu_t, u_t) + \frac{\partial f_t(\mu_t, u_t)}{\partial x_t} (x_t - \mu_t)$$
$$= f_t(\mu_t, u_t) + F_t(x_t - \mu_t)$$

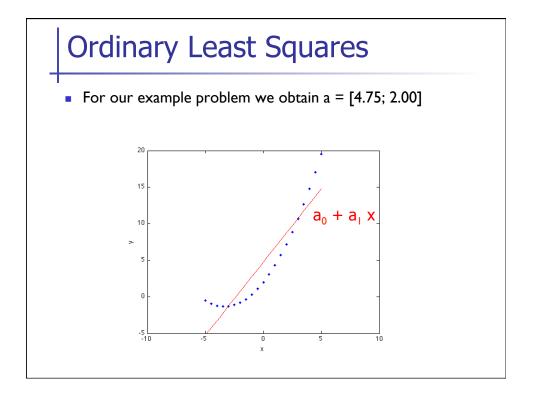
Numerically compute F_t column by column:

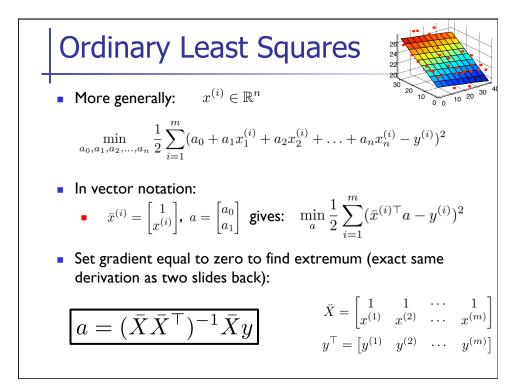
for
$$i = 1, \dots, n$$
 $F_t(:, i) = \frac{f_t(\mu_t + \varepsilon e_i, u_t) - f_t(\mu_t - \varepsilon e_i, u_t)}{2\varepsilon}$

- Here e_i is the basis vector with all entries equal to zero, except for the i't entry, which equals 1.
- If wanting to approximate F_t as closely as possible then ϵ is chosen to be a small number, but not too small to avoid numerical issues









Vector Valued Ordinary Least Squares Problems

- So far have considered approximating a scalar valued function from samples $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$ with $x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R}$
- A vector valued function is just many scalar valued functions and we can approximate it the same way by solving an OLS problem multiple times. Concretely, let $y^{(i)} \in \mathbb{R}^p$ then we have:

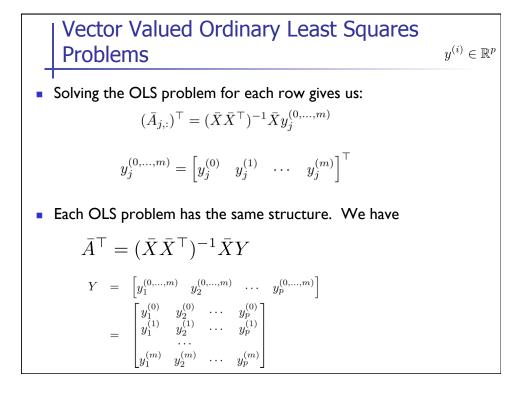
Find $a_0 \in \mathbb{R}^p, A \in \mathbb{R}^{n \times p}$, such that $\forall i = 1, \dots, m \ a_0 + Ax^{(i)} \approx y^{(i)}$.

In our vector notation:

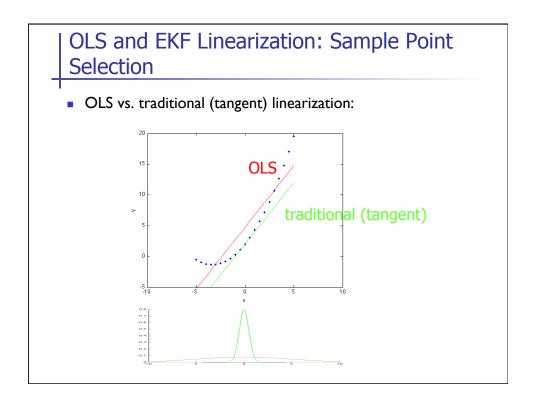
$$\bar{x}^{(i)\top} = \begin{bmatrix} 1 & x^{(i)\top} \end{bmatrix}, \ \bar{A} = \begin{bmatrix} a_0 & A \end{bmatrix},$$

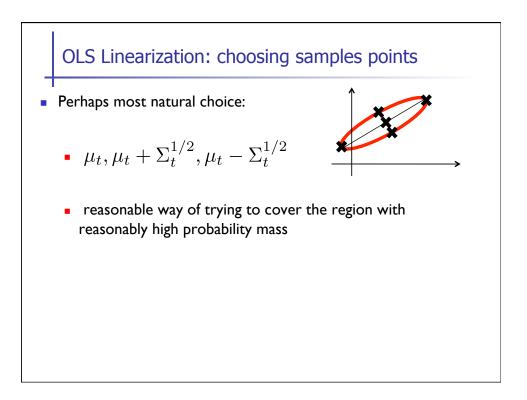
Find \bar{A} such that $\forall i = 1, \dots, m \ \bar{A}\bar{x}^{(i)} \approx y^{(i)}.$

- This can be solved by solving a separate ordinary least squares problem to find each row of \Bar{A}

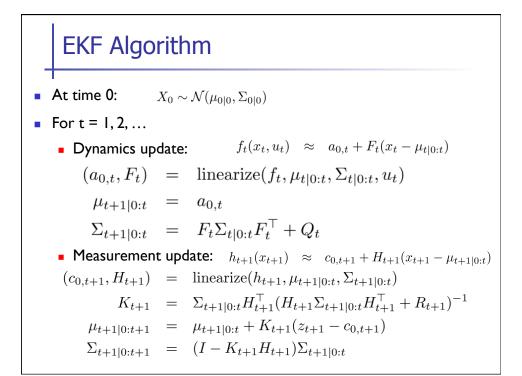


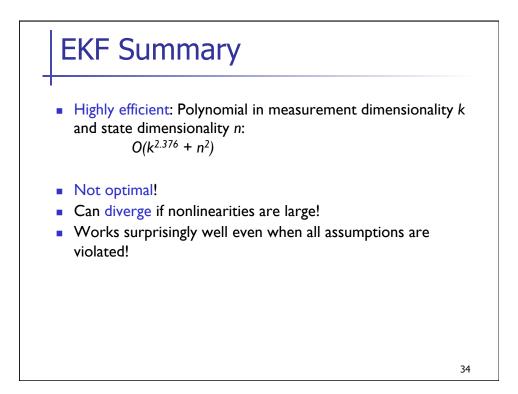
• Similarly for $z_{t+1} = h_t(x_t)$ • Similarly for $z_{t+1} = \bar{h}_t(x_t)$

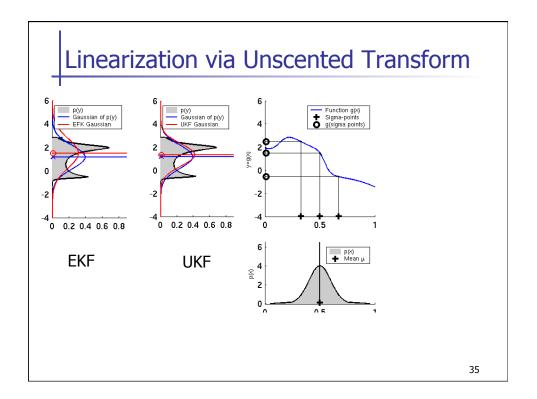


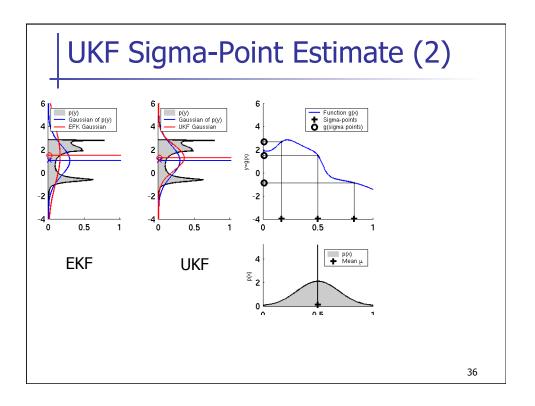


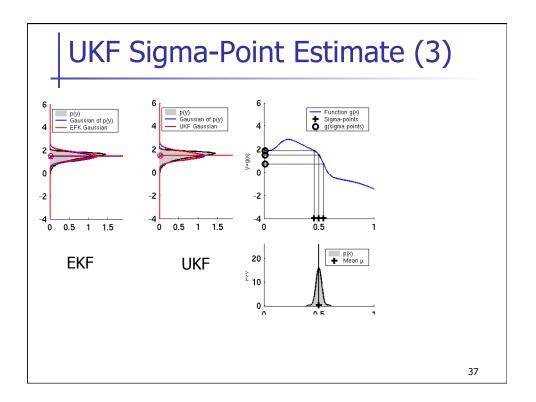
- Numerical (based on least squares or finite differences) could give a more accurate "regional" approximation. Size of region determined by evaluation points.
- Computational efficiency:
 - Analytical derivatives can be cheaper or more expensive than function evaluations
- Development hint:
 - Numerical derivatives tend to be easier to implement
 - If deciding to use analytical derivatives, implementing finite difference derivative and comparing with analytical results can help debugging the analytical derivatives

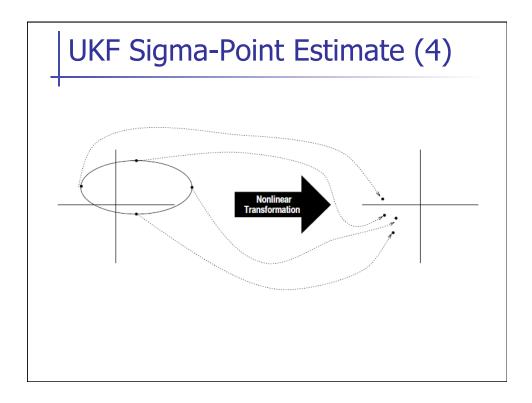


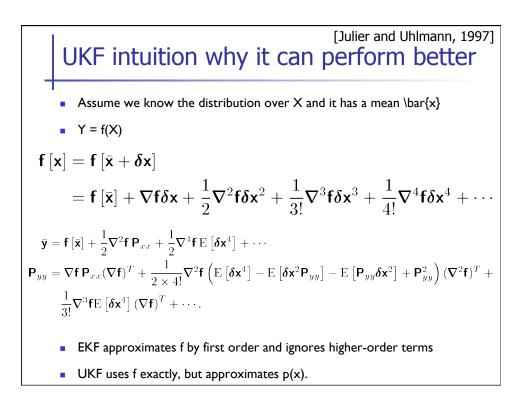


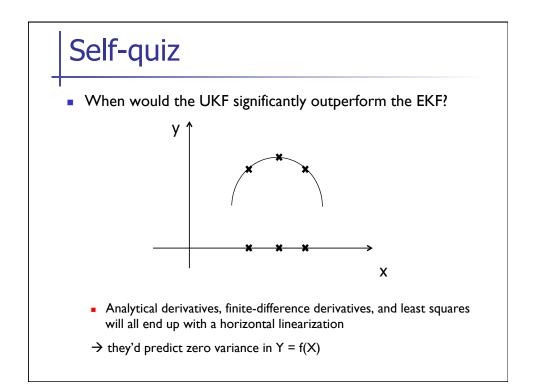


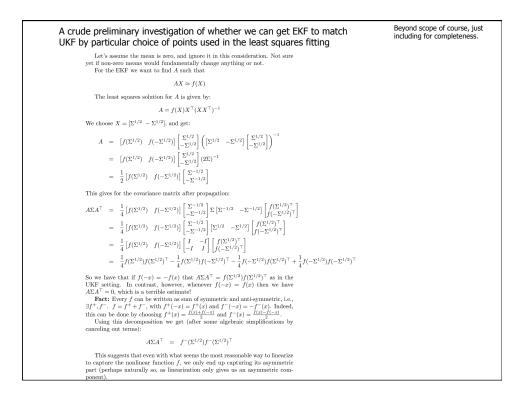












Original unscented transform

 Picks a minimal set of sample points that match 1st, 2nd and 3rd moments of a Gaussian:

$$\begin{aligned} \boldsymbol{\mathcal{X}}_{0} &= \bar{\mathbf{x}} & W_{0} &= \kappa/(n+\kappa) \\ \boldsymbol{\mathcal{X}}_{i} &= \bar{\mathbf{x}} + \left(\sqrt{(n+\kappa)}\mathbf{P}_{xx}\right)_{i} & W_{i} &= 1/2(n+\kappa) \\ \boldsymbol{\mathcal{X}}_{i+n} &= \bar{\mathbf{x}} - \left(\sqrt{(n+\kappa)}\mathbf{P}_{xx}\right)_{i} & W_{i+n} &= 1/2(n+\kappa) \end{aligned}$$

- $bar{x} = mean, P_{xx} = covariance, i \rightarrow i'th column, x \in \Re^n$
- κ : extra degree of freedom to fine-tune the higher order moments of the approximation; when x is Gaussian, $n+\kappa = 3$ is a suggested heuristic
- L = \sqrt{P_{xx}} can be chosen to be any matrix satisfying:
 - L L^T = P_{xx}

[Julier and Uhlmann, 1997]

Unscented Kalman filter Dynamics update: Can simply use unscented transform and estimate the mean and variance at the next time from the sample points Observation update: Use sigma-points from unscented transform to compute the covariance matrix between X_t and Z_t. Then can do the standard update.

