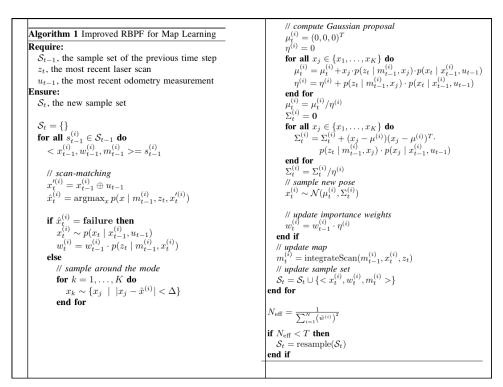

gMapping Pieter Abbeel UC Berkeley EECS For more details, see paper: "Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters" by Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard, IEEE Transactions in Robotics, 2006

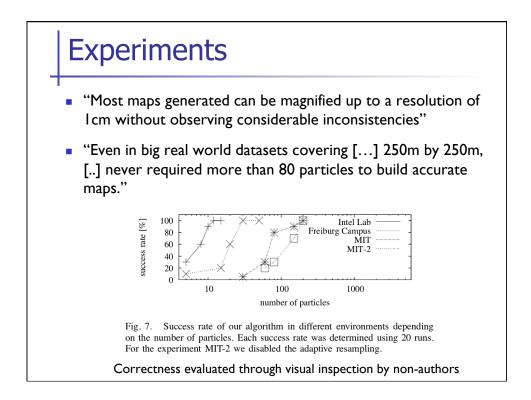


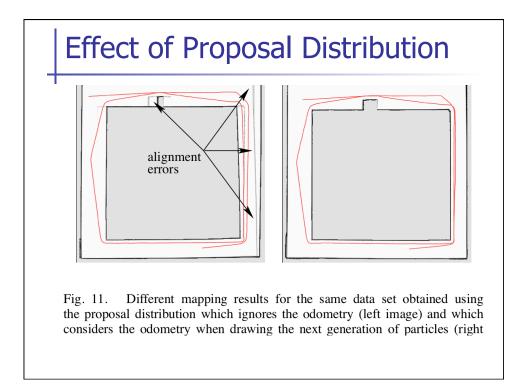

Problem Formulation

- Given
 - observations Z_{1:t} = Z₁, ..., Z_t
 - odometry measurements U_{2:t} = U₁, ..., U_t
- Find
 - Posterior p(X_{1:t}, m | Z_{1:t}, U_{2:t})
 - With m a grid map

Key Ideas Rao-Blackwellized Particle Filter Each particle = sample of history of robot poses + posterior over maps given the sample pose history; approximate posterior over maps by distribution with all probability mass on the most likely map whenever posterior is needed Proposal distribution π Approximate the optimal sequential proposal distribution p*(X_t) = p(X_t | Xⁱ_{1:t-1}, Z_{1:t}, U_{1:t}) ∝ p(Z_t | mⁱ_{t-1}, X_t) p(X_t | Xⁱ_{t-1}, U_t) [note integral over all maps → most likely map only] I. find the local optimum argmax_x p*(x)

- 2. sample X^k around the local optimum, with weights $W^k = p^*(X^k)$
- 3. fit a Gaussian over the weighted samples
- 4. this Gaussian is an approximation of the optimal sequential proposal p^*
- Sample from (approximately) optimal sequential proposal
- Weight update for optimal sequential proposal is $p(Z_t | X_{1:t-1}^i, Z_{1:t-1}, u_{1:t}) = p(Z_t | M_{t-1}^i, X_{t-1}^i, u_{t-1}^i)$, which is efficiently approximated from the same samples as above by
- Resampling based on the effective sample size S_{eff}





Scan-Matching

- Find argmax_{x_t} $p(z_t | m_{t-1}^i, x_t) p(x_t | x_{t-1}^i, u_t)$
- p(X_t | Xⁱ_{t-1}, U_t) : Gaussian approximation of motion model, see previous slide
- p(Z_t | mⁱ_{t-1}, X_t) : "any scan-matching technique [...] can be used"
 - Used by gMapping: "beam endpoint model"

More on scan-matching in separate set of slides

