
Natural Actor-Critic

Jan Peters a,b Stefan Schaal b,c

aMax-Planck Institute for Biological Cybernetics, Tuebingen, Germany
bUniversity of Southern California, Los Angeles CA 90089, USA

cATR Computational Neuroscience Laboratories, Kyoto, 619-0288, Japan

Abstract

In this paper, we suggest a novel reinforcement learning architecture, the Natural
Actor-Critic. The actor updates are achieved using stochastic policy gradients em-
ploying Amari’s natural gradient approach, while the critic obtains both the natural
policy gradient and additional parameters of a value function simultaneously by lin-
ear regression. We show that actor improvements with natural policy gradients are
particularly appealing as these are independent of coordinate frame of the chosen
policy representation, and can be estimated more efficiently than regular policy gra-
dients. The critic makes use of a special basis function parameterization motivated
by the policy-gradient compatible function approximation. We show that several
well-known reinforcement learning methods such as the original Actor-Critic and
Bradtke’s Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms.
Empirical evaluations illustrate the effectiveness of our techniques in comparison to
previous methods, and also demonstrate their applicability for learning control on
an anthropomorphic robot arm.

Key words: Policy Gradient Methods, Compatible Function Approximation,
Natural Gradients, Actor-Critic Methods, Reinforcement Learning, Robot
Learning
PACS:

1 Introduction

Reinforcement learning algorithms based on value function approximation
have been highly successful with discrete lookup table parameterization. How-
ever, when applied with continuous function approximation, many of these
algorithms failed to generalize, and few convergence guarantees could be ob-
tained [24]. The reason for this problem can largely be traced back to the
greedy or ǫ-greedy policy updates of most techniques, as it does not ensure a

Preprint submitted to Elsevier 16 November 2007

* Manuscript

policy improvement when applied with an approximate value function [8]. Dur-
ing a greedy update, small errors in the value function can cause large changes
in the policy which in return can cause large changes in the value function.
This process, when applied repeatedly, can result in oscillations or divergence
of the algorithms. Even in simple toy systems, such unfortunate behavior can
be found in many well-known greedy reinforcement learning algorithms [6,8].

As an alternative to greedy reinforcement learning, policy gradient methods
have been suggested. Policy gradients have rather strong convergence guar-
antees, even when used in conjunction with approximate value functions, and
recent results created a theoretically solid framework for policy gradient es-
timation from sampled data [25,15]. However, even when applied to simple
examples with rather few states, policy gradient methods often turn out to
be quite inefficient [14], partially caused by the large plateaus in the expected
return landscape where the gradients are small and often do not point di-
rectly towards the optimal solution. A simple example that demonstrates this
behavior is given in Fig. 1.

Similar as in supervised learning, the steepest ascent with respect to the Fisher
information metric [3], called the ‘natural’ policy gradient, turns out to be
significantly more efficient than normal gradients. Such an approach was first
suggested for reinforcement learning as the ‘average natural policy gradient’ in
[14], and subsequently shown in preliminary work to be the true natural policy
gradient [21,4]. In this paper, we take this line of reasoning one step further
in Section 2.2 by introducing the “Natural Actor-Critic” which inherits the
convergence guarantees from gradient methods. Furthermore, in Section 3, we
show that several successful previous reinforcement learning methods can be
seen as special cases of this more general architecture. The paper concludes
with empirical evaluations that demonstrate the effectiveness of the suggested
methods in Section 4.

2 Natural Actor-Critic

2.1 Markov Decision Process Notation and Assumptions

For this paper, we assume that the underlying control problem is a Markov
Decision Process (MDP) in discrete time with continuous state set X = R

n,
and a continuous action set U = R

m [8]. The assumption of an MDP comes
with the limitation that very good state information and Markovian environ-
ment are assumed. However, similar as in [2], the results presented in this
paper might extend to problems with partial state information.

2

Fig. 1. When plotting the expected return landscape for simple problem as 1d linear
quadratic regulation, the differences between ‘vanilla’ and natural policy gradients
becomes apparent [21].

The system is at an initial state x0 ∈ X at time t = 0 drawn from the
start-state distribution p(x0). At any state xt ∈ X at time t, the actor will
choose an action ut ∈ U by drawing it from a stochastic, parameterized policy
π(ut|xt) = p(ut|xt, θ) with parameters θ ∈ R

N , and the system transfers to a
new state xt+1 drawn from the state transfer distribution p(xt+1|xt, ut). The
system yields a scalar reward rt = r(xt, ut) ∈ R after each action. We assume
that the policy πθ is continuously differentiable with respect to its parameters
θ, and for each considered policy πθ, a state-value function V π(x), and the
state-action value function Qπ (x, u) exist and are given by

V π(x) = Eτ

{∑∞

t=0
γtrt

∣∣∣ x0 = x
}

,

Qπ (x, u) = Eτ

{∑∞

t=0
γtrt

∣∣∣ x0 = x, u0 = u
}

,

where γ ∈ (0, 1) denotes the discount factor, and τ a trajectory. It is assumed
that some basis functions φ(x) are given so that the state-value function can
be approximated with linear function approximation V π(x) = φ(x)T v. The
general goal is to optimize the normalized expected return

J(θ) = Eτ

{
(1− γ)

∑∞

t=0
γtrt

∣∣∣ θ
}

=
∫

X

dπ(x)
∫

U

π(u|x)r(x, u)dxdu

where dπ(x) = (1− γ)
∑

∞

t=0 γtp(xt = x) is the discounted state distribution.

2.2 Actor Improvement with Natural Policy Gradients

Actor-Critic and many other policy iteration architectures consist of two steps,
a policy evaluation step and a policy improvement step. The main require-
ments for the policy evaluation step are that it makes efficient usage of expe-
rienced data. The policy improvement step is required to improve the policy
on every step until convergence while being efficient.

3

The requirements on the policy improvement step rule out greedy methods
as, at the current state of knowledge, a policy improvement for approximated
value functions cannot be guaranteed, even on average. ‘Vanilla’ policy gradi-
ent improvements (see e.g., [25,15]) which follow the gradient ∇θJ(θ) of the
expected return function J(θ) (where ∇θf = [∂f/∂θ1, . . . , ∂f/∂θN]) denotes
the derivative of function f with respect to parameter vector θ) often get stuck
in plateaus as demonstrated in [14]. Natural gradients ∇̃θJ(θ) avoid this pit-
fall as demonstrated for supervised learning problems [3], and suggested for
reinforcement learning in [14]. These methods do not follow the steepest direc-
tion in parameter space but the steepest direction with respect to the Fisher
metric given by

∇̃θJ(θ) = G−1(θ)∇θJ(θ), (1)

where G(θ) denotes the Fisher information matrix. It is guaranteed that the
angle between natural and ordinary gradient is never larger than ninety de-
grees, i.e., convergence to the next local optimum can be assured. The ‘vanilla’
gradient is given by the policy gradient theorem (see e.g., [25,15]),

∇θJ(θ) =
∫

X

dπ(x)
∫

U

∇θπ(u|x) (Qπ(x, u)− bπ(x)) dudx, (2)

where bπ(x) denotes a baseline. [25] and [15] demonstrated that in Eq. (2), the
term Qπ(x, u)−bπ(x) can be replaced by a compatible function approximation

fπ
w(x, u) = (∇θ log π(u|x))T w ≡ Qπ(x, u)− bπ(x), (3)

parameterized by the vector w, without affecting the unbiasedness of the gra-
dient estimate and irrespective of the choice of the baseline bπ(x). However,
as mentioned in [25], the baseline may still be useful in order to reduce the
variance of the gradient estimate when Eq.(2) is approximated from samples.
Based on Eqs.(2, 3), we derive an estimate of the policy gradient as

∇θJ(θ)=
∫

X

dπ(x)
∫

U

π(u|x)∇θlog π(u|x)∇θlog π(u|x)Tdudx w = Fθw. (4)

as ∇θπ(u|x) = π(u|x)∇θ log π(u|x). Since π(u|x) is chosen by the user, even
in sampled data, the integral

F (θ, x) =
∫

U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)T du (5)

can be evaluated analytically or empirically without actually executing all
actions. It is also noteworthy that the baseline does not appear in Eq. (4)
as it integrates out, thus eliminating the need to find an optimal selection of
this open parameter. Nevertheless, the estimation of Fθ =

∫
X

dπ(x)F (θ, x)dx

is still expensive since dπ(x) ist not known. However, Equation (4) has more
surprising implications for policy gradients, when examining the meaning of
the matrix Fθ in Eq.(4). Kakade [14] argued that F (θ, x) is the point Fisher
information matrix for state x, and that F (θ) =

∫
X
dπ(x) F (θ, x)dx, therefore,

4

-5 -5 5

5 5

5

State x

A
ct

io
n

u

State x

(a) Value Function Qπ(x,u) (b) Advantage Function Aπ(x,u)

A
ct

io
n
u

-5 -5

Fig. 2. The state-action value function in any stable linear quadratic Gaussian
regulation problems can be shown to be a bowl (a). The advantage function is always
a saddle as shown in (b); it is straightforward to show that the compatible function
approximation can exactly represent the advantage function - but projecting the
value function onto the advantage function is non-trivial for continuous problems.
This figure shows the value function and advantage function of the the system
described in the caption of Figure 1.

denotes a weighted ‘average Fisher information matrix’[14]. However, going
one step further, we demonstrate in Appendix A that Fθ is indeed the true
Fisher information matrix and does not have to be interpreted as the ‘average’
of the point Fisher information matrices. Eqs.(4) and (1) combined imply that
the natural gradient can be computed as

∇̃θJ(θ) = G−1(θ)Fθw = w, (6)

since Fθ = G(θ) (c.f. Appendix A). Therefore we only need estimate w and
not G(θ). The resulting policy improvement step is thus θi+1 = θi+αw where
α denotes a learning rate. Several properties of the natural policy gradient are
worthwhile highlighting:

• Convergence to a local minimum guaranteed as for ‘vanilla gradients’. [3]
• By choosing a more direct path to the optimal solution in parameter space,

the natural gradient has, from empirical observations, faster convergence
and avoids premature convergence of ‘vanilla gradients’ (cf. Figure 1).
• The natural policy gradient can be shown to be covariant, i.e., independent

of the coordinate frame chosen for expressing the policy parameters (cf.
Section 3.1).
• As the natural gradient analytically averages out the influence of the stochas-

tic policy (including the baseline of the function approximator), it requires
fewer data point for a good gradient estimate than ‘vanilla gradients’.

2.3 Critic Estimation with Compatible Policy Evaluation

The critic evaluates the current policy π in order to provide the basis for an
actor improvement, i.e., the change ∆θ of the policy parameters. As we are

5

interested in natural policy gradient updates ∆θ = αw, we wish to employ
the compatible function approximation fπ

w(x, u) from Eq.(3) in this context.
At this point, a most important observation is that the compatible function
approximation fπ

w
(x, u) is mean-zero w.r.t. the action distribution, i.e.,

∫

U

π(u|x)fπ
w

(x, u)du = wT

∫

U

∇θπ(u|x)du = 0, (7)

since from
∫

U
π(u|x)du = 1, differention w.r.t. to θ results in

∫
U
∇θπ(u|x)du =

0. Thus, fπ
w(x, u) represents an advantage function Aπ(x, u) = Qπ(x, u) −

V π(x) in general. The essential differences between the advantage function and
the state-action value function is demonstrated in Figure 2. The advantage
function cannot be learned with TD-like bootstrapping without knowledge of
the value function as the essence of TD is to compare the value V π(x) of
the two adjacent states – but this value has been subtracted out in Aπ(x, u).
Hence, a TD-like bootstrapping using exclusively the compatible function ap-
proximator is impossible.

As an alternative, [25,15] suggested to approximate fπ
w(x, u) from unbiased

estimates Q̂π(x, u) of the action value function, e.g., obtained from roll-outs
and using least-squares minimization between fw and Q̂π. While possible in
theory, one needs to realize that this approach implies a function approxima-
tion problem where the parameterization of the function approximator only
spans a much smaller subspace of the training data – e.g., imagine approx-
imating a quadratic function with a line. In practice, the results of such an
approximation depends crucially on the training data distribution and has
thus unacceptably high variance – e.g., fit a line to only data from the right
branch of a parabula, the left branch, or data from both branches.

Furthermore, in continuous state-spaces a state (except for single start-states)
will hardly occur twice; therefore, we can only obtain unbiased estimates
Q̂π(x, u) of Qπ(x, u). This means the state-action value estimates Q̂π(x, u)
have to be projected onto the advantage function Aπ(x, u). This projection
would have to average out the state value offset V π(x). For example, for linear-
quadratic regulation, it is straightforward to show that the advantage function
is saddle while the state-action value function is bowl — we therefore would
be projecting a bowl onto a saddle; both are illustrated in Figure 2. In this
case, the distribution of the data has a drastic impact on the projection.

To remedy this situation, we observe that we can write the Bellman equations
(e.g., see [5]) in terms of the advantage function and the state-value function

Qπ(x, u) = Aπ(x, u) + V π(x) = r (x, u) + γ
∫

X

p(x′|x, u)V π(x′)dx′. (8)

Inserting Aπ(x, u) = fπ
w(x, u) and an appropriate basis functions representa-

tion of the value function as V π(x) = φ(x)Tv, we can rewrite the Bellman

6

Table 1
Natural Actor-Critic Algorithm with LSTD-Q(λ)

Input: Parameterized policy π(u|x) = p(u|x,θ) with initial parameters

θ = θ0, its derivative ∇θlogπ(u|x) and basis functions φ(x)

for the value function V π(x).

1: Draw initial state x0 ∼ p(x0), and select parameters

At+1 = 0, bt+1 = zt+1 = 0.

2: For t = 0, 1, 2, . . . do

3: Execute: Draw action ut ∼ π(ut|xt), observe next state

xt+1∼ p(xt+1|xt,ut), and reward rt= r(xt,ut).

4: Critic Evaluation (LSTD-Q(λ)): Update

4.1: basis functions: φ̃t = [φ(xt+1)
T ,0T]

T
,

φ̂t = [φ(xt)
T ,∇θ log π(ut|xt)

T]
T
,

4.2: statistics: zt+1 = λzt+φ̂t;At+1 = At + zt+1(φ̂t − γφ̃t)
T ;

bt+1 = bt + zt+1rt,

4.3: critic parameters: [vT
t+1,w

T
t+1]

T = A−1
t+1bt+1.

5: Actor: If gradient estimate is accurate,∡(wt,wt−1) ≤ ǫ, update

5.1: policy parameters: θt+1 = θt + αwt+1,

5.2: forget statistics: zt+1 ← βzt+1,At+1 ← βAt+1, bt+1 ← βbt+1.

6: end.

Equation, Eq., (8), as a set of linear equations

∇θlog π(ut|xt)
Tw + φ(xt)

Tv = r(xt, ut) + γφ(xt+1)
Tv + ǫ(xt, ut, xt+1) (9)

where ǫ(xt, ut, xt+1) denotes an error term which mean-zero as can be observed
from Eq.(8). These equations enable us to formulate some novel algorithms in
the next sections.

The linear appearance of w and v hints at a least squares to obtain Thus,
we now need to address algorithms that estimate the gradient efficiently using
the sampled equations (such as Eq. (9)), and how to determine the additional
basis functions φ(x) for which convergence of these algorithms is guaranteed.

7

2.3.1 Critic Evaluation with LSTD-Q(λ)

Using Eq.(9), a solution to Equation (8) can be obtained by adapting the
LSTD(λ) policy evaluation algorithm [9]. For this purpose, we define

φ̂t = [φ(xt)
T , ∇θ log π(ut|xt)

T]T , φ̃t = [φ(xt+1)
T , 0T]T , (10)

as new basis functions, where 0 is the zero vector. This definition of basis
function reduces bias and variance of the learning process in comparison to
SARSA and previous LSTD(λ) algorithms for state-action value functions [9]
as the basis functions φ̃t do not depend on stochastic future actions ut+1, i.e.,
the input variables to the LSTD regression are not noisy due to ut+1 (e.g., as
in [10]) – such input noise would violate the standard regression model that
only takes noise in the regression targets into account. Alternatively, Bradtke
et al. [10] assume V π(x) = Qπ(x, u) where u is the average future action,
and choose their basis functions accordingly; however, this is only given for
deterministic policies, i.e., policies without exploration and not applicable in
our framework. LSTD(λ) with the basis functions in Eq.(10), called LSTD-
Q(λ) from now on, is thus currently the theoretically cleanest way of applying
LSTD to state-value function estimation. It is exact for deterministic or weekly
noisy state transitions and arbitrary stochastic policies. As all previous LSTD
suggestions, it loses accuracy with increasing noise in the state transitions
since φ̃t becomes a random variable. The complete LSTD-Q(λ) algorithm is
given in the Critic Evaluation (lines 4.1-4.3) of Table 1.

Once LSTD-Q(λ) converges to an approximation of Aπ(xt, ut) + V π(xt), we
obtain two results: the value function parameters v, and the natural gradient
w. The natural gradient w serves in updating the policy parameters ∆θt =
αwt. After this update, the critic has to forget at least parts of its accumulated
sufficient statistics using a forgetting factor β ∈ [0, 1] (cf. Table 1). For β = 0,
i.e., complete resetting, and appropriate basis functions φ(x), convergence to
the true natural gradient can be guaranteed. The complete Natural Actor
Critic (NAC) algorithm is shown in Table 1.

However, it becomes fairly obvious that the basis functions can have an influ-
ence on our gradient estimate. When using the counterexample in [7] with a
typical Gibbs policy, we will realize that the gradient is affected for λ < 1; for
λ = 0 the gradient is flipped and would always worsen the policy. However,
unlike in [7], we at least could guarantee that we are not affected for λ = 1.

2.3.2 Episodic Natural Actor-Critic

Given the problem that the additional basis functions φ(x) determine the
quality of the gradient, we need methods which guarantee the unbiasedness of
the natural gradient estimate. Such method can be determined by summing

8

Table 2
Episodic Natural Actor-Critic Algorithm (eNAC)

Input: Parameterized policy π(u|x) = p(u|x,θ) with initial parameters

θ = θ0, and derivative ∇θlogπ(u|x).

For u = 1, 2, 3, . . . do

For e = 1, 2, 3, . . . do

Execute Rollout: Draw initial state x0 ∼ p(x0).

For t = 1, 2, 3, . . . , N do

Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt,ut),

and reward rt= r(xt,ut).

end.

end.

Critic Evaluation (Episodic): Determine value function

J = V π(x0), compatible function approximation fπ
w(xt,ut).

Update: Determine basis functions: φt =
[∑N

t=0 γt
∇θ log π(ut|xt)

T , 1
]T

;

reward statistics: Rt =
∑N

t=0 γtr;

Actor-Update: When the natural gradient is converged,

∡(wt+1,wt−τ) ≤ ǫ, update the policy parameters: θt+1 = θt + αwt+1.

6: end.

up Equation (9) along a sample path, we obtain

N−1∑

t=0

γtAπ(xt, ut) = V π(x0) +
N−1∑

t=0

γtr(xt, ut)− γNV π(xN) (11)

It is fairly obvious that the last term disappears for N → ∞ or episodic
tasks (where r(xN−1, uN−1) is the final reward); therefore each roll-out would
yield one equation. If we furthermore assume a single start-state, an additional
scalar value function of φ(x) = 1 suffices. We therefore get a straightforward
regression problem:

N−1∑

t=0

γt
∇ log π(ut, xt)

T w + J =
N−1∑

t=0

γtr(xt, ut) (12)

with exactly dim θ + 1 unknowns. This means that for non-stochastic tasks
we can obtain a gradient after dim θ + 1 rollouts. The complete algorithm is
shown in Table 2.

9

3 Properties of Natural Actor -Critic

In this section, we will emphasize certain properties of the natural actor-critic.
In particular, we want to give a simple proof of covariance of the natural pol-
icy gradient, and discuss [14] observation that in his experimental settings
the natural policy gradient was non-covariant. Furthermore, we will discuss
another surprising aspect about the Natural Actor-Critic (NAC) which is its
relation to previous algorithms. We briefly demonstrate that established algo-
rithms like the classic Actor-Critic [24], and Bradtke’s Q-Learning [10] can be
seen as special cases of NAC.

3.1 On the Covariance of Natural Policy Gradients

When [14] originally suggested natural policy gradients, he came to the dis-
appointing conclusion that they were not covariant. As counterexample, he
suggested that for two different linear Gaussian policies, (one in the normal
form, and the other in the information form) the probability distributions rep-
resented by the natural policy gradient would be affected differently, i.e., the
natural policy gradient would be non-covariant. We intend to give a proof at
this point showing that the natural policy gradient is in fact covariant under
certain conditions, and clarify why [14] experienced these difficulties.

Theorem 1 Natural policy gradients updates are covariant for two policies πθ

parameterized by θ and πh parameterized by h if (i) for all parameters θi there
exists a function θi = fi(h1, . . . , hk), (ii) the derivative ∇hθ and its inverse
∇hθ−1.

For the proof see Appendix B. Practical experiments show that the problems
occurred for Gaussian policies in [14] are in fact due to the selection the
stepsize α which determines the length of ∆θ. As the linearization ∆θ =
∇hθT∆h does not hold for large ∆θ, this can cause divergence between the
algorithms even for analytically determined natural policy gradients which can
partially explain the difficulties occurred by Kakade [14].

3.2 NAC’s Relation to previous Algorithms

Original Actor-Critic. Surprisingly, the original Actor-Critic algorithm [24]
is a form of the Natural Actor-Critic. By choosing a Gibbs policy π(ut|xt) =
exp(θxu)/

∑
b exp(θxb), with all parameters θxu lumped in the vector θ, (de-

noted as θ = [θxu]) in a discrete setup with tabular representations of tran-
sition probabilities and rewards. A linear function approximation V π(x) =

10

φ(x)T v with v = [vx] and unit basis functions φ(x) = ux was employed.
Sutton et al. online update rule is given by

θt+1
xu = θt

xu + α1 (r(x, u) + γvx′ − vx) , vt+1
x = vt

x + α2 (r(x, u) + γvx′ − vx) ,

where α1, α2 denote learning rates. The update of the critic parameters vt
x

equals the one of the Natural Actor-Critic in expectation as TD(0) critics
converges to the same values as LSTD(0) and LSTD-Q(0) for discrete prob-
lems [9]. Since for the Gibbs policy we have ∂ log π(b|a)/∂θxu = 1 − π(b|a)
if a = x and b = u, ∂ log π(b|a)/∂θxu = −π(b|a) if a = x and b 6= u, and
∂ log π(b|a)/∂θxu = 0 otherwise, and as

∑
b π(b|x)A(x, b) = 0, we can evaluate

the advantage function and derive

A(x, u) = A(x, u)−
∑

b
π(b|x)A(x, b) =

∑
b

∂ log π(b|x)

∂θxu

A(x, b).

Since the compatible function approximation represents the advantage func-
tion, i.e., fπ

w
(x, u) = A(x, u), we realize that the advantages equal the natural

gradient, i.e., w = [A(x, u)]. Furthermore, the TD(0) error of a state-action
pair (x, u) equals the advantage function in expectation, and therefore the
natural gradient updatewxu = A(x, u) = Ex′{r(x, u) + γV (x′) − V (x)|x, u},
corresponds to the average online updates of Actor-Critic. As both update
rules of the Actor-Critic correspond to the ones of NAC, we can see both
algorithms as equivalent.

SARSA. SARSA with a tabular, discrete state-action value function Qπ(x, u)
and an ǫ-soft policy improvement π(ut|xt) = exp(Qπ(x, u)/ǫ)/

∑
û exp(Qπ(x, u)/ǫ)

can also be seen as an approximation of NAC. When treating the table entries
as parameters of a policy θxu = Qπ(x, u), we realize that the TD update of
these parameters corresponds approximately to the natural gradient update
since wxu = ǫA(x, u) ≈ ǫEx′{r(x, u) + γQ(x′, u′)−Q(x, u)|x, u}. However, the
SARSA-TD error equals the advantage function only for policies where a sin-
gle action u∗ has much better action values Q(x, u∗) than all other actions; for
such special cases, ǫ-soft SARSA can be seen as an approximation of NAC.
This also corresponds to Kakade’s (2002) observation that greedy update step
(such as the ǫ-soft greedy update), approximates the natural policy gradient.

Bradtke’s Q-Learning. Bradtke [10] proposed an algorithm with policy
π(ut|xt) = N (ut|k

T
i xt, σ

2
i) and parameters θi = [kT

i , σi]
T (where σi denotes

the exploration, and i the policy update time step) in a linear control task with
linear state transitions xt+1 = Axt + but, and quadratic rewards r(xt, ut) =
xT

t Hxt + Ru2
t . They evaluated Qπ(xt, ut) with LSTD(0) using a quadratic

polynomial expansion as basis functions, and applied greedy updates:

kBradtke
i+1 = argmax

ki+1
Qπ(xt, ut = kT

i+1xt) = −(R + γbT P ib)−1γbP iA,

where P i denotes policy-specific value function parameters related to the gain

11

ki; no update the exploration σi was included. Similarly, we can obtain the
natural policy gradient w = [wk, wσ]T , as yielded by LSTD-Q(λ) analytically
using the compatible function approximation and the same quadratic basis
functions. As discussed in detail in [21], this gives us

wk = (γAT P ib + (R + γbT P ib)k)T σ2
i ,

wσ = 0.5(R + γbT P ib)σ3
i .

Similarly, it can be derived that the expected return is J(θi) = −(R +
γbT P ib)σ2

i for this type of problems, see [21]. For a learning rate αi =
1/ ‖J(θi)‖, we see

ki+1 = ki + αtwk = ki − (ki + (R + γbT P ib)−1γAT P ib) = kBradtke
i+1 ,

which demonstrates that Bradtke’s Actor Update is a special case of the Nat-
ural Actor-Critic. NAC extends Bradtke’s result as it gives an update rule for
the exploration – which was not possible in Bradtke’s greedy framework.

4 Evaluations and Applications

In this section, we present several evaluations comparing the episodic Nat-
ural Actor-Critic architectures with previous algorithms. We compare them
in optimization tasks such as cart-pole balancing and simple motor primitive
evaluations and compare them only with episodic NAC. Furthermore, we ap-
ply the combination of episodic NAC and the motor primitive framework to
a robotic task on a real robot, i.e., ‘hitting a T-ball with a baseball bat’.

4.1 Cart-Pole Balancing

Cartpole balancing is a well-known benchmark for reinforcement learning. We
assume the cart as shown in Figure 3 (a) can be described by

mlẍ cos θ + ml2θ̈ −mgl sin θ = 0,

(m + mc)ẍ + mlθ̈ cos θ −mlθ̇2 sin θ = F,

with l = 0.75m, m = 0.15kg, g = 9.81m/s2 and mc = 1.0kg. The resulting
state is given by x = [x, ẋ, θ, θ̇]T , and the action u = F . The system is
treated as if it was sampled at a rate of h = 60Hz, and the reward is given by
r(x, u) = xT Qx + uT Ru with Q = diag(1.25, 1, 12, 0.25), R = 0.01.

The policy is specified as π(u|x) = N (Kx, σ2). In order to ensure that the
learning algorithm cannot exceed an acceptable parameter range, the variance

12

Fig. 3. This figure shows the performance of Natural Actor-Critic in the Cart-Pole
Balancing framework. In (a), you can see the general setup of the pole mounted
on the cart. In (b), a sameple learning run of the both natural actor-critic and
the true policy gradient is given. The dashed line denotes the Natural Actor-Critic
performance while the solid line shows the policy gradients performance. In (c), the
expected return of the policy is shown. This is an average over 100 randomly picked
policies as described in Section 4.1.

of the policy is defined as σ = 0.1+1/(1+exp(η)). Thus, the policy parameter
vector becomes θ = [KT , η]T and has the analytically computable optimal
solution K ≈ [5.71, 11.3,−82.1,−21.6]T , and σ = 0.1, corresponding to η →
∞. As η →∞ is hard to visualize, we show σ in Figure 3 (b) despite the fact
that the update takes place over the parameter η.

For each initial policy, samples (xt, ut, rt+1, xt+1) are being generated us-
ing the start-state distributions, transition probabilities, the rewards and the
policy. The samples arrive at a sampling rate of 60 hertz, and are immedi-
ately sent to the Natural Actor-Critic module. The policy is updated when
∡(wt+1, wt) ≤ ǫ = π/180. At the time of update, the true ‘vanilla’ policy
gradient, which can be computed analytically 1 , is used to update a separate

1 The true natural policy gradient can also be computed analytically. However, it
is not shown as the difference in performance to the Natural Actor Critic gradient

13

policy. The true ‘vanilla’ policy gradients these serve as a baseline for the
comparison. If the pole leaves the acceptable region of −π/6 ≤ φ ≤ π/6, and
−1.5m ≤ x ≤ +1.5m, it is reset to a new starting position drawn from the
start-state distribution.

Results are illustrated in Figure 3. In 3 (b), a sample run is shown: the natural-
actor critic algorithms estimates the optimal solution within less than ten
minutes of simulated robot trial time. The analytically obtained policy gra-
dient for comparison takes over two hours of robot experience to get to the
true solution. In a real world application, a significant amount of time would
be added for the vanilla policy gradient as it is more unstable and leaves the
admissible area more often. The policy gradient is clearly outperformed by
the natural actor-critic algorithm. The performance difference between the
true natural gradient and the natural actor-critic algorithm is negligible and,
therefore, not shown separately. By the time of the conference, we hope to
have this example implemented on a real anthropomorphic robot. In Figure
3 (c), the expected return over updates is shown averaged over all hundred
initial policies.

In this experiment, we demonstrated that the natural actor critic is compa-
rable with the ideal natural gradient, and outperforms the ‘vanilla’ policy
gradient significantly. Greedy policy improvement methods do not compare
easily. Discretized greedy methods cannot compete due to the fact that the
amount of data required would be significantly increased. The only suitable
greedy improvement method, to our knowledge, is Bradtke’s Adaptive Policy
Iteration [10]. However, this method is problematic in real-world application
due to the fact that the policy in Bradtke’s method is deterministic: the es-
timation of the action-value function is an ill-conditioned regression problem
with redundant parameters and no explorative noise. Therefore, it can only
work in simulated environments with an absence of noise in the state estimates
and rewards.

4.2 Motor Primitive Learning for Baseball

This section will turn towards optimizing nonlinear dynamic motor primitives
for robotics. In [13], a novel form of representing movement plans (qd, q̇d) for
the degrees of freedom (DOF) robot systems was suggested in terms of the
time evolution of the nonlinear dynamical systems

q̇d,k = h(qd,k, zk, gk, τ, θk) (13)

estimate is negligible.

14

(a) Expected Cost

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
o

s
it

io
n

[r
a
d

]

time [s]

(b) Position of motor
primitives

0 0.5 1
-10

0

10

20

time [s]

a
c
c

e
le

ra
ti

o
n

[r
a

d
/s

2
]

(c) Controls of motor
primitives

Fig. 4. This figure illustrates the task accomplished in the toy example. In (a), we
show how the expected cost decreases for both GPOMDP and the episodic Nat-
ural Actor-Critic. The positions of the motor primitives are shown in (b) and in
(c) the accelerations are given. In (b,c), the dashed line shows the initial configura-
tions, which is accomplished by zero parameters for the motor primitives. The solid
line shows the analytically optimal solution, which is unachievable for the motor
primitives, but nicely approximated by their best solution, presented by the dark
dot-dashed line. This best solution is reached by both learning methods. However,
for GPOMDP, this requires approximately 106 learning steps while the Natural
Actor-Critic takes less than 103 to converge to the optimal solution.

(b) Teach in
by Imitation

(c) Initial re-
produced motion

(d) Improved re-
produced motion

(a) Performance
of the system

0 100 200 300 400
-10

-8

-6

-4

-2

0
x 10

5

Episodes

P
er

fo
rm

an
ce

 J
(θ

)

Fig. 5. This figure shows (a) the performance of a baseball swing task when using the
motor primitives for learning. In (b), the learning system is initialized by imitation
learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after
several hundred episodes exhibiting a nicely learned batting.

where (qd,k, q̇d,k) denote the desired position and velocity of a joint, zk the
internal state of the dynamic system, gk the goal (or point attractor) state of
each DOF, τ the movement duration shared by all DOFs, and θk the open
parameters of the function h. The original work in[13] demonstrated how the
parameters θk can be learned to match a template trajectory by means of
supervised learning – this scenario is, for instance, useful as the first step of
an imitation learning system. Here we will add the ability of self-improvement
of the movement primitives in Eq.(13) by means of reinforcement learning,
which is the crucial second step in imitation learning. The system in Eq.(13)
is a point-to-point movement, i.e., this task is rather well suited for episodic
Natural Actor-Critic.

15

In Figure 4, we show a comparison with GPOMDP for simple, single DOF
task with a reward of rk(x0:N , u0:N) =

∑N
i=0 c1q̇

2
d,k,i + c2(qd;k;N − gk)

2; where
c1 = 1, c2 = 1000, and gk is chose appropriately.. In 4(a), we show how the
expected cost decreases for both GPOMDP and the episodic Natural Actor-
Critic. The positions of the motor primitives are shown in 4(b) and in 4(c) the
accelerations are given. In 4(b,c), the dashed line shows the initial configura-
tions, which is accomplished by zero parameters for the motor primitives. The
solid line shows the analytically optimal solution, which is unachievable for the
motor primitives, but nicely approximated by their best solution, presented
by the dark dot-dashed line. This best solution is reached by both learning
methods. However, for GPOMDP, this requires approximately 106 learning
steps while the Natural Actor-Critic takes less than 103 to converge to the
optimal solution.

We also evaluated the same setup in a challenging robot task, i.e., the planning
of these motor primitives for a seven DOF robot task. The task of the robot is
to hit the ball properly so that it flies as far as possible. Initially, it is taught
in by supervised learning as can be seen in Figure 5 (b); however, it fails to
reproduce the behavior as shown in (c); subsequently, we improve the perfor-
mance using the episodic Natural Actor-Critic which yields the performance
shown in (a) and the behavior in (d).

5 Conclusion

In this paper, we have summarized novel developments in policy-gradient re-
inforcement learning, and based on these, we have designed a novel reinforce-
ment learning architecture, the Natural Actor-Critic algorithm. This algorithm
comes in (at least) two forms, i.e., the LSTD-Q(λ) form which depends on
sufficiently rich basis functions, and the Episodic form which only requires a
constant as additional basis function. We compare both algorithms and apply
the latter on several evaluative benchmarks as well as on a baseball swing
robot example.

Recently, our Natural Actor-Critic architecture [19,21] has gained a lot of
traction in the reinforcement learning community. According to D. Aberdeen,
the Natural Actor-Critic is the “Current method of choice” [1]. Additional to
our work presented at ESANN 2007 in [19] and its earlier, preliminary ver-
sions (see e.g., [22,21,18,20]), the algorithm has found a variety of applications
in largely unmodified form in the last year. The current range of additional
applications includes optimization of constrained reaching movements of hu-
manoid robots [12], traffic-light system optimization [23], multi-agent system
optimization [11,28], conditional random fields [27] and gait optimization in
robot locomotion [26,17]. All these new developments indicate that the Nat-

16

ural Actor-Critic is about to become a standard architecture in the area of
reinforcement learning as it is among the few approaches which have scaled
towards interesting applications.

References

[1] D. Aberdeen. POMDPs and Policy Gradients. In Proceedings of the Machine
Learning Summer School (MLSS), Canberra, Australia, 2006.

[2] D. Aberdeen. Policy-Gradient Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, Australian National Unversity, 2003.

[3] S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10:251–276, 1998.

[4] J. Bagnell and J. Schneider. Covariant policy search. In International Joint
Conference on Artificial Intelligence, 2003.

[5] L.C. Baird. Advantage Updating. Wright Lab. Tech. Rep. WL-TR-93-1146,
1993.

[6] L.C. Baird and A.W. Moore. Gradient descent for general reinforcement
learning. In Advances in Neural Information Processing Systems 11, 1999.

[7] P. Bartlett. An introduction to reinforcement learning theory: Value function
methods. In Machine Learning Summer School, pages 184–202, 2002.

[8] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[9] J. Boyan. Least-squares temporal difference learning. In Machine Learning:
Proceedings of the Sixteenth International Conference, pages 49–56, 1999.

[10] S. Bradtke, E. Ydstie, and A.G. Barto. Adaptive Linear Quadratic Control
Using Policy Iteration. University of Massachusetts, Amherst, MA, 1994.

[11] O. Buffet, A. Dutech, and F. Charpillet. Shaping multi-agent systems with
gradient reinforcement learning. Autonomous Agents and Multi-Agent Systems,
15(2):1387–2532, October 2007.

[12] F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforcement learning
for imitating constrained reaching movements. RSJ Advanced Robotics, Special
Issue on Imitative Robots, 2007.

[13] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements by
demonstration using nonlinear oscillators. In IEEE International Conference
on Intelligent Robots and Systems (IROS 2002), pages 958–963, 2002.

[14] S. A. Kakade. Natural policy gradient. In Advances in Neural Information
Processing Systems 14, 2002.

17

[15] V. Konda and J. Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems 12, 2000.

[16] T. Moon and W. Stirling. Mathematical Methods and Algorithms for Signal
Processing. Prentice Hall, 2000.

[17] J. Park, J. Kim, and D. Kang. An RLS-Based Natural Actor-Critic Algorithm
for Locomotion of a Two-Linked Robot Arm. In Proceedings of Computational
Intelligence and Security: International Conference (CIS 2005), pages 15–19,
Xi’an, China, December 2005.

[18] J. Peters and S. Schaal. Policy gradient methods for robotics. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Beijing, China, 2006.

[19] J. Peters and S. Schaal. Applying the episodic natural actor-critic architecture
to motor primitive learning. In Proceedings of the 2007 European Symposium
on Artificial Neural Networks (ESANN), 2007.

[20] J. Peters, S. Vijayakumar, and S. Schaal. Scaling reinforcement learning
paradigms for motor learning. In Proceedings of the 10th Joint Symposium
on Neural Computation (JSNC), Irvine, CA, May 2003.

[21] J. Peters, S. Vijaykumar, and S. Schaal. Reinforcement learning for humanoid
robotics. In IEEE International Conference on Humandoid Robots, 2003.

[22] J. Peters, S. Vijayakumar, and S. Schaal. Natural Actor-Critic. In Proceedings
of the European Machine Learning Conference (ECML), Porto, Portugal, 2005.

[23] S. Richter, D. Aberdeen, and J. Yu. Natural Actor-Critic for Road Traffic
Optimisation. In Advances in Neural Information Processing Systems, 2007.

[24] R.S. Sutton and A.G. Barto. Reinforcement Learning. MIT Press, 1998.

[25] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12, 2000.

[26] T. Ueno, Y. Nakamura, T. Shibata, K. Hosoda, and S. Ishii. Fast and Stable
Learning of Quasi-Passive Dynamic Walking by an Unstable Biped Robot based
on Off-Policy Natural Actor-Critic. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2006.

[27] S.V.N Vishwanathan Xinhua Zhang, Douglas Aberdeen. Conditional random
fields for reinforcement learning. In Yoshua Bengio and Yann LeCun, editors,
Proceedings of the 2007 Snowbird Learning Workshop, San Juan, Puerto Rico,
March 2007.

[28] X. Zhang, D. Aberdeen, and S.V. N. Vishwanathan. Conditional random fields
for multi-agent reinforcement learning. In Proceedings of the 24th International
Conference on Machine Learning (ICML 2007), ACM International Conference
Proceeding Series, pages 1143–1150, Corvalis, Oregon, 2007.

18

A Fisher information property

In Section 6, we explained that the all-action matrix Fθ equals in general the
Fisher information matrix G(θ). In [16], we can find the well-known lemma
that by differentiating

∫
Rn p(x)dx = 1 twice with respect to the parameters

θ, we can obtain

∫

Rn

p(x)∇2
θ
log p(x)dx = −

∫

Rn

p(x)∇θ log p(x)∇θ log p(x)T dx (A.1)

for any probability density function p(x). Furthermore, we can rewrite the
probability p(τ 0:n) of a rollout or trajectory τ 0:n = [x0, u0, r0, x1, u1, r1, . . .,
xn, un, rn, xn+1]

T as p (τ 0:n) = p (x0)
∏n

t=0 p (xt+1 |xt, ut)π (ut |xt) which
implies that

∇
2
θ
log p (τ 0:n) =

n∑

t=0

∇
2
θ
log π (ut |xt) .

Using Equations (A.1), and the definition of the Fisher information matrix
[3], we can determine Fisher information matrix for the average reward case
by

G(θ) = lim
n→∞

n−1Eτ{∇θ log p(τ)∇θ log p(τ 0:n)T}

= − lim
n→∞

n−1Eτ

{
∇

2
θ
log p(τ)

}
, (A.2)

= − lim
n→∞

n−1Eτ

{
n∑

t=0

∇
2
θ
log π (ut |xt)

}

= −
∫

X

dπ(x)
∫

U

π(u|x)∇2
θ
log π(u|x)dudx (A.3)

=
∫

X

dπ(x)
∫

U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx = Fθ (A.4)

This proves that the all-action matrix is indeed the Fisher information matrix
for the average reward case. For the discounted case, with a discount factor
γ we realize that we can rewrite the problem where the probability of rollout
is given by pγ(τ 0:n) = p(τ 0:n)(

∑n
i=0 γiIxi,ui

), and derive that the all-action
matrix equals the Fisher information matrix by the same kind of reasoning as
in Eq.(A.4). Therefore, we can conclude that in general, i.e., G(θ) = Fθ.

B Proof of the Covariance Theorem

For small parameter changes ∆h and ∆θ, we have ∆θ = ∇hθT∆h. If the
natural policy gradient is a covariant update rule, a change ∆h along the
gradient ∇hJ(h) would result in the same change ∆θ along the gradient
∇θJ(θ) for the same scalar step-size α. By differentiation, we can obtain

19

∇hJ(h) = ∇hθ∇θJ(θ).It is straightforward to show that the Fisher infor-
mation matrix includes the Jacobian ∇hθ twice as factor,

F (h) =
∫

X

dπ(x)
∫

U

π(u|x)∇hlogπ(u|x)∇hlogπ(u|x)T dudx,

= ∇hθ

∫

X

dπ(x)
∫

U

π(u|x)∇θlogπ(u|x)∇θlogπ(u|x)T dudx∇hθT ,

= ∇hθF (θ)∇hθT .

This shows that natural gradient in the h parameterization is given by

∇̃hJ(h) = F−1(h)∇hJ(h) =
(
∇hθF (θ)∇hθT

)
−1

∇hθ∇θJ(θ).

This has a surprising implication as it makes it straightforward to see that the
natural policy is covariant since

∆θ = α∇hθT∆h = α∇hθT
∇̃hJ(h),

= α∇hθT
(
∇hθF (θ)∇hθT

)
−1

∇hθ∇θJ(θ),

= αF−1(θ)∇θJ(θ) = α∇̃θJ(θ),

assuming that ∇hθ is invertible. This concludes that the natural policy gra-
dient is in fact a covariant gradient update rule.

The assumptions underlying this proof require that the learning rate is very
small in order to ensure a covariant gradient descent process. However, single
update steps will always be covariant and, thus, this requirement is only for-
mally necessary but barely matters in practice. Similar as in other gradient
descent problems, learning rates can be chosen to optimize the performance
without changing the fact that the covariance of a single update step direction
will not be affected.

20

