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Variable Resolution Disretizationin Optimal ControlR�EMI MUNOS remi.munos�polytehnique.frCentre de Math�ematiques Appliqu�ees,Eole Polytehnique, 91128 Palaiseau, FraneANDREW MOORE awm�s.mu.eduRobotis Institute, Carnegie Mellon University,5000 Forbes Ave, Pittsburgh, PA 15213, USAEditor: Satinder SinghAbstrat. The problem of state abstration is of entral importane in optimal ontrol, reinfore-ment learning and Markov deision proesses. This paper studies the ase of variable resolutionstate abstration for ontinuous time and spae, deterministi dynami ontrol problems in whihnear-optimal poliies are required. We begin by de�ning a lass of variable resolution poliy andvalue funtion representations based on Kuhn triangulations embedded in a kd-trie. We then on-sider top-down approahes to hoosing whih ells to split in order to generate improved poliies.The ore of this paper is the introdution and evaluation of a wide variety of possible splittingriteria. We begin with loal approahes based on value funtion and poliy properties that useonly features of individual ells in making split hoies. Later, by introduing two new non-loalmeasures, inuene and variane, we derive splitting riteria that allow one ell to eÆiently takeinto aount its impat on other ells when deiding whether to split. Inuene is an eÆiently-alulable measure of the extent to whih hanges in some state e�et the value funtion of someother states. Variane is an eÆiently-alulable measure of how risky is some state in a Markovhain: a low variane state is one in whih we would be very surprised if, during any one exeution,the long-term reward attained from that state di�ered substantially from its expeted value, givenby the value funtion.The paper proeeds by graphially demonstrating the various approahes to splitting on thefamiliar, non-linear, non-minimum phase, and two dimensional problem of the \Car on the hill".It then evaluates the performane of a variety of splitting riteria on many benhmark problems,paying areful attention to their number-of-ells versus loseness-to-optimality tradeo� urves.Keywords: Optimal ontrol, reinforement learning, variable resolution disretization, adaptivemesh re�nement1. IntrodutionThis paper is about non-uniform disretization of state spaes when �nding optimalontrollers for ontinuous time and spae Markov Proesses.There is an extensive literature in Numerial Analysis about solving numeriallypartial di�erential equations suh as the famous Hamilton-Jaobi-Bellman (HJB)equations that arise in optimal ontrol.Disretization tehniques (Kushner & Dupuis, 1992) using �nite-element (FE) or�nite-di�erene (FD) methods applied to uniform grids (and multi-grids) are widelyused and provide onvergene results and rates of onvergene (using analytial



2 R�EMI MUNOS AND ANDREW MOORE(Barles & Souganidis, 1991; Crandall, Ishii, & Lions, 1992; Crandall & Lions, 1983)or probabilistial (Kushner & Dupuis, 1992; Dupuis & James, 1998) approahes).However, suh uniform disretization su�er from impratial omputational re-quirements when the size of the disretization step is small, espeially when thestate spae is of high dimension. Indeed, sine the symmetries of the ontrol prob-lem or the smoothness properties of the value funtion are not reeted in thestruture of the grid, possible ompat representations and omputation are notexploited.On the other hand, there is a growing interest for ombining ompat funtionrepresentations (suh as Neural Networks) with Dynami Programming (Bertsekas& Tsitsiklis, 1996; Baird, 1995; Sutton, 1996) in order to handle high dimensionality.Suessful appliations inlude the game of bakgammon (Tesauro, 1995) and aontroller for elevator dispathing (Crites & Barto, 1996). However in general,there is no guarantee of onvergene to the optimal solution (Boyan & Moore, 1995;Baird, 1995; Munos, 2000; Munos, Baird, & Moore, 1999). Some loal onvergeneresults are in (Gordon, 1995; Baird, 1998; Tsitsiklis & Van Roy, 1996; Bertsekas &Tsitsiklis, 1996).The distintion between disretization and approximation methods is not simple.Usually we denote by disretization a way to deompose a funtion using a set ofbasis funtions with loal support (suh as 'hat' funtions used in �nite-elementmethods) whereas approximation methods refer to using basis funtions with globalsupport (possibly the whole state spae). However this distintion is not obvioussine there exists some fany grids (for example the sparse grids (Zenger, 1990)) thatuse extrapolation on large parts of the state spae and some funtion approximatorsthat use loal basis funtions (suh as the Normalized Gaussian Networks (Moody& Darken, 1989)).In this paper we onsider variable resolution disretizations to approximate thevalue funtion and the optimal ontrol and ompare experimentally several splittingriteria. The ideas developed here are illustrated on a spei� grid representationusing kd-trees and Kuhn triangulation. However the same ideas an be used to im-plement variable resolution on other kinds of grids suh as the sparse grids (Zenger,1990; Griebel, 1998), the random and low-disrepany grids (Niederreiter, 1992;Rust, 1996).We onsider a \general towards spei�" approah where an initial oarse gridis suessively re�ned at some areas of the state spae aording to a splittingriterion. In this work we evaluates and ompare the performane of a variety ofsplitting riteria. We start (setion 6) with two riteria - the orner-value di�ereneand the value non-linearity - whih onsider splitting around the \singularities" ofthe value funtion. This is a re�nement riterion ommonly used in numerialresolution of partial di�erential equations using adaptive meshes (see for example(Gr�une, 1997) for HJB equations).This method approximates very aurately the value funtion, but it may beomputationaly very expensive when the value funtion is disountinous.Besides, the singularities of the value funtion are usually not loated at the sameareas as those of the optimal ontroller: a good approximation of the value funtion



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 3at some areas is not needed if this does not have any impat on the quality of theontroller.Next (setion 7), we onsider a splitting riterion - the poliy disagreement - thattakes into aount the poliy. This method split only where the optimal poliyis expeted to hange. Unfortunately, the transition boundaries of the optimalontrol obtained are not optimally loated, the reason for this being that the valuefuntion is not orretly approximated at the areas that have an \inuene" onthese boundaries. We illustrate the shortomings of these loal approahes thatonly onsider features of individual ells in making split hoies, and justify theneed for global splitting riteria that take into aount the non-loal impat of thesplitting proess.In setion 8, we introdue the notion of inuene as a measure of the non-loalontribution of a state to the value funtion at other states. Then, in setion 9, wede�ne the variane of the expeted future rewards. We show how to ombine thesetwo measures to derive eÆient grid re�nement tehniques.We desribe an heuristi whih intends to selet the ells whose splitting willmostly inrease the auray of the value funtion at the parts of the state spaewhere there is a transition in the optimal ontrol.We illustrate the di�erent splitting riteria on the \Car on the hill" problemdesribed in setion 4, and in setion 11 we show the results for other ontrolproblems, inluding the 4-dimensional \Cart-pole", \Arobot", \spae-shuttle" and\airplane meeting" problems.In this paper we make the assumption that we have a model of the dynamis andof the reinforement funtion. For onveniene we assume that the dynamis aredeterministi; however the results are extendible to the stohasti ase (providedthat we remove the natural noise from the measure of variane, as suggested in thelast remark of setion 10).2. Desription of the optimal ontrol problemWe onsider disounted deterministi ontrol problems. Let x(t) 2 X be the stateof the system, with the state spae X being a ompat subset of IRd. The evolutionof the state depends on the ontrol u(t) 2 U (with the ontrol spae U a �nite setof possible ations) by the di�erential equation, alled state dynamis:dx(t)dt = f(x(t); u(t)) (1)For an initial state x and a ontrol funtion u(t), this equation leads to a uniquetrajetory x(t). Let � be the exit time from the state spae (with the onventionthat if x(t) always stays in X , then � = 1). Then, we de�ne the gain J as thedisounted umulative reinforement:J(x;u(t)) = Z �0 tr(x(t); u(t))dt + �rb(x(�)) (2)where r(x; u) is the urrent reinforement and rb(x) the boundary reinforement. is the disount fator (0 �  < 1).



4 R�EMI MUNOS AND ANDREW MOOREThe objetive of the ontrol problem is to �nd, for any initial ondition x, theontrol u�(t) that maximizes the funtional J .Here, we use the method of Dynami Programming (DP) that introdues thevalue funtion (VF), maximum of J as a funtion of initial state x:V (x) = supu(t) J(x;u(t)):From the DP priniple we know (see (Fleming & Soner, 1993) for example) thatV satis�es a �rst-order non-linear di�erential equation, alled the Hamilton-Jaobi-Bellman (HJB) equation:Theorem 1 If V is di�erentiable at x 2 X, let DV (x) be the gradient of V at x,then the following HJB equation holds at x:V (x) ln  +maxu2U [DV (x):f(x; u) + r(x; u)℄ = 0 (3)DP omputes the VF in order to de�ne the optimal ontrol with a feed-bakontrol poliy �(x) : X ! U suh that the optimal ontrol u�(t) at time t onlydepends on urrent state x(t): u�(t) = �(x(t)). Indeed, from the value funtion,we dedue the following optimal feed-bak ontrol poliy:�(x) 2 argmaxu2U [DV (x):f(x; u) + r(x; u)℄ (4)3. The disretization proessIn order to disretize the ontinuous ontrol problem desribed in the previoussetion, we use the numerial approximation sheme of (Kushner & Dupuis, 1992).We implement a lass of funtions known as baryentri interpolators (Munos &Moore, 1998), built from a triangulation of the state-spae using a tree struture.This representation has been hosen for its very fast omputational properties.Here is a desription of this lass of funtions. The state-spae is disretized intoa variable resolution grid using a struture of a tree. The root of the tree oversthe whole state spae, supposed to be a (hyper) retangle. It has two branheswhih divide the state spae into two smaller retangles by means of a hyperplaneperpendiular to the hosen splitting dimension. In the same way, eah node (exeptfor the leaves) splits in some diretion i = 1::d the retangle it overs at its middleinto two nodes of equal areas (see Figure 1). This kind of struture is known asa kd-trie (Knuth, 1973), and is a speial kind of kd-tree (Friedman, Bentley, &Finkel, 1977) in whih splits our at the enter of every ell.On every leaf, we implement a Coxeter-Freudenthal-Kuhn triangulation (or sim-ply the Kuhn triangulation (Moore, 1992)). In dimension 2 (Figure 1(b)) eahretangle is omposed of 2 triangles. In dimension 3 (see Figure 2) they are om-posed of 6 pyramids, and in dimension d, of d! simplexes.The interpolated funtions onsidered here are de�ned by their values at theorners of the retangles. We use the Kuhn triangulation to linearly interpolateinside the retangles. Thus, these funtions are pieewise linear, ontinuous insideeah retangle, but may be disontinuous at the boundary between two retangles.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 5

(b) The corresponding tree(a) Example of discretizationFigure 1. (a) An example of disretization of the state spae. There are 12 ells and 24 orners(the dots). (b) The orresponding tree struture. The area overed by eah node is indiated ingray level. We implement a Kuhn triangulation on every leaf.The approah of using Kuhn triangulations to interpolate the value funtion hasbeen introdued to the reinforement learning literature by (Davies, 1997).Remark. As we are going to approximate the value funtion V with suh pieewiselinear funtions, it is very easy to ompute the gradient DV at (almost) any pointof the state spae, thus making it possible to use the feed-bak equation (4) todedue the orresponding optimal ontrol.
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Figure 2. The Kuhntriangulation of a (3d)retangle. The point xsatisfying 1 � x2 �x0 � x1 � 0 is in thesimplex (�0; �4; �5; �7).3.1. Computational issuesAlthough the number of simplexes inside a retangle is fatorial with the dimensiond, the omputation time for interpolating the value at any point inside a retangle



6 R�EMI MUNOS AND ANDREW MOOREis only of order (d ln d), whih orresponds to a sorting of the d relative oordinates(x0; :::; xd�1) of the point inside the retangle.Assume we want to ompute the indexes i0; :::; id of the (d + 1) verties of thesimplex ontaining a point de�ned by its relative oordinates (x0; :::; xd�1) withrespet to the retangle in whih it belongs to. Let f�0; :::; �2dg be the orners ofthis d-retangle. The indexes of the orners use the binary deomposition in dimen-sion d, as illustrated in Figure 2. Computing these indexes is ahieved by sortingthe oordinates from the highest to the smallest: there exist indies j0; :::; jd�1,permutation of f0; ::; d � 1g, suh that 1 � xj0 � xj1 � ::: � xjd�1 � 0. Thenthe indies i0; :::; id of the (d + 1) verties of the simplex ontaining the point are:i0 = 0, i1 = i0 + 2j0 , ..., ik = ik�1 + 2jk�1 , ..., id = id�1 + 2jd�1 = 2d � 1. Forexample, if the oordinates satisfy: 1 � x2 � x0 � x1 � 0 (illustrated by the pointx in Figure 2) then the verties are: �0 (every simplex ontains this vertex, as wellas �2d�1 = �7), �4 (we added 22), �5 (we added 20) and �7 (we added 21).Let us de�ne the baryentri oordinates �0; :::; �d of the point x inside the sim-plex �i0 ; :::; �id as the positive oeÆients (uniquely) de�ned by: Pdk=0 �k = 1 andPdk=0 �k�ik = x. Usually, these baryentri oordinates are expensive to om-pute; however, in the ase of Kuhn triangulation these oeÆients are simply:�0 = 1� xj0 , �1 = xj0 � xj1 , ..., �k = xjk�1 � xjk , ..., �d = xjd�1 � 0 = xjd�1 . Inthe previous example, the baryentri oordinates are: �0 = 1� x2, �1 = x2 � x0,�2 = x0 � x1, �3 = x1.3.2. Building the disretized MDPWe refer to (Kushner & Dupuis, 1992) for the proess of disretizing a ontinu-ous time and spae optimal ontrol problem into a �nite Markov Deision Proess(MDP), and to (Munos, 2000) for similar methods in reinforement learning.
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Figure 3. Aording to the urrent (variable res-olution) grid, we build a disrete MDP. For everyorner � (state of the MDP) and every ontrol u,we integrate the orresponding trajetory untilit enters a new ell at �(�; u). The probabilitiesof transition of the MDP for (state �, ontrol u)to (states f�igi=0::2) are the baryentri oordi-nates ��i (�(�; u)) of �(�; u) inside (�0; �1; �2).For a given disretization, we build a orresponding MDP in the following way.The state spae of the MDP is the set � of orners of the ells. The ontrolspae is the �nite set U . For every orner � 2 � and ontrol u 2 U we approximate



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 7a piee of a trajetory x(t) (using Euler or Runge-Kuta method to integrate thestate dynamis (1)) starting from initial state �, using a onstant ontrol u duringsome time �(�; u) until the trajetory enters inside a new ell (whih de�nes thepoint �(�; u) = x(�(�; u)) (see Figure 3). At the same time, we also ompute theintegral of the urrent reinforement:R(�; u) = R �(�;u)t=0 t � r(x(t); u)dtwhih de�nes the reward of the MDP. Then we ompute the verties (�0; :::; �d)of the simplex ontaining �(�; u) and the orresponding baryentri oordinates��0(�(�; u)); :::; ��d (�(�; u)). The probabilities of transition p(�ij�; u) of theMDP from state � and ontrol u to states �i are the baryentri oordinates:p(�ij�; u) = ��i(�(�; u)). The DP equation orresponding to this MDP is:V (�) = maxu "�(�;u) � dXi=0 p(�ij�; u)V (�i) +R(�; u)# (5)Remark. If while integrating (1) from initial state � with the ontrol u, the tra-jetory exits from the state spae at some time �(�; u), then in the MDP (�; u) willlead to a terminal state �t (i.e. satisfying p(�tj�t; v) = 1; p(� 6= �tj�t; v) = 0 for allv) with probability 1 and with the reward: R = R �(�;u)t=0 t � r(x(t); u)dt + �(�;u) �rb(x(�(�; u))).Remark. The interpolated value at �(�; u) is a linear ombination of the valuesof the verties of the simplex it belongs to (simplex (�0; �1; �2)) in �gure 3), withpositive oeÆients that sum to one. Doing this interpolation is thus mathe-matially equivalent to probabilistially jumping to a vertex: we approx-imate a deterministi ontinuous proess by a stohasti disrete one. Theamount of stohastiity introdued by this interpolation proess will be estimatedby the measure of variane in setion 9.The DP equation (5) is a �xed-point equation satisfying a ontration property(in max-norm), thus it an be solved iteratively with any DP method like valueiteration, poliy iteration, ormodi�ed poliy iteration (Puterman, 1994), (Bertsekas,1987), (Barto, Bradtke, & Singh, 1995).Remark. The main requirement to obtain the onvergene of the approximateVF (solution to the DP equation (5)) to the VF of the ontinuous proess (solutionto the HJB equation (3)) is the property of onsisteny of the numerial sheme(Kushner & Dupuis, 1992; Barles & Souganidis, 1991). In the deterministi ase,this property roughly means that the expeted jump from a state � to next states�i when hoosing ontrol u in the approximate MDP is a �rst-order approximationof the state dynami vetor f(�; u):Pdi=0 p(�ij�; u) � (�i � �) = �(�; u) � f(�; u) + o(Æ)with Æ being the resolution of the grid. The disretization method previously in-trodued satis�es this property, whih implies that the VF of the disrete MDPonverges to the VF of the ontinuous optimal ontrol problem as the (maximal)size of the ells Æ tends to zero.



8 R�EMI MUNOS AND ANDREW MOORE4. Example: the \Car on the Hill" ontrol problemFor a desription of the dynamis of this problem, see (Moore & Atkeson, 1995).This problem is of dimension 2, the variables being the position and veloity ofthe ar. In our experiments, we hose the reinforement funtions as follows: theurrent reinforement r(x; u) is zero everywhere. The boundary reinforement rb(x)is �1 if the ar exits from the left side of the state spae, and varies linearly between+1 and �1 depending on the veloity of the ar when it exits from the right side ofthe state spae. The best reinforement +1 ours when the ar reahes the rightboundary (top of the hill) with zero veloity (�gure 4). The ontrol u has only 2possible values: maximal positive or negative thrust.
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r  =+1 for zero velocityb Figure 4. The \Car on the Hill"ontrol problem. The ar mustreah the top of the hill as fastas possible and stop there. Ofourse, the ar annot limb theslope without initial speed. Itmust gain some momentum by�rst going bakwards. It mustalso be areful not to hit the leftboundary.Figure 5 represents the approximate value funtion of the MDP obtained by aregular grid of 257 by 257 states (using a disount fator  = 0:6).We observe the following distintive features of the value funtion:� There is a disontinuity in the VF along the \Frontier 1" (see Figure 5) whihresults from the fat that given an initial point situated above this frontier,the optimal trajetory stays inside the state spae (and eventually leads to apositive reward) so the value funtion at this point is positive. Whereas for ainitial point below this frontier, any ontrol lead the ar to hit the left boundary(beause the initial veloity is too muh negative), thus the orresponding valuefuntion is negative (see some optimal trajetories in Figure 6). We observe thatthere is no hange in the optimal ontrol around this frontier.� There is a disontinuity in the gradient of the VF along the upper part of\Frontier 2" whih results from a frontier of transition of the optimal ontrol.For example, a point above frontier 2 an reah diretly the top of the hill,whereas a point below this frontier has to go bakwards and do one loop to gainenough momentum to reah the top (see Figure 6). Moreover, we observe thataround the lower part of frontier 2 (see Figures 5), there is no visible irregularityof the VF despite the fat that there is a hange in the optimal ontrol.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 9� There is a disontinuity in the gradient of the VF along the \Frontier 3" beauseof a hange in the optimal ontrol (below the frontier, the ar aelerates in orderto reah the goal as fast as possible, whereas above, it deelerates to reah thetop of the hill with the lowest veloity and reeive the highest reward).

Figure 5. The value funtion of the Car-on-the-Hill problem obtained by a regular grid of 257by 257 = 66049 states. The Frontier 1 (white line) illustrates the disontinuity of the VF, theFrontiers 2 and 3 (blak lines) stands where there is a transition of the optimal ontrol.
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Figure 6. The optimal poliy is in-diated by di�erent gray levels (lightgray=positive thrust, dark gray=negativethrust). Several optimal trajetories aredrawn for di�erent initial starting points.We dedue from these observations that a disontinuity in the value funtion(frontier 1) does not neessarily indiate that there is a transition in the optimalontrol, and that a disontinuity in the gradient of the value funtion (frontiers 2and 3) may aompany a frontier of transition in the optimal ontrol.



10 R�EMI MUNOS AND ANDREW MOORE5. The variable resolution approahWe start with an initial oarse disretization and build the orresponding MDP.We solve it and obtain a initial (rough) approximation of the value funtion. Then,we hoose whih ells to split aording to the proess:1. Sore eah ell for eah diretion i aording to some splitting riterion.2. Selet the top h% (where h is a parameter) of the highest soring ouples (ell,diretion).Then, we loally re�ne the grid by splitting those ells in the orresponding dire-tion. Next, we build the new disretized MDP, and we repeat this yle (see thesplitting proess in Figure 7) until some estimation of the quality of approximationof the value funtion or the optimal ontrol has been reahed.
Figure 7. Several disretizations resulting of suessive splitting operations.Note that only the ells that were split, and those whose suessive states involvea split ell need to have their state transition reomputed.Remark. Here, we only onsider a top-down proess where the disretization isalways re�ned. We ould also onsider a bottom-up proess whih would prune thetree and remove over-partitioned leaves.The main goal of this paper is the study and omparison of several splittingriteria. In what follows, we illustrate the disretizations resulting from di�erentsplitting riteria on the \Car on the Hill" ontrol problem previously introdued.6. Criteria based on the value funtionIn order to minimize the approximation error of the value funtion, in the two split-ting riteria that follow we hoose to split the ells aording to loal irregularitiesof the approximate value funtion.6.1. First riterion: average orner-value di�ereneFor every ell, we ompute the average of the absolute di�erene of the values atthe orners of the edges for all diretions i = 0:::d � 1. For example, this sore onthe ell shown in Figure 2 for diretion i = 0 is 14 [jV (�1)�V (�0)j+ jV (�3)�V (�2)j+jV (�5)� V (�4)j+ jV (�7)� V (�6)j℄.Figure 8 represents the disretization obtained after 15 iterations of this pro-edure, starting with a 9 by 9 initial grid and using the orner-value di�ereneriterion with a splitting rate of h = 50% of the ells at eah iteration.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 11

Figure 8. The disretization of the state spaefor the \Car on the Hill" problem using theorner-value di�erene riterion. Figure 9. The disretization of the state spaefor the \Car on the Hill" problem using thevalue non-linearity riterion.6.2. Seond riterion: value non-linearityFor every ell, we ompute the variane of the absolute inrease of the values atthe orners of the edges for all diretions i = 0:::d. This riterion is similar to theprevious one exept that it omputes the variane instead of the average.Figure 9 shows the orresponding disretization using the value non-linearity ri-terion with a splitting rate of 50% after 15 iterations.Comments on these results:� We observe that in both ases, the splitting ours around the frontiers 1, 3and the upper part of frontier 2, previously de�ned. In fat, the �rst riteriondetets the ells with high average variation of the orner values, thus splitswherever the value funtion is not onstant.� The value non-linearity riterion detets the ells with high variane variationof the orner values, thus splits wherever the value funtion is not linear. So thisriterion will also onentrate on similar irregularities but with two importantdi�erenes ompared to the orner-value di�erene riterion:{ The value non-linearity riterion splits more parsimoniously than the orner-value di�erene (for a given auray of approximation). See, for example,the di�erene of splitting in the area above frontier 3.{ The disretization around the disontinuity (frontier 1) are di�erent (seeFigure 10 for an explanation on a 1-dimensional problem). The value non-linearity riterion splits where the approximate funtion is the least linear.This explains the 2 parallel tails observed around frontier 1 in Figure 9.� The re�nement proess spends a huge amount of resoures to re�ne the gridaround the disontinuity (frontier 1) in order to obtain a good approximation



12 R�EMI MUNOS AND ANDREW MOOREof the VF. However, we notie that the optimal ontrol is onstant around thisarea.
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Figure 10. Cross-setion of a disontinuous VF (a) and several approximations with a uniform grid(b) and variable resolution grids using the orner-value di�erene () and the value non-linearity(d) splitting riteria. Notie the di�erent repartition in () and (d) of the grid points around thedisontinuity.These variable resolution methods (espeially the value non-linearity) providevery aurate estimations of the value funtion ompared to uniform disretizations(for a given number of states of the disretized MDP). However, in the end, we wantto �nd the best ontroller and not so muh a very good approximation of the VF,whih is simply an artifat used in DP to generate the poliy. Thus, we an questionthe eÆieny of the previous splitting methods whih spend too muh e�ort aroundthe disontinuity of the VF whereas the ontrol is onstant in this area.In an attempt to spare some omputational resoures, we introdue in the nextsetion some riteria that also take into aount the poliy.Remark. The perentage h of the number of ells to be split at eah iterationis a parameter ating on the uniformity of the resolution of the obtained grids.The hoie of h allows a tradeo� between deriving almost uniform grids (for highvalues of h) whih ensures onvergene of the approximations but with possiblehigh omputational ost, and very non-uniform grids (low h), only re�ned at someritial parts of the state spae, whih save many omputational resoures but maypotentially onverge to sub-optimal solutions.7. Criteria based on the poliyFigure 6 shows the optimal poliy and several optimal trajetories for di�erentstarting points. We would like to re�ne the grid only around the areas of transitionof the optimal ontrol: frontiers 2 and 3 but not around frontier 1. In what follows,



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 13we introdue suh a riterion based on the inonsisteny of the ontrol derived fromthe value funtion and from the poliy.7.1. The poliy disagreement riterionWhen we solve the MDP and ompute the value funtion of the DP equation (5),we dedue the following poliy for any state � 2 �:�(�) 2 argmaxu2U h�(�;u)Pdi=0 p(�ij�; u)V (�i) +R(�; u)i (6)The poliy disagreement riterion ompares the ontrol derived from the poliyof the MDP (6) with the ontrol derived from the loal gradient of V (4).Remark. Instead of omputing the gradient DV for all the (d!) simplexes in theells, we ompute an approximated gradient ~DV for all the (2d) orners, based ona �nite di�erene quotient. For the example of �gure 2, the approximated gradientat orner �0 is �V (�1)�V (�0)jj�0��1jj ; V (�2)�V (�0)jj�0��2jj ; V (�4)�V (�0)jj�0��4jj �.Thus, for every orner we ompute this approximate gradient and the orrespondingoptimal ontrol from (4) and ompare it to the optimal poliy given by (6).Figure 11 shows the disretization obtained by splitting all the ells where thesetwo measures of the optimal ontrol diverge (the parameter h is not used here).

Figure 11. The disretization of the state spaeusing the poliy disagreement riterion. Herewe used an initial grid of 33�33. The dash lineshows the true frontiers of ontrol transition. Figure 12. The disretization of the state spaefor the \Car on the Hill" problem using theombination of the value non-linearity and thepoliy disagreement riterion.This riterion is interesting sine it splits at the plaes where there is a hangein the optimal ontrol, thus re�ning the resolution at the most important partsof the state spae for the approximation of the optimal ontrol. However, as we



14 R�EMI MUNOS AND ANDREW MOOREan expet, if we only use this riterion, the value funtion will not be orretlyapproximated, and in turn, the poliy may su�er from this approximation error.Indeed, we observe that on Figure 11, the bottom part of frontier 2 is (slightly)loated higher than its optimal position, shown by the dash line. This error is dueto an underestimation of the value funtion at that area, whih is aused by thelak of preision around the disontinuity (frontier 1). Here, we learly observe thenon-loal inuenes between the value funtion and the optimal ontrol.The performane of this splitting riterion is relatively weak (see setion 7.3).However, this splitting riterion an be bene�ially ombined with previous onesbased on the VF.7.2. Combination of several riteriaWe an ombine the poliy disagreement riterion with the orner-value di�ereneor value non-linearity riterion in order to obtain the advantages of both methods: agood approximation of the value funtion on the whole state spae and an inrease ofthe resolution around the areas of transition of the optimal ontrol. We an ombinethose riteria in several ways, for example by a weighted sum of the respetive soresof eah ells, by a logial operation (split if an and/or ombination of these riteriais satis�ed), or by an ordering of the riteria (�rst split with one riterion, then useanother one).Figure 12 shows the disretization obtained by alternatively, between iterations,using the value non-linearity riterion and the poliy disagreement riterion. Weobserve an inreased re�nement at areas of singularities of both the value funtionand the optimal ontrol.7.3. Comparison of the performaneIn order to ompare the respetive performane of the disretizations, we ran aset (here 256) of optimal trajetories starting from initial states regularly situatedin the state spae and using the feed-bak ontroller (4). The performane ofa disretization is the sum of the umulated reinforement (the gain de�ned byequation (2)) obtained along these trajetories, over the set of start positions.Figure 13 shows the respetive performanes of several splitting riteria as afuntion of the number of states of the respetive disrete MDPs.For this 2-dimensional ontrol problem, all the variable resolution approah per-forms better than uniform grids, exept for the poliy disagreement riterion usedalone. However, as we will see later on, for higher dimensional problems, the re-soures alloated to approximate the VF-disontinuities around areas of the statespae that are not useful for improving the optimal ontrol might be prohibitivelyhigh.Can we do better ?So far, we have only onsidered loal splitting riteria, in whih we deide to split aell aording to information (value funtion and poliy) relative to the ell itself.However, the e�et of the splitting is not loal: it has an inuene on the wholestate spae.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 15
Figure 13. The performanefor the uniform versus variableresolution grids for severalsplitting riterion. Both theorner-value di�erene andvalue non-linearity splittingproesses perform better thanthe uniform grids. The poliydisagreement splitting is verygood for a small number ofstates but does not improveafter, and thus leads to sub-optimal performane. Thepoliy disagreement ombinedwith the value non-linearitygives the best performanes.We would like to de�ne a re�nement proess that would split ells only if it isuseful to improve the performane. Setions that follow introdue two notions thatwill be useful for de�ning suh global splitting methods: the inuenemeasures theextent to whih states a�et globally the VF, and the variane, whih measuresthe amount of interpolation introdued by the disretization proess.8. Notion of inueneLet us onsider the Markov hain resulting from the disretized MDP in whihwe hoose the optimal poliy �. For onveniene, we denote R(�) = R(�; �(�)),p(�ij�) = p(�ij�; �(�)), and �(�) = �(�; �(�)).8.1. Intuitive ideaThe inuene I(�ij�) of a state �i on another state � is de�ned as a measure of theextent to whih the state �i \ontributes" to the VF of another state �. This anbe done by estimating the in�nitesimal variation of the VF at � resulting from ain�nitesimal modi�ation of the reward at �i.By onsidering the disounted transition probabilities p1(�ij�) = �(�)p(�ij�) andby de�ning an additional jump to a \dead state" with a transition probability of1� �(�), the inuene I(�ij�) an be interpreted more intuitively as the expetednumber of visits of state �i starting from state � when using the optimal poliy,before the system dies.8.2. De�nition of the inueneLet us de�ne the disounted umulative k�hained probabilities pk(�ij�), whihrepresent the sum of the disounted transition probabilities of all sequenes of kstates from � to �i:p0(�ij�) = 1 (if � = �i) or 0 (if � 6= �i)p1(�ij�) = �(�)p(�ij�)



16 R�EMI MUNOS AND ANDREW MOOREp2(�ij�) = X�j2� p1(�ij�j) � p1(�j j�):::pk(�ij�) = X�j2� p1(�ij�j) � pk�1(�j j�) (7)De�nition 1. Let � 2 �. We de�ne the inuene of a state �i on the state � as:I(�ij�) = 1Xk=0 pk(�ij�)Similarly, let � be a subset of �. We de�ne the inuene of a state �i on the subset� as I(�ij�) =P�2� I(�ij�).We all inueners of a state � (respetively of a subset �), the set of states �ithat have a non-zero inuene on � (respetively on �) (note, by de�nition, thatall inuenes are non-negative).8.3. Some properties of the inueneFirst, we notie that if all the times �(�) are > 0, then the inuene is well de�nedand is bounded by: I(�ij�) � 11��min with �min = min� �(�). Indeed, from thede�nition of the disounted hained-probabilities, we have pk(�ij�) � k��min thus:I(�ij�) �P1k=0 k��min = 11��min .Moreover, the de�nition of the inuene is related to the intuitive idea expressedabove that the inuene I(�ij�) is the partial derivative of V (�) by R(�i):I(�ij�) = �V (�)�R(�i) (8)Proof: The Bellman equation is: V (�) = R(�) +P�i p1(�ij�) � V (�i). By applyingthe Bellman equation to V (�i), we have:V (�) = R(�) +P�i p1(�ij�) hR(�i) +P�j p1(�j j�i) � V (�j)iFrom the de�nition of p2, we an rewrite this equation as:V (�) = R(�) +P�i p1(�ij�) �R(�i) +P�i p2(�ij�) � V (�i)Again, we an apply the Bellman equation to V (�i) and easily prove the onvergeneat the limit:V (�) =P1k=0P�i pk(�ij�) �R(�i)from whih we dedue that the ontribution of the reward at �i to the VF at � isthe inuene of �i on �:�V (�)�R(�i) = 1Xk=0 pk(�ij�) = I(�ij�)The VF at � is expressed as a linear ombination of the rewards at states �iweighted by the inuenes I(�ij�).



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 178.4. Computation of the inueneFirst, let us prove the following property: for any states � and �i, we haveI(�ij�) =X�j p1(�ij�j) � I(�j j�) +� 1 if �i = �0 if �i 6= � (9)Proof: This result is easily dedued from the de�nition of the inuene and thehained transition probability property (7):I(�ij�) = P1k=0 pk(�ij�) =P1k=0 pk+1(�ij�) + p0(�ij�)= P1k=0P�j p1(�ij�j) � pk(�j j�) + p0(�ij�)= X�j p1(�ij�j) � I(�j j�) +� 1 if �i = �0 if �i 6= �For a given �, let us de�ne the operator �� that, applied to any funtion  (de�nedon �), returns: �� (�i) =P�j p1(�ij�j) �  (�j)Equation (9) is equivalent to: I(�ij�) = ��I(�j�)(�i) +� 1 if �i = �0 if �i 6= � . This is nota Bellman equation sine the sum of the probabilitiesP�j p1(�ij�j) may be greaterthan 1, so we annot dedue that the suessive iterations:In+1(�ij�) = ��In(�j�)(�i) +� 1 if �i = �0 if �i 6= � (10)onverge to the inuene by using the lassial ontration property of the operator�� in max-norm (Puterman, 1994). However, by using the 1-norm, we have:jj�� jj1 =X�i j�� (�i)j � X�i X�j jp1(�ij�j) �  (�j)j� �minX�j j (�j)j � �minjj jj1thus �� is a ontratant operator in 1-norm. We dedue that the iterated valuesIn(�ij�) in (10) satisfyjjIn+1(�j�)� I(�j�)jj1 =X�i j��In(�j�)(�i)� ��I(�j�)(�i)j=X�i j��[In(�j�)� I(�j�)℄(�i)j � �minjjIn(�j�)� I(�j�)jj1thus onverge to the inuene I(�ij�), unique solution of (9).Remark. In order to ompute the inuene I(�ij
) on a subset 
, we use theiteration:In+1(�ij�) =X�j p1(�ij
) � In(�j j
) +� 1 if �i 2 
0 if �i 62 
 (11)



18 R�EMI MUNOS AND ANDREW MOOREwhih onverge (similar proof) to I(�ij
). The omputation of the inuene is thusheap: equivalent to omputing the value funtion of a disounted Markov hain.Remark. As pointed out by Geo�rey Gordon, the inuene is losely related tothe dual variables (or shadow pries in eonomis) of the Linear Program equivalentto the Bellman equation (Gordon, 1999). This property has already been used in(Trik & Zin, 1993) to derive an eÆient adaptive grid generation.Remark. A possible extension is to de�ne the inuene of a MDP as the in-�nitesimal hange in the value funtion of a state resulting from an in�nitesimalmodi�ation of the reward at another state. Sine the value funtion is a maximumof linear expressions, the inuene on states with multiple optimal ations (thus forwhih the value funtion is not di�erentiable) is de�ned (as a set-valued map) bytaking the partial sub-gradient instead of the regular gradient (8).8.5. A tool to selet out the most important areasWe would like to use the inuene as a tool to disover what are the areas of thestate spae where we need a high quality interpolation proess to obtain an aurateontroller, so we ould fous our re�nement proess there and neglet other areas.The idea is that we want a high quality estimation of the VF around the areas oftransition of the optimal ontrol so that those swithing boundaries be auratelyloated. Thus, the relevant areas of the state spae are those that have an inueneon the states around these swithing boundaries.Let us illustrate this idea on the \Car on the Hill" problem.For any subset 
, we an omputeits inueners. As an example, �g-ure 14 shows the inueners of 3points.Figure 14. Inueners of 3 points (therosses). The darker the gray level, themore important the inuene. We notiethat the inueners of a state \follow"some di�usion proess in the diretionof the optimal trajetory (see �gure 6).This di�usion represents the stohasti-ity introdued by the disretization dueto the averaging e�et of the interpola-tion proess.First, for a given grid, let us de�ne the subset � of the states of poliy dis-agreement (in the sense of setion 7.1). Figure 15(a) shows � for a regular gridof 129 � 129. � represents an estimation (given the urrent grid) of the optimalontrol swithing boundaries.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 19Now we ompute the inuene on � (Figure 15(b)). The darkest zones show thestates that inuene the most the value funtion at �.Consequently, if we were to inrease the auray of the loal interpolation proessat the states illustrated by Figure 15(b) we would obtain a better approximationof the VF at the states shown in Figure 15(a), whih would inrease the preisionof the swithing boundaries, thus the performane of the ontroller.

(a) States of policy disagreement (b) Influence on these statesFigure 15. The set of states of poliy disagreement (a) and its inueners (b).From this idea, we want to design a splitting heuristi that would take into aountthese non-loal inuenes.In order to derease the loal interpolation error, we �rst need to estimate, for agiven grid, the VF approximation error aused by the aumulation of the interpo-lation errors due to the disretization.In order to estimate this amount of stohastiity introdued by the interpolationproess, we ompute, in the next setion, the variane of the future rewards for thedisretized Markov hain.9. Variane of a Markov hainAgain we onsider the Markov hain resulting from the disretized MDP in whihwe hoose the optimal poliy �, and we use the same notations as in the previoussetion. Let s(�) = (�(0) = �; �(1); �(2); :::) be an in�nite sequene of states startingfrom an initial state � and generated by this Markov hain (the probability oftransition from � to �0 being p(�0j�)).The gain J(s(�)) of a sequene s(�) is the disounted umulative rewards:J(s(�)) = R(�) +Xt�1 Pt�1s=0 �(�(s))R(�(t)) (12)and the VF of a state � is the expetation of this gain, for all possible sequeness(�): V (�) = E[J(s(�))℄.



20 R�EMI MUNOS AND ANDREW MOOREThe initial (ontinuous) ontrol problem is deterministi, thus the VF of a stateis simply the gain (de�ned by (2)) obtained along one optimal trajetory: thevariane of the gain is zero. When this deterministi problem is disretized, theinterpolation proess produes an averaging e�et that is mathematially equivalentto the introdution of stohastiity in the jumps from (disrete) state to state: theVF of the disretized MDP is an expetation of the gain (12) along all (disrete)optimal trajetories. Thus, the variane of the disrete MDP indiates the amountof averaging introdued during the disretization proess.The variane �2 of the gain is:�2(�) = E �[J(s(�)) � V (�)℄2�In order to ompute this variane we �rst prove that the variane is solution tothe Bellman equation:�2(�) = 2�(�)X�0 p(�0j�) � �2(�0) + e(�) (13)with the one-step ahead ontribution e(�) de�ned as:e(�) =X�0 p(�0j�) � h�(�)V (�0)� V (�) +R(�)i2 (14)Proof: The gain obtained along a sequene s(�) = (�(0) = �; �(1); �(2); :::) satis�esJ(s(�)) = R(�) + �(�)J(s(�(1))), with s(�(1)) = (�(1); �(2); :::).Thus the variane is:�2(�) = E h[�(�)J(s(�(1)))� (V (�)�R(�))℄2iFrom the de�nition of the VF, V (�)�R(�) = �(�)E[V (�(1))℄ = �(�)E[J(s(�(1)))℄,thus: �2(�) = E h[�(�)J(s(�(1)))℄2 � [V (�)�R(�)℄2iNow, let us deompose this expetation using an average for all possible seondstates �0 in the sequene, weighted by the probability of ourrene p(�0j�):�2(�) = X�0 p(�0j�) � E h[�(�)J(s(�0))℄2 � [V (�)�R(�)℄2i= X�0 p(�0j�) � E h[�(�)J(s(�0))℄2 � [�(�)V (�0)℄2i (15)+ X�0 p(�0j�) � E h[�(�)V (�0)℄2 � [V (�) �R(�)℄2iNow, from the Bellman equation V (�) = R(�)+P�0 p(�0j�) ��(�)V (�0) we deduethat:



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 21X�0 p(�0j�) � E h[�(�)V (�0)℄2 � [V (�)�R(�)℄2i = e(�) (16)with e(�) de�ned in (14). Moreover, we have:E h[�(�)J(�0)℄2 � [�(�)V (�0)℄2i = 2�(�)E �[J(�0)� V (�0)℄2� = 2�(�) � �2(�0)Whih, ombined with (16) in (15) gives (13).Thus the variane �2(�) is equal to the immediate ontribution e(�) that takesinto aount the variation in the values of the immediate suessors �0 plus thedisounted expeted variane �2(�0) of these suessors.The equation (13) is a Bellman equation: it is a �xed-point equation of a on-tratant operator (in max-norm) (with a ontration oeÆient of 2�min) and thusan be solved by value iteration.
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Figure 16. The term e(�) as a funtion of the interpolated point � for low-(left) and high-(right)gradient value funtions.Remark. We an provide a geometrial interpretation of the term e(�) related tothe gradient of the value funtion at the iterated point � = �(�; u�) (see �gure 3) andto the baryentri oordinates ��i (�). Indeed, from the de�nition of the disretizedMDP (setion 3.2), we have V (�) = R(�) + �(�)V (�) and from the pieewiselinearity of the approximated funtions we have V (�i) = V (�) + DV (�):(�i � �),thus: e(�) =P�i��i(�):2�(�)[DV (�):(�i � �)℄2, whih an be expressed as:e(�) = 2�(�):DV (�)T :Q(�):DV (�)with the matrix Q(�) de�ned by its elements qjk(�) =P�i ��i(�):(�i��)j :(�i��)k.Thus, e(�) is lose to 0 in two spei� ases: when the gradient at the iteratedpoint � is low (i.e. the values are almost onstant) and when � is lose to a gridpoint �i (then the baryentri oordinate ��i is lose to 1 and the other baryentrioordinates are lose to 0, thus Q(�) is low). In both ases, e(�) is low and impliesthat the interpolation at � does not introdue a high degradation of the quality ofapproximation of the value funtion (the variane does not inrease). Figure 16shows e(�) for a one-dimensional spae.



22 R�EMI MUNOS AND ANDREW MOORERemark. The variane measures the amount of averaging aumulated by theinterpolation proess due to the disretization of the state spae. Our basi as-sumption is that this measure is a good estimation of the approximation error ofthe VF, for a given grid. However, this may not be the ase if the grid is too oarseso the poliy of the disretized MDP di�ers too muh from the optimal ontrolof the ontinuous problem. Indeed, in that ase, the variane would be omputedalong trajetories using a wrong poliy. A detailed analysis of the estimation ofthe VF approximation error from loal interpolation errors is initiated in (Munos& Moore, 2000).Illustration of the variane for the \Car on the Hill"Figure 17 shows the standard deviation �(�) for the \Car on the Hill" obtainedwith a uniform grid (of 257 by 257). Figure 17. The standard devia-tion � for the \Car on the Hill".We notie that it is very higharound the frontier 1 (indeed,a disontinuity is impossible toapproximate perfetly by dis-retization methods, whateverthe resolution is) and notieablyhigh around frontiers 2 and 3,the disontinuities of the gradi-ent of V (whih orrespond toboundaries of hange in the op-timal ontrol, as shown in �gure6). Indeed, around these areas,the VF averages heterogeneousvalues of the disounted termi-nal rewards.10. A global splitting heuristiNow, we ombine these notions of inuene and variane in order to de�ne a non-loal splitting riterion. We have seen that:� The states � of highest standard deviation �(�) are the states of lowest qualityof approximation of the VF (�gure 18(a)).� The states � of highest inuene on the set � of states of poliy disagreement(�gure 15(b)) are the states whose value funtion a�ets the area where thereis a transition in the optimal ontrol.Thus, in order to improve the auray of approximation at the most relevantareas of the state spae with respet to the ontroller (i.e. the optimal ontrolswithing boundaries), we split the states � of high standard deviation that havean inuene on the areas of ontrol transition, aording to the Stdev Inf riterion(see �gure 18): Stdev Inf(�) = �(�):I(�j�). Figure 19 shows the disretizationobtained by using this splitting riterion.
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(a) Standard deviation (b) Influence x Standard deviationFigure 18. (a) The standard deviation �(�) for the \Car on the Hill" (equivalent to �gure 17) and(b) The Stdev Inf riterion, produt of �(�) by the inuene I(�j�) (�gure 15(b)).
Figure 19. The disretization resulting fromthe Stdev Inf split riterion. We observe thatthe upper part of frontier 1 is well re�ned.This re�nement does not our beause wewant to approximate the VF around its dis-ontinuity (whih was the ase for the orner-value di�erene and value non-linearity ri-teria) but beause the re�nement there isneeded to improve the quality of the on-troller at another area of the state spae (thebottom part of frontier 2) where there is aswithing boundary for the optimal ontrol.We notie that the bottom part and the up-per right part of the state spae are not re-�ned at all: it is not needed for the ontroller.



24 R�EMI MUNOS AND ANDREW MOORERemark. The performane of this riterion for the \Car on the Hill" problem aresimilar to those of ombining the value non-linearity and the poliy disagreementriterion. We didn't plot those performanes in �gure 13 for larity reasons andbeause they do not represent a major improvement. However, the di�erene ofperformanes between the loal riteria and the Stdev Inf riterion are muh moresigni�ant in the ase of higher dimensional problems, as illustrated in what follows.It is important to notie the fat that the Stdev Inf riterion does not split theareas where the VF is disontinuous unless some re�nement is neessary to improvethe quality of the ontroller (possibly at another part of the state spae). As we willsee in the simulations that follow, in higher dimensions, the ost to get an aurateapproximation of a disontinuous VF is omputationally very expensive, whihexplains why the splitting proedure using the Stdev Inf riterion outperforms theprevious re�nement methods.Remark. In the ase of a stohasti proess (Markov Di�usion Proesses), we willneed to reonsider this splitting heuristi sine in that ase the variane would reettwo omponents: the interpolation error introdued by the grid-approximation butalso the intrinsi stohastiity of the ontinuous proess. The latter is not relevantto our splitting method sine a re�nement around areas of high variane of theproess will not result in an improvement of the approximations. This ase will befurther developed in future work.11. Illustration on more omplex ontrol problems11.1. The Cart-Pole problemThe dynamis of this 4-dimensional physial system (illustrated in �gure 20(a))are desribed in (Barto, Sutton, & Anderson, 1983). In our experiments, we hosethe following parameters as follows: the state spae is de�ned by the position y 2[�10;+10℄, angle � 2 [��2 ; �2 ℄, and veloities restrited to _y 2 [�4; 4℄, _� 2 [�2; 2℄.The ontrol onsists in applying a strength of �10 Newton. The goal is de�ned bythe area: y = 4:3� 0:2, � = 0� �45 , (and no limits on _y and _�). This is a notablynarrow goal to try to hit (see the projetion of the state spae and the goal onthe 2d plan (y,�) in �gure 20). Notie that our task of \minimum time maneuverto a small goal region" from an arbitrary start state is muh harder than merelybalaning the pole without falling (Barto et al., 1983). The urrent reinforementr is zero everywhere and the boundary reinforement rb is �1 if the system exitsfrom the state spae (jyj > 10 or j�j > �2 ), and +1 if the system reahes the goal.Figure 21 shows the performane obtained for several splitting riteria previouslyde�ned for this 4-dimensional ontrol problem. We observe the following points:� The loal splitting riteria do not perform better than the uniform grids. Theproblem is that the VF is disontinuous at several parts of the state spae (areasof high j�j for whih it is too late to re-balane the pole, whih is similar to thefrontier 1 of the \Car on the Hill" problem) and the value-based riteria spendtoo many resoures on approximating these useless areas.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 25
_

_

_ _

θ

y

π
2

-10

Goal :

+10
= position

= angle π-45
y 4.3 0.2

0= 

= 

θ

y

-10

+10

π
2-

Goal

+

+

(b) The projection of the state space (a) The ‘‘Cart-pole’’

θ

Figure 20. (a) Desription of the Cart-pole. (b) The projetion of the disretization (onto theplane (�,y)) obtained by the Stdev Inf riterion and some trajetories for several initial points.� The Stdev Inf riterion performs very well. We observe that the trajetories(see �gure 20(b)) are nearly optimal (the angle j�j is maximized in order toreah the goal as fast as possible, and very lose to its limit value, for whih itis no more possible to reover the balane).

Figure 21. Performane on the \Cart-pole". Figure 22. Performane on the Arobot.11.2. The ArobotThe Arobot is a 4-dimensional ontrol problem whih onsists of a two-link armwith one single atuator at the elbow. This atuator exerts a torque between thelinks (see �gure 23(a)). It has dynamis similar to a gymnast on a high bar, whereLink 1 is analogous to the gymnast's hands, arms and torso, Link 2 represents the



26 R�EMI MUNOS AND ANDREW MOORElegs, and the joint between the links is the gymnast's waist (Sutton, 1996). Here,the goal of the ontroller is to balane the Arobot at its unstable, inverted vertialposition, in the minimum time (Boone, 1997). The goal is de�ned by a very narrowrange of �16 on both angles around the vertial position �1 = �2 ; �2 = 0 (�gure23(b)), for whih the system reeives a reinforement of rb = +1. Anywhere else,the reinforement is zero. The two �rst dimensions (�1; �2) of the state spae have astruture of a torus (beause of the 2� modulo on the angles), whih is implementedin our struture by having the verties of 2 �rst dimensions being angle 0 and 2�pointing to the same entry for the value funtion in the interpolated kd-trie.Figure 22 shows the performane obtained for several splitting riteria previouslyde�ned. The respetive performane of the di�erent riteria are similar to the\Cart-pole" problem above: the loal riteria are no better than the uniform grids ;the Stdev Inf riterion performs muh better.Figure 23(b) shows the projetion of the disretization obtained by the Stdev Infriterion and one trajetory onto the 2d-plane (�1,�2).
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(a) The Acrobot (b) Projection of the state spaceFigure 23. (a) Desription of the Arobot physial system. (b) Projetion of the disretization(onto the plane (�1,�2)) obtained by the Stdev Inf riterion, and one trajetory.11.3. Brief desription of two other ontrol problemsThe \spae-shuttle" ontrol problemThis is a 4-dimensional \spae-shuttle" ontrol problem de�ned by the position(x; y) and veloity (vx; vy) of a point (the shuttle) in a 2d-plane. There are 5 possi-ble ontrols : do nothing or thrust to one of the 4 ardinal diretions. The dynamisfollow the laws of Newtonian physis where the shuttle is attrated by the gravita-tion of a planet (dark gray irle in �gure 11.3) and some intergalati dust (light



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 27gray irle). The goal is to reah some position in spae (the square) by minimizinga ost (funtion of the time to reah the target and the fuel onsumption). Figure11.3 shows some trajetories.
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Figure 24. The \spae-shuttle" tra-jetories for 3 di�erent starting po-sitions. From x1 the goal is di-retly reahable (the gravitation islow). From x2 the ollision is un-avoidable whatever the thrust (rep-resented by small gray segments) toavoid the planet is. From x3 the on-troller uses the gravitation fores toreah the goal.The \airplane meeting" ontrol problemThis is also a 4-dimensional ontrol problem in whih we onsider one (or several)airplane(s) ying at onstant altitude and veloity. They try to reah a targetde�ned by a position xG; yG and an angle �G (the arrow in �gure 25) at a preisetime tG. Eah plane is de�ned at any time t by its position x(t); y(t) and angle �(t).There are 3 possible ontrols for eah plane : turn left, right, or go straight. Thestate spae is of dimension 4 : the position x; y, the angle � and the time t. Thedynamis are : dxdt = os(�), dydt = sin(�), d�dt = f�1; 0;+1g:v� and dtdt = 1. Here,the terminal ost is : (x� xG)2 + (y � yG)2 + k�(� � �G)2 + kt(t� tG)2 and thereis a small onstant urrent ost if a plane is in a gray area (some louds that theplanes should avoid). Figure 25 shows some trajetories for one and 3 planes whenthere is more time than neessary to reah the target diretly (the planes have toloop).Interpretation of the results: We notie that for the previous 4d problems, theloal splitting riteria fail to improve the performane of the uniform grids beausethey spend too many resoures on trying to approximate the disontinuities of theVF. For example, for the \Cart-pole" problem, the value non-linearity riterionfouses on approximating the VF mostly at parts of the state spae where thereis already no hane to re-balane the pole. And the areas around the vertialposition (low �), whih are the most important areas, will not be re�ned in time(however, if we ontinue the simulations after about 90000 states, the loal splittingriteria perform better than the uniform grids, beause these important areas areeventually re�ned).
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(a) One airplaine (b) Meeting of 3 airplanesFigure 25. The \airplane meeting" ontrol problemThe Stdev Inf riterion, whih takes into aount global onsideration for thesplitting, provides an aurate ontroller for all the tasks desribed above.12. Conlusion and Future workIn this paper we proposed a variable resolution disretization approah to solveontinuous time and spae ontrol problems. We desribed several loal splittingriteria, based on the VF or the poliy approximation. We observed that thisapproah works well for 2d problems like the \Car on the Hill". However, for moreomplex problems, these loal methods fail to perform better than uniform grids.Loal value-based splitting is an eÆient, model-based, relative of the Q-learning-based tree splitting riteria used, for example, by (Chapman & Kaelbling, 1991;Simons, Van Brussel, De Shutter, & Verhaert, 1982; MCallum, 1995). But it isonly when ombined with new non-loal measures that we are able to get trulye�etive, near-optimal performane on diÆult ontrol problems. The tree-based,state-spae partitions in (Moore, 1991; Moore & Atkeson, 1995) were produed bydi�erent riteria (of empirial performane), and produed far more parsimonioustrees, but no attempt was made to minimize ost: merely to �nd a valid path.In order to design a global riterion, we introdued two useful measures of aMarkov hain: the inuene estimates the non-loal dependenies in the VF, thevariane estimates the VF error of approximation for a given grid. By ombiningthese measures, we proposed an eÆient splitting heuristi that exhibit good per-formane (in omparison to the uniform grids) on all the problems studied. Thesemeasures ould also be used to solve large (disrete) MDPs by seleting whih ini-tial features (or ategories) one has to re�ne to provide a relevant partition of thestate spae.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 29Another extension of these measures ould be to learn them through intera-tions with the environment in order to design eÆient exploration poliies in rein-forement learning. Our notion of variane ould be used with \Interval Estima-tion" heuristi (Kaelbling, 1993), to permit \optimism-in-the-fae-of-unertainty"exploration, or with the \bak-propagation of exploration bonuses" of (Meuleau &Bourgine, 1999) for exploration in ontinuous state-spaes. Indeed, if we observethat the learned variane of a state � is high, then a good exploration strategy ouldbe to inspet the states that have a high expeted inuene on �.Even more parsimonious grid an be obtained if we only onsider a ontroller for aspei� area 
 of initial states. Indeed, the Stdev Inf riterion an be omputed withrespet to �j
 = f� 2 �; I(�j
) > 0g (the areas of transition in the optimal ontrolthat have some inuene on 
) instead of �, in order to restrit the re�nementproess to the areas of the state spae atually used by the trajetories.Also, the notion of variane might be useful to provide a safe ontroller for whihhoosing a sub-optimal ation would be preferable if it leads to states of lowervariane than when taking the optimal ation.The more severe limitation to these disretization tehniques (even with the vari-able resolution approah developed here) is still the urse of dimensionality. Cur-rently, we were able to solve all 4-dimensional problems onsidered and a few 5-dimensional ones.In the future, it seems important to develop the following points:� A generalization proess that ould implement a bottom-up proess for regroup-ing the areas (for example by pruning the tree) that have been over-re�ned.� Consider the stohasti ase, for whih the omputation of the VF approxima-tion error (obtained by the measure of variane in the deterministi ase) shouldonly take into aount the interpolation error and not the intrinsi noise of theproess.� Implement the same ideas on sparse representations that an handle high di-mensions (and even in some ase are able to break the urse of dimensionality),suh as the sparse grids (Zenger, 1990; Griebel, 1998), the random and low-disrepany grids (Niederreiter, 1992; Rust, 1996). In some early experimentsusing variable resolution random grids, we were able to solve stohasti prob-lems in dimension six.Aknowledgements to Je� Shneider, Geo�rey Gordon, Niolas Meuleau, PaulBourgine, Csaba Szepesv�ari, Ron Parr, Andy Barto, and Leslie Kaelbling for theiruseful suggestions and advie.ReferenesBaird, L. C. (1995). Residual algorithms : Reinforement learning with funtion approximation. Ma-hine Learning : proeedings of the Twelfth International Conferene.Baird, L. C. (1998). Gradient desent for general reinforement learning. Neural InformationProessingSystems, 11.Barles, G., & Souganidis, P. (1991). Convergene of approximation shemes for fully nonlinear seondorder equations. Asymptoti Analysis, 4, 271{283.
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