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tIn Dynami
 Programming, 
onvergen
e of al-gorithms su
h as Value Iteration or Poli
y It-eration results �in dis
ounted problems� froma 
ontra
tion property of the ba
k-up oper-ator, guaranteeing 
onvergen
e to its �xed-point. When approximation is 
onsidered,known results in Approximate Poli
y Itera-tion provide bounds on the 
loseness to op-timality of the approximate value fun
tionobtained by su

essive poli
y improvementsteps as a fun
tion of the maximum normof value determination errors during poli
yevaluation steps. Unfortunately, su
h resultshave limited pra
ti
al range sin
e most fun
-tion approximators (su
h as linear regres-sion) sele
t the best �t in a given 
lass ofparameterized fun
tions by minimizing some(weighted) quadrati
 norm.In this paper, we provide error boundsfor Approximate Poli
y Iteration usingquadrati
 norms, and illustrate those resultsin the 
ase of feature-based linear fun
tionapproximation.1. Introdu
tionWe 
onsider a Markov De
ision Pro
ess (MDP) (Put-erman, 1994; Bertsekas & Tsitsiklis, 1996; Sutton &Barto, 1998) evolving on a state spa
e X with Nstates. Its dynami
s is governed by the transitionprobability fun
tion P (i; a; j) whi
h gives the prob-ability that the next state is j 2 X knowing thatthe 
urrent state is i 2 X and the 
hosen a
tion isa 2 A, where A is the (�nite) set of possible a
-tions. A poli
y � is a mapping from X to A. Wewrite P � the N � N�matrix whose elements areP �(i; j) = p(i; �(i); j). Let r(i; a; j) be the rewardre
eived when a transition from state i, a
tion a; tostate j o

urs. Write r� the ve
tor whose 
omponentsare r�(i) =Pj P �(i; j) r(i; �(i); j). Here, we 
onsiderdis
ounted, in�nite horizon problems.The value fun
tion V �(i) for a poli
y � is the expe
ted

sum of dis
ounted future rewards when starting fromstate i and using poli
y �:V �(i) = E i;� [ 1Xt=0 
t rt℄where rt is the reward re
eived at time t and 
 2[0; 1) a dis
ount fa
tor. It is known that V � solves theBellman equationV �(i) = r�(i) + 
Xj2X P �(i; j)V �(j):Thus V � (
onsidered as a ve
tor of size N) is the�xed-point of the ba
k-up operator T � de�ned byT �� = r� + 
P ��. Sin
e P � is a sto
hasti
 matrix, itpossesses eigenvalues with module less than or equalto one, thus (I � 
P �) is invertible, and we writeV � = (I � 
P �)�1r� .The optimal value fun
tion V � is the expe
ted gainwhen using an optimal poli
y ��: V � = V �� =sup� V �. We are interested in problems with largestate spa
es (N is very large, possibly in�nite), whi
hprevents us from using exa
t resolution methods su
has Value Iteration or Poli
y Iteration with look-up ta-bles. Instead, we 
onsider the Approximate Poli
yIteration algorithm (Bertsekas & Tsitsiklis, 1996) de-�ned iteratively by the two steps:� Approximate poli
y evaluation: for a given pol-i
y �k, generate an approximation Vk of the valuefun
tion V �k� Poli
y improvement : generate a new poli
y �k+1greedy with respe
t to Vk:�k+1(i) = argmaxa2A Xj2X[r(i; a; j)+ 
 p(i; a; j)Vk(j)℄These steps are repeated until no more improvementof the poli
ies is noti
ed (using some evaluation 
ri-terion). Empiri
ally, the value fun
tions V �k rapidlyimprove in the �rst iterations of this algorithm, thenos
illations o

ur with no more performan
e in
rease.The behavior in the transitional phase is due to thePro
eedings of the Twentieth International Conferen
e on Ma
hine Learning (ICML-2003), Washington DC, 2003.



relatively good approximation of the value fun
tion(jjVk � V �k jj is low) in 
omparison to the 
loseness tooptimality jjV �k�V �jj, whi
h produ
es greedy poli
ies(with respe
t to the approximate Vk) that are betterthan the 
urrent poli
ies. Then, on
e some 
loseness tooptimality is rea
hed, the error in the value approxima-tion prevents the poli
y improvement step from beinge�
ient: the stationary phase is attained. Hen
e, thisalgorithm does not 
onverge (there is no stabilizationto some poli
y) but it is very fast and from the intu-ition above, we 
an expe
t to quantify the 
losenessto optimality at the stationary phase as a fun
tion ofthe value approximation errors. And indeed, a knownresult (Bertsekas & Tsitsiklis, 1996, 
hap. 6.2) pro-vides bounds on the loss V � � V �k of using poli
y �kinstead of using the optimal one, as a fun
tion of themaximum norm of the approximation errors Vk�V �k :lim supk!1 jjV � � V �k jj1 � 2
(1� 
)2 supk jjVk � V �k jj1(1)However, this result is di�
ult to use in many ap-proximation ar
hite
tures (ex
eptions in
lude (Gor-don, 1995; Guestrin et al., 2001)) sin
e it is very
ostly to 
ontrol the maximum norm; the weightedquadrati
 norms are more 
ommonly used. We re
allthat a distribution � on X de�nes an inner-produ
thf; hi� = PNi=1 �(i)f(i)h(i) and a quadrati
 (semi-)norm jjhjj� = hh; hi1=2� . Of 
ourse, equivalen
y be-tween norms implies that jjhjj � jjhjj1 � pN jjhjj(where jj � jj denotes the norm de�ned by the uniformdistribution � � 1N ). But then, the bound (1), rewrit-ten in quadrati
 norm will in
lude the fa
tor pN ,whi
h is too large for being of any use in most 
ases.Our main result, stated in Se
tion 2 and proved in Ap-pendix A, is to derive analogous bounds in quadrati
norms: the loss jjV � � V �k jj� (for any distribution �)is bounded by a fun
tion of the approximation errorjjVk � V �k jj�k (for some distribution �k related to �and the poli
ies �k and ��), as well as by the Bellmanresidual (Baird, 1995) jjVk � T �kVkjje�k (for anotherdistribution e�k).In Se
tion 3, we apply those results to the feature-based linear fun
tion approximation (where the pa-rameterized fun
tions are weighted linear 
ombina-tions of basis fun
tions �the features), whi
h havebeen 
onsidered in Temporal Di�eren
e learningTD(�) (Tsitsiklis & Van Roy, 1996) and Least-SquaresTemporal Di�eren
e: LSTD(0) (Bradtke & Barto,1996), LSTD(�) (Boyan, 1999), and LS-Q-learning(Lagoudakis & Parr, 2001).Both the approximations obtained by minimizing thequadrati
 Bellman residual and by �nding the TD so-

lution (the �xed-point of a 
ombined operator) are
onsidered in se
tions 3.2 and 3.3. Under the as-sumption of uniform sto
hasti
ity of the MDP (Hy-pothesis 2), bounds on jjV � � V �k jj1 are derivedbased on the minimum possible approximation errorinf� jjV� � V �jj�� . Proofs are given in Appendix B.These linear approximation ar
hite
tures 
ombinedwith poli
y improvement still la
k theoreti
al analy-sis but have produ
ed very promising experimental re-sults on large s
ale 
ontrol and reinfor
ement learningproblems (Lagoudakis & Parr, 2001); we hope thatthis paper will help better understand their behavior.2. Quadrati
 Norm BoundsConsider the Approximate Poli
y Iteration algorithmdes
ribed in the introdu
tion. �k represents the poli
yat iteration k, and Vk the approximation of the valuefun
tion V �k . The main result of this paper is statedin this theorem.Theorem 1 For any distribution � (
onsidered as arow ve
tor) on X, de�ne the sto
hasti
 matri
esQk = (1� 
)22 (I � 
P ��)�1[P �k+1(I � 
P �k+1)�1+P ��(I � 
P �k)�1℄eQk = (1� 
)22 (I � 
P ��)�1[P �k+1(I � 
P �k+1)�1(I + 
P �k) + P �� ℄Write �k = �Qk and e�k = � eQk. Then �k and e�k aredistributions on X, andlim supk!1 jjV ��V �k jj� � 2
(1� 
)2 lim supk!1 jjVk�T �kVkjj�k(2)lim supk!1 jjV ��V �k jj� � 2
(1� 
)2 lim supk!1 jjVk�V �k jje�k(3)Some intuition about this result as well as its proofmay be found in Appendix A.Noti
e that this result is stronger than the bound inmax-norm (1), sin
e from (3) and using the fa
t thatjj � jje�k � jj � jj1, we dedu
e that lim supk!1 jjV � �V �k jj� � 2
(1�
)2 supk jjVk�V �k jj1 for any distribution�, whi
h implies (1).Moreover, it provides information about what parts ofthe state-spa
e are responsible (in terms of lo
al ap-proximation error Vk�V �k) for the loss V �(i)�V �k(i)at any state i. This information indi
ates the areas ofthe state spa
e where we should fo
us our e�orts in



the value approximation (e.g. by lo
ally reallo
ating
omputational resour
es, su
h as in variable resolutiondis
retization (Munos & Moore, 2002)).In the next se
tion we des
ribe how to use this resultto derive error bounds on the loss V ��V �k in the 
aseof linear approximation ar
hite
tures.3. Approximate Poli
y Evaluation3.1. Linear feature-based approximationWe 
onsider a 
lass of fun
tions V� = �� linearly pa-rameterized by a parameter � (ve
tor of size K, usu-ally mu
h smaller than N), where � is the set of basisfun
tions, 
alled features (a N � K matrix in whi
hea
h 
olumn represents a feature).We assume that the 
olumns of � are linearly inde-pendent. Su
h linear ar
hite
tures in
lude state ag-gregation methods, CMACs, polynomial or waveletregression te
hniques, radial basis fun
tion networkswith �xed bases, and �nite-element methods. Theyhave been used in in
remental Temporal Di�eren
eTD(�) (Tsitsiklis & Van Roy, 1996) or Least-SquaresTD (LSTD) (Bradtke & Barto, 1996), (Boyan, 1999).These LSTD methods whi
h �makes e�
ient use oftraining samples 
olle
ted in any arbitrary manner�have re
ently been extended to model-free LS-Q-learning (Lagoudakis & Parr, 2001). They havedemonstrated very good e�
ien
y in reinfor
ementlearning and 
ontrol of large s
ale problems.The spa
e of parameterized fun
tions is written [�℄(the span of the 
olumns of �). At iteration k, theapproximate poli
y evaluation step sele
ts a �good�approximation V�k (written Vk for simpli
ity) of thevalue fun
tion V �k , in the sense that some (semi-)norm jjVk � V �k jj�k be minimized, as mu
h as possi-ble. Several approa
hes for this minimization problemare possible (Bertsekas & Tsitsiklis, 1996; S
hokne
ht,2002; Judd, 1998):� Find the optimal approximate solution, whi
his the best possible approximation in [�℄: Vk isthe orthogonal proje
tion ��kV �k of V �k onto [�℄with respe
t to the norm jj � jj�k . This regressionproblem is very 
ostly sin
e V �k is unknown, butestimations may be obtained by Monte-Carlo sim-ulations.� Find the minimal quadrati
 residual (QR)solution, whi
h is the fun
tion Vk that minimizesthe quadrati
 Bellman residual jjV� � T �kV�jj�k .This problem is easy to solve sin
e it redu
es tothe resolution of a linear system of size K: Find

� su
h thatA� = b with�A = �T (I� 
P �k)TD�k (I�
P �k)�b = �T (I� 
P �k)TD�kr�k (4)where D�k is the N � N diagonal matrix whoseelements are D�k (i; i) = �k(i). This problem al-ways admits a solution sin
e A is invertible.� Find the Temporal Di�eren
e (TD) solution,whi
h is the �xed-point of the 
onjugate operator��kT �k � the ba
k-up operator followed by theproje
tion onto [�℄ w.r.t jj � jj�k� i.e. Vk satis�esVk = ��kT �kVk. Again, this problem redu
es toa linear system of size K: Find � su
h thatA� = b with�A = �TD�k (I � 
P �k)�b = �TD�kr�k (5)Here, A is not always invertible.The matrix A and ve
tor b of the QR and TD solutionsmay be estimated from transition data 
oming from ar-bitrary sour
es, e.g. in
rementally (Boyan, 1999) fromthe observation of traje
tories indu
ed by a given pol-i
y or by random poli
ies (Lagoudakis & Parr, 2001),or by ar
hived data 
oming from prior knowledge.Thus, one needs to spe
ify the distribution �k used inthe minimization problem, whi
h usually depends onthe poli
y �k. A steady-state distribution ��k , whi
hwould weight more the states that are frequently vis-ited, would be desirable for purely value determina-tion. However, the poli
y improvement step may per-form badly sin
e, from Lemma 3 (see Appendix A), thegain in poli
y improvement depends on the value ap-proximation at states rea
hed by poli
y �k+1 as well astheir su

essors (for poli
y �k), whi
h may be poorlyapproximated if they are ill-represented in ��k . A moreuniform distribution �k would give weight to all statesthus insuring a more se
ure poli
y improvement step(Koller & Parr, 2000; Kakade & Langford, 2002). We
onsider these possible 
hoi
es for �k:� Steady-state distribution ��k (if a su
h exists). Itsatis�es the property ��k = ��kP �k .� Constant distribution � (does not depend on �k).� Mixed distribution ���k = �(I � �P �k )�1(1 � �)(for 0 � � < 1), whi
h starts from an initial distri-bution �, then transitions indu
ed by � o

ur fora period of time that is a random variable thatfollows an exponential law �t(1 � �). Thus ���k
orresponds to the distribution of a Markov 
hainthat starts from a state sampled a

ording to �



and whi
h, at ea
h iteration, either follows poli
y� with probability � or restarts to a new statewith probability 1� �. Noti
e that when � tendsto 0 then ���k tends to the 
onstant distribution �,and when � tends to 1, ���k tends to the steady-state distribution.� Convex 
ombination of 
onstant and steady-statedistributions: �Æ�k = (1� Æ)�+ Æ ��k .Now, in order to bound the approximation error jjVk�V �k jje�k and Bellman residual jjVk � T �kVkjj�k (to beused in Theorem 1) as a fun
tion of the minimum pos-sible approximation error inf� jjV� � V �jj�k , we needsome assumption about the representational power ofthe approximation ar
hite
ture.Hypothesis 1 (Approximation hypothesis) Forany poli
y �, there exists, in the 
lass of parameterizedfun
tions, an ��approximation (in ���norm) of thevalue fun
tion V �: for some " > 0, for all poli
ies �,inf� jjV� � V �jj�� � "where �� may depend on the poli
y �.Next, we study the 
ases where the approximate fun
-tion Vk is 
hosen to be the QR solution (subse
tion3.2) and the TD solution (subse
tion 3.3).3.2. The Quadrati
 Residual solutionConsider �k the parameter that minimizes the Bell-man residual in quadrati
 �k�norm (solution to (4)).Write Vk = V�k = ��k the 
orresponding value fun
-tion: jjVk � T �kVk jj�k = inf� jjV� � T �kV�jj�kSin
e, for all �, V� � T �kV� = (I � 
P �k)(V� � V �k );we dedu
e thatjjVk � T �kVk jj�k = inf� jj(I � 
P �k)(V� � V �k )jj�k� jjjI � 
P �k jjj�k " (6)where jjj � jjj�k is the matrix norm indu
ed by jj � jj�k(i.e. jjjAjjj� := supjjxjj�=1 jjAxjj�). Now we have abound on the residual Vk �T �kVk in �k�norm, but inTheorem 1 we a
tually need su
h a bound in �k�norm.A 
rude (but somehow unavailable) bound isjjVk � T �kVkjj2�k � jj�k�k jj1 jjVk � T �kVkjj2�k (7)where jj�k�k jj1 express the mismat
h between therather unknown distribution �k = �Qk and the dis-tribution �k used in the minimization problem. In or-der to bound this ratio, we now provide 
onditions for

whi
h a upper-bound for �k and a lower-bound for �kare possible.We make the following assumption on the MDP.Hypothesis 2 (Uniform sto
hasti
ity) Let � besome distribution, for example a uniform distribution.There exists a 
onstant C, su
h that for all poli
ies �,for all i; j 2 X, P �(i; j) � C�(j) (8)Noti
e that this hypothesis 
an always be satis�ed for�(i) = 1=N by 
hoosing C = N . However, we are a
-tually interested in �nding a 
onstant C << N , whi
hrequires, intuitively, that ea
h state possesses manysu

essors with rather small 
orresponding transitionprobabilities.Remark 1 An interesting 
ase for whi
h this assump-tion is satis�ed is when the MDP has 
ontinuous-spa
e(thus N =1 but all ideas in previous analysis remainvalid). In su
h 
ase, if the 
ontinuous problem has atransition probability kernel P �(x;B) (probability thatthe next state belongs to the subset B � X when the
urrent state is x 2 X and the 
hosen a
tion is �(x)),then the hypothesis reads that there exists a measure �on X (with �(X) = 1) su
h that P �(x;B) � C�(B)for all x and all subset B. This is true as long asthe transition probabilities admit a pdf representation:p�(x;B) = RB p�(yjx)dy with bounded density p�(�jx).From this assumption, we derive a bound for �k:Lemma 1 Assume Hypothesis 2. Then �k � C�.Remark 2 An assumption on the Markov pro
ess,other than Hypothesis 2, that would guarantee anupper-bound for �k is that the matrix P � and the re-solvent (I�
P �)�1(1�
) have bounded entrant prob-abilities: there exists two 
onstants C1 << N andC2 << N su
h that for all � and all j 2 XXi2X P �(i; j) � C1(1� 
)Xi2X[(I � 
P �)�1℄(i; j) � C2then, a bound is �k � C1C22� (we will not prove thisresult here). An important 
ase for whi
h this as-sumption is satis�ed is when the MDP is built froma dis
retization of a (
ontinuous-time) Markov di�u-sion pro
ess for whi
h the state-dynami
s are governedby sto
hasti
 di�erential equations with non-degeneratedi�usion 
oe�
ients.



The distributions ���k and �Æ�k previously de�ned,whi
h mix the steady-state distribution to a ratheruniform distribution �, 
an be lower-bounded when� < 1 or Æ < 1, whi
h allows to use inequalities (7)and (2) to derive an error bound on the loss V ��V �kwhen using the QR solution:Theorem 2 Assume that Hypothesis 2 holds withsome distribution � and 
onstant C.� Assume that Hypothesis 1 holds with the distribu-tion ���k = �(I��P �k)�1(1��) (with 0 � � < 1),thenlim supk!1 jjV � � V �k jj1 �2
(1� 
)2r C1� �  1 + 
rmin( C1� �; 1� )! "� Assume that Hypothesis 1 holds with the distribu-tion �Æ�k = (1�Æ)�+Æ��k (with 0 � Æ < 1) (where��k is the steady-state distribution for �k), thenlim supk!1 jjV � � V �k jj1 �2
(1� 
)2r C1� Æ �1 + 
pC� "Remark 3 Note that if the steady-state distribution�� is itself lower-bounded by some 
onstant � > 0,then the bounds on ��k , �Æk 
an be tightened for � andÆ 
lose to 1, whi
h would suppress the terms 1�� and1� Æ in the denominators of the right hand side of theabove inequalities.3.3. Temporal Di�eren
e solutionNow, we 
onsider that Vk is the Temporal Di�eren
esolution, i.e. the �xed-point of the 
ombined operator��kT �k . We noti
e that Vk solves the system (equiv-alent to (5) be
ause � has full 
olumn rank):(I � 
��kP �k)Vk = Vk ���k (T �kVk � r�k ) = ��kr�k(9)whi
h has a solution if the matrix (I � 
��kP �k) isinvertible. The approximation error ek = Vk � V �ksolves the system(I � 
��kP �k)ek=��kr�k� V �k+��k (T �kV �k� r�k )=��kV �k� V �k := "k (10)where "k is the optimal approximation error.3.3.1. Whi
h distribution?If �k is the steady-state distribution ��k for poli
y �k,then we have jjjP �k jjj��k = 1 (Tsitsiklis & Van Roy,

1996). Thus, if Hypothesis 1 is satis�ed for the steady-state distribution, then from (10), we dedu
e a boundon the approximation errorjjVk � V �k jj��k � jjj(I � 
���kP �k )�1jjj��k "� 11� 
jjjP �k jjj��k " � "1� 
 (11)Now, if �k is di�erent from ��k then jjjP �k jjj�k (whi
his always � 1 sin
e P �k is a sto
hasti
 matrix) may begreater than 1=
 and (11) does not hold any more.Even if we assume that for all poli
ies �k the ma-tri
es I � 
��kP �k are invertible (thus, that the Vkare well-de�ned), whi
h means that the eigenvaluesof ��kP �k are all di�erent from 1=
, it seems dif-�
ult to provide bounds on the approximation errorek = (I � 
��kP �k)�1"k be
ause those eigenvaluesmay be 
lose to 1=
: we 
an easily build simple exam-ples for whi
h the ratio of jjekjj�k (as well as the Bell-man residual jjVk � T �kVkjj�k = jj(I � 
P �k)ekjj�k )by " is as large as desired. Some numeri
al experi-ments showed that the TD solution provided betterpoli
ies than the QR solution although the value fun
-tions were not so a

urately approximated. The rea-son argued was that the TD solution �preserved theshape of the value fun
tion to some extent rather thantrying to �t the absolute values�, thus �the improvedpoli
y from the approximate value fun
tion is �
loser�to the improved poli
y from the 
orresponding exa
tvalue fun
tion� (Lagoudakis & Parr, 2001). More for-mally, this would mean that the di�eren
e between theba
ked-up errors using �k+1 and another poli
y �d�k := T �k+1(Vk � V �k )� T �(Vk � V �k )is small for � = ��k+1, the greedy poli
y w.r.t. V �k .Sin
e ��k+1 is unknown, d�k would need to be small forany poli
y �. We haved�k = 
(P �k+1 � P �)ek= 
(P �k+1 � P �)(I � 
��kP �k)�1"kThus, there are two possibilities: either ek belongs tothe interse
tion (for all �) of the kernels of (P �k+1 �P �), in whi
h 
ase d�k is zero, or if this is not the
ase, d�k is also unstable whenever the eigenvalues of��kP �k are 
lose to 1=
. The �rst 
ase, whi
h wouldbe ideal (sin
e then, �k+1 would be equal to ��k+1)does not hold in general. Indeed, if it was true, thiswould mean that ek is 
ollinear to the unit ve
tor 1 :=(1 1 ::: 1)T , say ek = 
k1 for some s
alar 
k (then, Vkwould be equal to V �k up to an additive 
onstant)and we would have "k = (I � 
��kP �k)ek = 
k(I �
��k )1. But, by de�nition, "k is orthogonal to [�℄w.r.t. the inner produ
t h�; �i�k whereas the ve
tor



(I�
��k )1 is not (for 
 < 1) in general (the ex
eptionbeing if 1 is orthogonal to [�℄ w.r.t. h�; �i�k ). Thus,as soon as the eigenvalues of ��kP �k are 
lose to 1=
,the approximation error ek as well as the di�eren
e inthe ba
ked-up errors d�k be
omes large.Thus, we believe that in general, the TD solution is lessstable and predi
table (as long as we do not 
ontrol theeigenvalues of ��kP �k) than the QR solution. How-ever, the TD solution may be preferable in model-freeReinfor
ement Learning, when unbiased estimators ofA and b in (4) and (5) need to be derived from observeddata (Munos, 2003).3.3.2. Steady-state distributionIf we 
onsider the 
ase of the steady-state distributionand assume that it is bounded from below (for exampleif all poli
ies indu
e an irredu
ible, aperiodi
 Markov
hain (Puterman, 1994)), we are able to derive thefollowing error bound on the loss V � � V �k .Theorem 3 Assume that Hypothesis 2 holds for a dis-tribution � (for example uniform) and a 
onstant C,that Hypothesis 1 holds with the steady-state distribu-tions ��, and that �� is bounded from below by 1��(with � a 
onstant), thenlim supk!1 jjV � � V �k jj1 � 2
(1� 
)3p�C "4. Con
lusionThe main 
ontribution of this paper is the error boundson jjV � � V �k jj� derived as a fun
tion of the approxi-mation errors jjVk�V �k jje�k and the Bellman residualsjjVk�T �kVkjj�k . The distributions �k and e�k indi
atethe states that are responsible for the approximationa

ura
y. An appli
ation of this result to linear fun
-tion approximation is derived and error bounds that donot depend on the number of states are given, providedthat the MDP satis�es some uniform sto
hasti
ity as-sumption (that leads to an upper-bound for �k ande�k) and that the distribution used in the minimizationproblem is lower-bounded (in order to insure some re-liability of the value approximation uniformly over thestate-spa
e, whi
h se
ures poli
y improvement steps).In the 
ase of the QR solution, this was guaranteed byusing a somehow uniform mixed distribution, whereasin the 
ase of the TD solution, we assumed that thesteady-state distribution was already bounded frombelow.

A. Proof of Theorem 1.De�ne the approximation error: ek = Vk � V �k ,the gain between iteration k and k+1: gk = V �k+1 �V �k , the loss of using poli
y �k instead of the optimalpoli
y: lk = V � � V �k , and the Bellman residualof the approximate value fun
tion: bk = Vk � T �kVk.Those ek, gk, lk, and bk are 
olumn ve
tors of size N .We �rst state and prove the following results:Lemma 2 It is true that:lk+1 � 
[P ��lk + P �k+1(ek � gk)� P ��ek℄Proof: Indeed,lk+1 = T ��V � � T ��V �k + T ��V �k � T ��Vk+T ��Vk � T �k+1Vk + T �k+1Vk�T �k+1V �k + T �k+1V �k � T �k+1V �k+1� 
[P �� lk + P �k+1(V �k � V �k+1)+(P �k+1 � P ��)(Vk � V �k)℄where we used the fa
t that T ��Vk�T �k+1Vk � 0 sin
e�k+1 is greedy with respe
t to Vk. �Lemma 3 It is true that:gk � �
(I � 
P �k+1)�1(P �k+1 � P �k) ekProof: Indeed,gk = T �k+1V �k+1 � T �k+1V �k + T �k+1V �k � T �k+1Vk+T �k+1Vk � T �kVk + T �kVk � T �kV �k� 
P �k+1gk � 
(P �k+1 � P �k ) ek� �
(I � 
P �k+1)�1(P �k+1 � P �k) eksin
e T �k+1Vk � T �kVk � 0. �Lemma 4 It is true that:lk+1 � 
P ��(V � � V �k ) + 
[P �k+1(I � 
P �k+1)�1�P ��(I � 
P �k)�1℄bk (12)Or equivalentlylk+1 � 
P ��(V � � V �k ) + 
[P �k+1(I � 
P �k+1)�1(I � 
P �k)� P �� ℄ek (13)Proof: From Lemma 3, we haveek � gk � [I � 
(I � 
P �k+1)�1(P �k � P �k+1)℄ek� (I � 
P �k+1)�1(I � 
P �k)ekand (13) follows from Lemma 2. Inequality (12) isderived by fa
torizing (I�
P �k) and by noti
ing that(I � 
P �k)ek = Vk � V �k � T �k(Vk � V �k) = Vk �T �kVk = bk is the Bellman residual of the approximatefun
tion Vk, whi
h terminates the proof. �Now, from Lemma 4, we derive the following results:



Corollary 1 We havelim supk!1 lk�
(I � 
P ��)�1lim supk!1 [P �k+1(I � 
P �k+1)�1�P ��(I � 
P �k)�1℄ bk (14)or equivalently thatlim supk!1 lk�
(I � 
P ��)�1lim supk!1 [P �k+1(I � 
P �k+1)�1(I � 
P �k)� P �� ℄ekProof: Write fk = 
[P �k+1(I � 
P �k+1)�1 � P ��(I �
P �k)�1℄ bk. Then, from Lemma 4, lk+1 � 
P ��lk +fk. By taking the limit superior 
omponent-wise(I � 
P ��) lim supk!1 lk � lim supk!1 fkAnd the result follows sin
e I�
P �� is invertible. Theproof of the other inequality is similar. �Corollary 2 By de�ning the sto
hasti
 matri
es Qkand eQk as in Theorem 1, we havelim supk!1 lk � 2
(1� 
)2 lim supk!1 Qkjbkjlim supk!1 lk � 2
(1� 
)2 lim supk!1 eQkjekjwhere jbkj and jekj are ve
tors whose 
omponents arejbk(i)j and jek(i)j.Proof: First, the fa
t that Qk and eQk are sto
hasti
matri
es is a 
onsequen
e of the properties that if P1and P2 are sto
hasti
 matri
es, then P1P2, P1+P22 , and(1�
)(I�
P1)�1 are sto
hasti
 matri
es too (the thirdproperty resulting from the two �rst and the rewrit-ing of (I � 
P1)�1 as Pt�0 
tP t1). The result followswhen taking the absolute value in the inequalities ofCorollary 1. �Now we are able to prove Theorem 1:The fa
t that �k and e�k are distributions (positiveve
tors whose 
omponents sum to one) results fromQk and eQk being sto
hasti
 matri
es. Let us prove(2). For any ve
tor h; de�ne h2 the ve
tor whose 
om-ponents are h2i . We have, from the 
onvexity of thesquare fun
tion and from Corollary 2,lim supk!1 jjlkjj2� = lim supk!1 � l2k� 4
2(1� 
)4 lim supk!1 �[Qkjbkj℄2� 4
2(1� 
)4 lim supk!1 �Qkb2k� 4
2(1� 
)4 lim supk!1 �kb2k

Thus lim supk!1 jjlkjj� � 2
(1�
)2 lim supk!1 jjbkjj�k .Inequality (3) is dedu
ed similarly. �Remark 4 Some intuition about these bounds may beper
eived in a spe
i�
 
ase: assume that the poli
y �kwere to 
onverge, say to e�, and write eV the approxi-mation of V e�. Then from Corollary 1,V � � eV � 
(I � 
P ��)�1(P e� � P ��)(eV � V e�)The right hand side of this inequality measures the ex-pe
ted di�eren
e between the ba
ked-up approximationerrors using e� and ��with respe
t to the dis
ountedfuture state-distribution indu
ed by the optimal poli
y.Thus here, the states responsible for the approximationa

ura
y are the states rea
hed by the optimal poli
y aswell as their su

essors (for poli
y e�).B. Proofs of Se
tion 3Proof of Lemma 1First, for two sto
hasti
 matri
es P1 and P2 satis-fying (8), for all i and j, we have (P1P2)(i; j) =Pk P1(i; k)P2(k; j) � C�(j)Pk P1(i; k) = C�(j) andre
ursively, for all k, (P1)k(i; j) � C�(j). Thus also(1� 
)(I � 
P1)�1(i; j) = (1� 
)Pt�0 
t(P1)t(i; j) �C�(j).We dedu
e that Qk de�ned in Theorem 1 satis�esQk(i; j) � C�(j). Thus, �k(j) = (�Qk)(j) =Pi �(i)Qk(i; j) � C�(j)Pi �(i) = C�(j). �Proof of Theorem 2Let us state and prove the two Lemmas:Lemma 5 Lower bounds for ��k and �Æk.We have ��k � (1� �)� and �Æk � (1� Æ)�.Proof: We have ��k = (1 � �)�Pt�0 
t(P �k)t � (1 ��)�, and �Æk = (1� Æ)�+ Æ��k � (1� Æ)�. �Lemma 6 Upper bound for jjjP �k jjj��k and jjjP �k jjj�Æk .We havejjjP �k jjj2��k � min( C1� �; 1� ) and jjjP �k jjj2�Æk � CProof: First 
onsider ��k . From Hypothesis 2,jjP �khjj2��k = ��k (P �kh)2 � ��k P �kh2� C�h2 = Cjjhjj2�Moreover, � = 11����k(I � �P �k ) � 11����k , thusjjhjj2� = �h2 � 11����kh2 = 11�� jjhjj2��k . Therefore, for



all h; jjP �khjj2��k � C1�� jjhjj2��k . Now, it is also true thatjjP �khjj2��k = (1� �)� 1Xt=0 �t(P �k)t(P �kh)2� (1� �)� 1Xt=0 �t(P �k)t+1h2� 1� �� �( 1Xt=0 �t(P �k)th2 � h2)� 1���kh2 = 1� jjhjj2��kThus jjjP �k jjj2��k � min( C1�� ; 1� ).Now 
onsider �Æk. For any ve
tor h,jjP �khjj2�Æk = �Æk(P �kh)2� (1� Æ)�P �kh2 + Æ�kP �kh2� C(1� Æ)�h2 + Æ�kh2� C(1� Æ)jjhjj2� + Æjjhjj2�k(where we used the property of the steady distribu-tion �k = �kP �k). Moreover, � = 11�Æ (�Æk � Æ�k),thus jjhjj2� = 11�Æ (jjhjj2�Æk � Æjjhjj2�k ). Thus jjP �khjj2�Æk �C(jjhjj2�Æk � Æjjhjj2�k ) + Æjjhjj�k � Cjjhjj2�Æk sin
e C � 1.Thus jjjP �khjjj2�Æk � C. �Proof of Theorem 2:For any distribution �, putting together (2),(7) and (6), we have lim supk!1 jjlkjj� �2
(1�
)2 lim supk!1qjj�k�k jj1jjjI � 
P �k jjj��k ".Now, from Lemmas 1, 5, 6, and by using the fa
t thatjjjI � 
P �jjj�� � 1+ 
jjjP �jjj�� , we dedu
e the boundin jj � jj�, but sin
e this is true for any distribution �,the same bound holds in jj � jj1. �Proof of Theorem 3For any distribution �, let e�k = � eQk with eQk de�nedin Theorem 1. Analogously to (7) we have jjekjj2e�k �jj e�k�k jj1 jjekjj2�k . Similarly to Lemma 1, we have e�k �C�, thus jj e�k�k jj1 � �C. Sin
e �k is the steady-statedistribution, jjekjj�k � "1�
 , thus jjekjje�k � p�C "1�
 ,and from (3),lim supk!1 jjlkjj� � 2
(1� 
)3p�C "and sin
e this bound holds for any distribution �, italso holds in max-norm. �
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