
Error Bounds for Approximate Poliy IterationRémi Munos Remi.Munos�polytehnique.frCentre de Mathématiques Appliquées. Eole Polytehnique. 91128 Palaiseau, Frane.http://www.map.polytehnique.fr/�munos/AbstratIn Dynami Programming, onvergene of al-gorithms suh as Value Iteration or Poliy It-eration results �in disounted problems� froma ontration property of the bak-up oper-ator, guaranteeing onvergene to its �xed-point. When approximation is onsidered,known results in Approximate Poliy Itera-tion provide bounds on the loseness to op-timality of the approximate value funtionobtained by suessive poliy improvementsteps as a funtion of the maximum normof value determination errors during poliyevaluation steps. Unfortunately, suh resultshave limited pratial range sine most fun-tion approximators (suh as linear regres-sion) selet the best �t in a given lass ofparameterized funtions by minimizing some(weighted) quadrati norm.In this paper, we provide error boundsfor Approximate Poliy Iteration usingquadrati norms, and illustrate those resultsin the ase of feature-based linear funtionapproximation.1. IntrodutionWe onsider a Markov Deision Proess (MDP) (Put-erman, 1994; Bertsekas & Tsitsiklis, 1996; Sutton &Barto, 1998) evolving on a state spae X with Nstates. Its dynamis is governed by the transitionprobability funtion P (i; a; j) whih gives the prob-ability that the next state is j 2 X knowing thatthe urrent state is i 2 X and the hosen ation isa 2 A, where A is the (�nite) set of possible a-tions. A poliy � is a mapping from X to A. Wewrite P � the N � N�matrix whose elements areP �(i; j) = p(i; �(i); j). Let r(i; a; j) be the rewardreeived when a transition from state i, ation a; tostate j ours. Write r� the vetor whose omponentsare r�(i) =Pj P �(i; j) r(i; �(i); j). Here, we onsiderdisounted, in�nite horizon problems.The value funtion V �(i) for a poliy � is the expeted

sum of disounted future rewards when starting fromstate i and using poliy �:V �(i) = E i;� [ 1Xt=0 t rt℄where rt is the reward reeived at time t and  2[0; 1) a disount fator. It is known that V � solves theBellman equationV �(i) = r�(i) + Xj2X P �(i; j)V �(j):Thus V � (onsidered as a vetor of size N) is the�xed-point of the bak-up operator T � de�ned byT �� = r� + P ��. Sine P � is a stohasti matrix, itpossesses eigenvalues with module less than or equalto one, thus (I � P �) is invertible, and we writeV � = (I � P �)�1r� .The optimal value funtion V � is the expeted gainwhen using an optimal poliy ��: V � = V �� =sup� V �. We are interested in problems with largestate spaes (N is very large, possibly in�nite), whihprevents us from using exat resolution methods suhas Value Iteration or Poliy Iteration with look-up ta-bles. Instead, we onsider the Approximate PoliyIteration algorithm (Bertsekas & Tsitsiklis, 1996) de-�ned iteratively by the two steps:� Approximate poliy evaluation: for a given pol-iy �k, generate an approximation Vk of the valuefuntion V �k� Poliy improvement : generate a new poliy �k+1greedy with respet to Vk:�k+1(i) = argmaxa2A Xj2X[r(i; a; j)+  p(i; a; j)Vk(j)℄These steps are repeated until no more improvementof the poliies is notied (using some evaluation ri-terion). Empirially, the value funtions V �k rapidlyimprove in the �rst iterations of this algorithm, thenosillations our with no more performane inrease.The behavior in the transitional phase is due to theProeedings of the Twentieth International Conferene on Mahine Learning (ICML-2003), Washington DC, 2003.



relatively good approximation of the value funtion(jjVk � V �k jj is low) in omparison to the loseness tooptimality jjV �k�V �jj, whih produes greedy poliies(with respet to the approximate Vk) that are betterthan the urrent poliies. Then, one some loseness tooptimality is reahed, the error in the value approxima-tion prevents the poliy improvement step from beinge�ient: the stationary phase is attained. Hene, thisalgorithm does not onverge (there is no stabilizationto some poliy) but it is very fast and from the intu-ition above, we an expet to quantify the losenessto optimality at the stationary phase as a funtion ofthe value approximation errors. And indeed, a knownresult (Bertsekas & Tsitsiklis, 1996, hap. 6.2) pro-vides bounds on the loss V � � V �k of using poliy �kinstead of using the optimal one, as a funtion of themaximum norm of the approximation errors Vk�V �k :lim supk!1 jjV � � V �k jj1 � 2(1� )2 supk jjVk � V �k jj1(1)However, this result is di�ult to use in many ap-proximation arhitetures (exeptions inlude (Gor-don, 1995; Guestrin et al., 2001)) sine it is veryostly to ontrol the maximum norm; the weightedquadrati norms are more ommonly used. We reallthat a distribution � on X de�nes an inner-produthf; hi� = PNi=1 �(i)f(i)h(i) and a quadrati (semi-)norm jjhjj� = hh; hi1=2� . Of ourse, equivaleny be-tween norms implies that jjhjj � jjhjj1 � pN jjhjj(where jj � jj denotes the norm de�ned by the uniformdistribution � � 1N ). But then, the bound (1), rewrit-ten in quadrati norm will inlude the fator pN ,whih is too large for being of any use in most ases.Our main result, stated in Setion 2 and proved in Ap-pendix A, is to derive analogous bounds in quadratinorms: the loss jjV � � V �k jj� (for any distribution �)is bounded by a funtion of the approximation errorjjVk � V �k jj�k (for some distribution �k related to �and the poliies �k and ��), as well as by the Bellmanresidual (Baird, 1995) jjVk � T �kVkjje�k (for anotherdistribution e�k).In Setion 3, we apply those results to the feature-based linear funtion approximation (where the pa-rameterized funtions are weighted linear ombina-tions of basis funtions �the features), whih havebeen onsidered in Temporal Di�erene learningTD(�) (Tsitsiklis & Van Roy, 1996) and Least-SquaresTemporal Di�erene: LSTD(0) (Bradtke & Barto,1996), LSTD(�) (Boyan, 1999), and LS-Q-learning(Lagoudakis & Parr, 2001).Both the approximations obtained by minimizing thequadrati Bellman residual and by �nding the TD so-

lution (the �xed-point of a ombined operator) areonsidered in setions 3.2 and 3.3. Under the as-sumption of uniform stohastiity of the MDP (Hy-pothesis 2), bounds on jjV � � V �k jj1 are derivedbased on the minimum possible approximation errorinf� jjV� � V �jj�� . Proofs are given in Appendix B.These linear approximation arhitetures ombinedwith poliy improvement still lak theoretial analy-sis but have produed very promising experimental re-sults on large sale ontrol and reinforement learningproblems (Lagoudakis & Parr, 2001); we hope thatthis paper will help better understand their behavior.2. Quadrati Norm BoundsConsider the Approximate Poliy Iteration algorithmdesribed in the introdution. �k represents the poliyat iteration k, and Vk the approximation of the valuefuntion V �k . The main result of this paper is statedin this theorem.Theorem 1 For any distribution � (onsidered as arow vetor) on X, de�ne the stohasti matriesQk = (1� )22 (I � P ��)�1[P �k+1(I � P �k+1)�1+P ��(I � P �k)�1℄eQk = (1� )22 (I � P ��)�1[P �k+1(I � P �k+1)�1(I + P �k) + P �� ℄Write �k = �Qk and e�k = � eQk. Then �k and e�k aredistributions on X, andlim supk!1 jjV ��V �k jj� � 2(1� )2 lim supk!1 jjVk�T �kVkjj�k(2)lim supk!1 jjV ��V �k jj� � 2(1� )2 lim supk!1 jjVk�V �k jje�k(3)Some intuition about this result as well as its proofmay be found in Appendix A.Notie that this result is stronger than the bound inmax-norm (1), sine from (3) and using the fat thatjj � jje�k � jj � jj1, we dedue that lim supk!1 jjV � �V �k jj� � 2(1�)2 supk jjVk�V �k jj1 for any distribution�, whih implies (1).Moreover, it provides information about what parts ofthe state-spae are responsible (in terms of loal ap-proximation error Vk�V �k) for the loss V �(i)�V �k(i)at any state i. This information indiates the areas ofthe state spae where we should fous our e�orts in



the value approximation (e.g. by loally realloatingomputational resoures, suh as in variable resolutiondisretization (Munos & Moore, 2002)).In the next setion we desribe how to use this resultto derive error bounds on the loss V ��V �k in the aseof linear approximation arhitetures.3. Approximate Poliy Evaluation3.1. Linear feature-based approximationWe onsider a lass of funtions V� = �� linearly pa-rameterized by a parameter � (vetor of size K, usu-ally muh smaller than N), where � is the set of basisfuntions, alled features (a N � K matrix in whiheah olumn represents a feature).We assume that the olumns of � are linearly inde-pendent. Suh linear arhitetures inlude state ag-gregation methods, CMACs, polynomial or waveletregression tehniques, radial basis funtion networkswith �xed bases, and �nite-element methods. Theyhave been used in inremental Temporal Di�ereneTD(�) (Tsitsiklis & Van Roy, 1996) or Least-SquaresTD (LSTD) (Bradtke & Barto, 1996), (Boyan, 1999).These LSTD methods whih �makes e�ient use oftraining samples olleted in any arbitrary manner�have reently been extended to model-free LS-Q-learning (Lagoudakis & Parr, 2001). They havedemonstrated very good e�ieny in reinforementlearning and ontrol of large sale problems.The spae of parameterized funtions is written [�℄(the span of the olumns of �). At iteration k, theapproximate poliy evaluation step selets a �good�approximation V�k (written Vk for simpliity) of thevalue funtion V �k , in the sense that some (semi-)norm jjVk � V �k jj�k be minimized, as muh as possi-ble. Several approahes for this minimization problemare possible (Bertsekas & Tsitsiklis, 1996; Shokneht,2002; Judd, 1998):� Find the optimal approximate solution, whihis the best possible approximation in [�℄: Vk isthe orthogonal projetion ��kV �k of V �k onto [�℄with respet to the norm jj � jj�k . This regressionproblem is very ostly sine V �k is unknown, butestimations may be obtained by Monte-Carlo sim-ulations.� Find the minimal quadrati residual (QR)solution, whih is the funtion Vk that minimizesthe quadrati Bellman residual jjV� � T �kV�jj�k .This problem is easy to solve sine it redues tothe resolution of a linear system of size K: Find

� suh thatA� = b with�A = �T (I� P �k)TD�k (I�P �k)�b = �T (I� P �k)TD�kr�k (4)where D�k is the N � N diagonal matrix whoseelements are D�k (i; i) = �k(i). This problem al-ways admits a solution sine A is invertible.� Find the Temporal Di�erene (TD) solution,whih is the �xed-point of the onjugate operator��kT �k � the bak-up operator followed by theprojetion onto [�℄ w.r.t jj � jj�k� i.e. Vk satis�esVk = ��kT �kVk. Again, this problem redues toa linear system of size K: Find � suh thatA� = b with�A = �TD�k (I � P �k)�b = �TD�kr�k (5)Here, A is not always invertible.The matrix A and vetor b of the QR and TD solutionsmay be estimated from transition data oming from ar-bitrary soures, e.g. inrementally (Boyan, 1999) fromthe observation of trajetories indued by a given pol-iy or by random poliies (Lagoudakis & Parr, 2001),or by arhived data oming from prior knowledge.Thus, one needs to speify the distribution �k used inthe minimization problem, whih usually depends onthe poliy �k. A steady-state distribution ��k , whihwould weight more the states that are frequently vis-ited, would be desirable for purely value determina-tion. However, the poliy improvement step may per-form badly sine, from Lemma 3 (see Appendix A), thegain in poliy improvement depends on the value ap-proximation at states reahed by poliy �k+1 as well astheir suessors (for poliy �k), whih may be poorlyapproximated if they are ill-represented in ��k . A moreuniform distribution �k would give weight to all statesthus insuring a more seure poliy improvement step(Koller & Parr, 2000; Kakade & Langford, 2002). Weonsider these possible hoies for �k:� Steady-state distribution ��k (if a suh exists). Itsatis�es the property ��k = ��kP �k .� Constant distribution � (does not depend on �k).� Mixed distribution ���k = �(I � �P �k )�1(1 � �)(for 0 � � < 1), whih starts from an initial distri-bution �, then transitions indued by � our fora period of time that is a random variable thatfollows an exponential law �t(1 � �). Thus ���korresponds to the distribution of a Markov hainthat starts from a state sampled aording to �



and whih, at eah iteration, either follows poliy� with probability � or restarts to a new statewith probability 1� �. Notie that when � tendsto 0 then ���k tends to the onstant distribution �,and when � tends to 1, ���k tends to the steady-state distribution.� Convex ombination of onstant and steady-statedistributions: �Æ�k = (1� Æ)�+ Æ ��k .Now, in order to bound the approximation error jjVk�V �k jje�k and Bellman residual jjVk � T �kVkjj�k (to beused in Theorem 1) as a funtion of the minimum pos-sible approximation error inf� jjV� � V �jj�k , we needsome assumption about the representational power ofthe approximation arhiteture.Hypothesis 1 (Approximation hypothesis) Forany poliy �, there exists, in the lass of parameterizedfuntions, an ��approximation (in ���norm) of thevalue funtion V �: for some " > 0, for all poliies �,inf� jjV� � V �jj�� � "where �� may depend on the poliy �.Next, we study the ases where the approximate fun-tion Vk is hosen to be the QR solution (subsetion3.2) and the TD solution (subsetion 3.3).3.2. The Quadrati Residual solutionConsider �k the parameter that minimizes the Bell-man residual in quadrati �k�norm (solution to (4)).Write Vk = V�k = ��k the orresponding value fun-tion: jjVk � T �kVk jj�k = inf� jjV� � T �kV�jj�kSine, for all �, V� � T �kV� = (I � P �k)(V� � V �k );we dedue thatjjVk � T �kVk jj�k = inf� jj(I � P �k)(V� � V �k )jj�k� jjjI � P �k jjj�k " (6)where jjj � jjj�k is the matrix norm indued by jj � jj�k(i.e. jjjAjjj� := supjjxjj�=1 jjAxjj�). Now we have abound on the residual Vk �T �kVk in �k�norm, but inTheorem 1 we atually need suh a bound in �k�norm.A rude (but somehow unavailable) bound isjjVk � T �kVkjj2�k � jj�k�k jj1 jjVk � T �kVkjj2�k (7)where jj�k�k jj1 express the mismath between therather unknown distribution �k = �Qk and the dis-tribution �k used in the minimization problem. In or-der to bound this ratio, we now provide onditions for

whih a upper-bound for �k and a lower-bound for �kare possible.We make the following assumption on the MDP.Hypothesis 2 (Uniform stohastiity) Let � besome distribution, for example a uniform distribution.There exists a onstant C, suh that for all poliies �,for all i; j 2 X, P �(i; j) � C�(j) (8)Notie that this hypothesis an always be satis�ed for�(i) = 1=N by hoosing C = N . However, we are a-tually interested in �nding a onstant C << N , whihrequires, intuitively, that eah state possesses manysuessors with rather small orresponding transitionprobabilities.Remark 1 An interesting ase for whih this assump-tion is satis�ed is when the MDP has ontinuous-spae(thus N =1 but all ideas in previous analysis remainvalid). In suh ase, if the ontinuous problem has atransition probability kernel P �(x;B) (probability thatthe next state belongs to the subset B � X when theurrent state is x 2 X and the hosen ation is �(x)),then the hypothesis reads that there exists a measure �on X (with �(X) = 1) suh that P �(x;B) � C�(B)for all x and all subset B. This is true as long asthe transition probabilities admit a pdf representation:p�(x;B) = RB p�(yjx)dy with bounded density p�(�jx).From this assumption, we derive a bound for �k:Lemma 1 Assume Hypothesis 2. Then �k � C�.Remark 2 An assumption on the Markov proess,other than Hypothesis 2, that would guarantee anupper-bound for �k is that the matrix P � and the re-solvent (I�P �)�1(1�) have bounded entrant prob-abilities: there exists two onstants C1 << N andC2 << N suh that for all � and all j 2 XXi2X P �(i; j) � C1(1� )Xi2X[(I � P �)�1℄(i; j) � C2then, a bound is �k � C1C22� (we will not prove thisresult here). An important ase for whih this as-sumption is satis�ed is when the MDP is built froma disretization of a (ontinuous-time) Markov di�u-sion proess for whih the state-dynamis are governedby stohasti di�erential equations with non-degeneratedi�usion oe�ients.



The distributions ���k and �Æ�k previously de�ned,whih mix the steady-state distribution to a ratheruniform distribution �, an be lower-bounded when� < 1 or Æ < 1, whih allows to use inequalities (7)and (2) to derive an error bound on the loss V ��V �kwhen using the QR solution:Theorem 2 Assume that Hypothesis 2 holds withsome distribution � and onstant C.� Assume that Hypothesis 1 holds with the distribu-tion ���k = �(I��P �k)�1(1��) (with 0 � � < 1),thenlim supk!1 jjV � � V �k jj1 �2(1� )2r C1� �  1 + rmin( C1� �; 1� )! "� Assume that Hypothesis 1 holds with the distribu-tion �Æ�k = (1�Æ)�+Æ��k (with 0 � Æ < 1) (where��k is the steady-state distribution for �k), thenlim supk!1 jjV � � V �k jj1 �2(1� )2r C1� Æ �1 + pC� "Remark 3 Note that if the steady-state distribution�� is itself lower-bounded by some onstant � > 0,then the bounds on ��k , �Æk an be tightened for � andÆ lose to 1, whih would suppress the terms 1�� and1� Æ in the denominators of the right hand side of theabove inequalities.3.3. Temporal Di�erene solutionNow, we onsider that Vk is the Temporal Di�erenesolution, i.e. the �xed-point of the ombined operator��kT �k . We notie that Vk solves the system (equiv-alent to (5) beause � has full olumn rank):(I � ��kP �k)Vk = Vk ���k (T �kVk � r�k ) = ��kr�k(9)whih has a solution if the matrix (I � ��kP �k) isinvertible. The approximation error ek = Vk � V �ksolves the system(I � ��kP �k)ek=��kr�k� V �k+��k (T �kV �k� r�k )=��kV �k� V �k := "k (10)where "k is the optimal approximation error.3.3.1. Whih distribution?If �k is the steady-state distribution ��k for poliy �k,then we have jjjP �k jjj��k = 1 (Tsitsiklis & Van Roy,

1996). Thus, if Hypothesis 1 is satis�ed for the steady-state distribution, then from (10), we dedue a boundon the approximation errorjjVk � V �k jj��k � jjj(I � ���kP �k )�1jjj��k "� 11� jjjP �k jjj��k " � "1�  (11)Now, if �k is di�erent from ��k then jjjP �k jjj�k (whihis always � 1 sine P �k is a stohasti matrix) may begreater than 1= and (11) does not hold any more.Even if we assume that for all poliies �k the ma-tries I � ��kP �k are invertible (thus, that the Vkare well-de�ned), whih means that the eigenvaluesof ��kP �k are all di�erent from 1=, it seems dif-�ult to provide bounds on the approximation errorek = (I � ��kP �k)�1"k beause those eigenvaluesmay be lose to 1=: we an easily build simple exam-ples for whih the ratio of jjekjj�k (as well as the Bell-man residual jjVk � T �kVkjj�k = jj(I � P �k)ekjj�k )by " is as large as desired. Some numerial experi-ments showed that the TD solution provided betterpoliies than the QR solution although the value fun-tions were not so aurately approximated. The rea-son argued was that the TD solution �preserved theshape of the value funtion to some extent rather thantrying to �t the absolute values�, thus �the improvedpoliy from the approximate value funtion is �loser�to the improved poliy from the orresponding exatvalue funtion� (Lagoudakis & Parr, 2001). More for-mally, this would mean that the di�erene between thebaked-up errors using �k+1 and another poliy �d�k := T �k+1(Vk � V �k )� T �(Vk � V �k )is small for � = ��k+1, the greedy poliy w.r.t. V �k .Sine ��k+1 is unknown, d�k would need to be small forany poliy �. We haved�k = (P �k+1 � P �)ek= (P �k+1 � P �)(I � ��kP �k)�1"kThus, there are two possibilities: either ek belongs tothe intersetion (for all �) of the kernels of (P �k+1 �P �), in whih ase d�k is zero, or if this is not thease, d�k is also unstable whenever the eigenvalues of��kP �k are lose to 1=. The �rst ase, whih wouldbe ideal (sine then, �k+1 would be equal to ��k+1)does not hold in general. Indeed, if it was true, thiswould mean that ek is ollinear to the unit vetor 1 :=(1 1 ::: 1)T , say ek = k1 for some salar k (then, Vkwould be equal to V �k up to an additive onstant)and we would have "k = (I � ��kP �k)ek = k(I ���k )1. But, by de�nition, "k is orthogonal to [�℄w.r.t. the inner produt h�; �i�k whereas the vetor



(I���k )1 is not (for  < 1) in general (the exeptionbeing if 1 is orthogonal to [�℄ w.r.t. h�; �i�k ). Thus,as soon as the eigenvalues of ��kP �k are lose to 1=,the approximation error ek as well as the di�erene inthe baked-up errors d�k beomes large.Thus, we believe that in general, the TD solution is lessstable and preditable (as long as we do not ontrol theeigenvalues of ��kP �k) than the QR solution. How-ever, the TD solution may be preferable in model-freeReinforement Learning, when unbiased estimators ofA and b in (4) and (5) need to be derived from observeddata (Munos, 2003).3.3.2. Steady-state distributionIf we onsider the ase of the steady-state distributionand assume that it is bounded from below (for exampleif all poliies indue an irreduible, aperiodi Markovhain (Puterman, 1994)), we are able to derive thefollowing error bound on the loss V � � V �k .Theorem 3 Assume that Hypothesis 2 holds for a dis-tribution � (for example uniform) and a onstant C,that Hypothesis 1 holds with the steady-state distribu-tions ��, and that �� is bounded from below by 1��(with � a onstant), thenlim supk!1 jjV � � V �k jj1 � 2(1� )3p�C "4. ConlusionThe main ontribution of this paper is the error boundson jjV � � V �k jj� derived as a funtion of the approxi-mation errors jjVk�V �k jje�k and the Bellman residualsjjVk�T �kVkjj�k . The distributions �k and e�k indiatethe states that are responsible for the approximationauray. An appliation of this result to linear fun-tion approximation is derived and error bounds that donot depend on the number of states are given, providedthat the MDP satis�es some uniform stohastiity as-sumption (that leads to an upper-bound for �k ande�k) and that the distribution used in the minimizationproblem is lower-bounded (in order to insure some re-liability of the value approximation uniformly over thestate-spae, whih seures poliy improvement steps).In the ase of the QR solution, this was guaranteed byusing a somehow uniform mixed distribution, whereasin the ase of the TD solution, we assumed that thesteady-state distribution was already bounded frombelow.

A. Proof of Theorem 1.De�ne the approximation error: ek = Vk � V �k ,the gain between iteration k and k+1: gk = V �k+1 �V �k , the loss of using poliy �k instead of the optimalpoliy: lk = V � � V �k , and the Bellman residualof the approximate value funtion: bk = Vk � T �kVk.Those ek, gk, lk, and bk are olumn vetors of size N .We �rst state and prove the following results:Lemma 2 It is true that:lk+1 � [P ��lk + P �k+1(ek � gk)� P ��ek℄Proof: Indeed,lk+1 = T ��V � � T ��V �k + T ��V �k � T ��Vk+T ��Vk � T �k+1Vk + T �k+1Vk�T �k+1V �k + T �k+1V �k � T �k+1V �k+1� [P �� lk + P �k+1(V �k � V �k+1)+(P �k+1 � P ��)(Vk � V �k)℄where we used the fat that T ��Vk�T �k+1Vk � 0 sine�k+1 is greedy with respet to Vk. �Lemma 3 It is true that:gk � �(I � P �k+1)�1(P �k+1 � P �k) ekProof: Indeed,gk = T �k+1V �k+1 � T �k+1V �k + T �k+1V �k � T �k+1Vk+T �k+1Vk � T �kVk + T �kVk � T �kV �k� P �k+1gk � (P �k+1 � P �k ) ek� �(I � P �k+1)�1(P �k+1 � P �k) eksine T �k+1Vk � T �kVk � 0. �Lemma 4 It is true that:lk+1 � P ��(V � � V �k ) + [P �k+1(I � P �k+1)�1�P ��(I � P �k)�1℄bk (12)Or equivalentlylk+1 � P ��(V � � V �k ) + [P �k+1(I � P �k+1)�1(I � P �k)� P �� ℄ek (13)Proof: From Lemma 3, we haveek � gk � [I � (I � P �k+1)�1(P �k � P �k+1)℄ek� (I � P �k+1)�1(I � P �k)ekand (13) follows from Lemma 2. Inequality (12) isderived by fatorizing (I�P �k) and by notiing that(I � P �k)ek = Vk � V �k � T �k(Vk � V �k) = Vk �T �kVk = bk is the Bellman residual of the approximatefuntion Vk, whih terminates the proof. �Now, from Lemma 4, we derive the following results:



Corollary 1 We havelim supk!1 lk�(I � P ��)�1lim supk!1 [P �k+1(I � P �k+1)�1�P ��(I � P �k)�1℄ bk (14)or equivalently thatlim supk!1 lk�(I � P ��)�1lim supk!1 [P �k+1(I � P �k+1)�1(I � P �k)� P �� ℄ekProof: Write fk = [P �k+1(I � P �k+1)�1 � P ��(I �P �k)�1℄ bk. Then, from Lemma 4, lk+1 � P ��lk +fk. By taking the limit superior omponent-wise(I � P ��) lim supk!1 lk � lim supk!1 fkAnd the result follows sine I�P �� is invertible. Theproof of the other inequality is similar. �Corollary 2 By de�ning the stohasti matries Qkand eQk as in Theorem 1, we havelim supk!1 lk � 2(1� )2 lim supk!1 Qkjbkjlim supk!1 lk � 2(1� )2 lim supk!1 eQkjekjwhere jbkj and jekj are vetors whose omponents arejbk(i)j and jek(i)j.Proof: First, the fat that Qk and eQk are stohastimatries is a onsequene of the properties that if P1and P2 are stohasti matries, then P1P2, P1+P22 , and(1�)(I�P1)�1 are stohasti matries too (the thirdproperty resulting from the two �rst and the rewrit-ing of (I � P1)�1 as Pt�0 tP t1). The result followswhen taking the absolute value in the inequalities ofCorollary 1. �Now we are able to prove Theorem 1:The fat that �k and e�k are distributions (positivevetors whose omponents sum to one) results fromQk and eQk being stohasti matries. Let us prove(2). For any vetor h; de�ne h2 the vetor whose om-ponents are h2i . We have, from the onvexity of thesquare funtion and from Corollary 2,lim supk!1 jjlkjj2� = lim supk!1 � l2k� 42(1� )4 lim supk!1 �[Qkjbkj℄2� 42(1� )4 lim supk!1 �Qkb2k� 42(1� )4 lim supk!1 �kb2k

Thus lim supk!1 jjlkjj� � 2(1�)2 lim supk!1 jjbkjj�k .Inequality (3) is dedued similarly. �Remark 4 Some intuition about these bounds may bepereived in a spei� ase: assume that the poliy �kwere to onverge, say to e�, and write eV the approxi-mation of V e�. Then from Corollary 1,V � � eV � (I � P ��)�1(P e� � P ��)(eV � V e�)The right hand side of this inequality measures the ex-peted di�erene between the baked-up approximationerrors using e� and ��with respet to the disountedfuture state-distribution indued by the optimal poliy.Thus here, the states responsible for the approximationauray are the states reahed by the optimal poliy aswell as their suessors (for poliy e�).B. Proofs of Setion 3Proof of Lemma 1First, for two stohasti matries P1 and P2 satis-fying (8), for all i and j, we have (P1P2)(i; j) =Pk P1(i; k)P2(k; j) � C�(j)Pk P1(i; k) = C�(j) andreursively, for all k, (P1)k(i; j) � C�(j). Thus also(1� )(I � P1)�1(i; j) = (1� )Pt�0 t(P1)t(i; j) �C�(j).We dedue that Qk de�ned in Theorem 1 satis�esQk(i; j) � C�(j). Thus, �k(j) = (�Qk)(j) =Pi �(i)Qk(i; j) � C�(j)Pi �(i) = C�(j). �Proof of Theorem 2Let us state and prove the two Lemmas:Lemma 5 Lower bounds for ��k and �Æk.We have ��k � (1� �)� and �Æk � (1� Æ)�.Proof: We have ��k = (1 � �)�Pt�0 t(P �k)t � (1 ��)�, and �Æk = (1� Æ)�+ Æ��k � (1� Æ)�. �Lemma 6 Upper bound for jjjP �k jjj��k and jjjP �k jjj�Æk .We havejjjP �k jjj2��k � min( C1� �; 1� ) and jjjP �k jjj2�Æk � CProof: First onsider ��k . From Hypothesis 2,jjP �khjj2��k = ��k (P �kh)2 � ��k P �kh2� C�h2 = Cjjhjj2�Moreover, � = 11����k(I � �P �k ) � 11����k , thusjjhjj2� = �h2 � 11����kh2 = 11�� jjhjj2��k . Therefore, for



all h; jjP �khjj2��k � C1�� jjhjj2��k . Now, it is also true thatjjP �khjj2��k = (1� �)� 1Xt=0 �t(P �k)t(P �kh)2� (1� �)� 1Xt=0 �t(P �k)t+1h2� 1� �� �( 1Xt=0 �t(P �k)th2 � h2)� 1���kh2 = 1� jjhjj2��kThus jjjP �k jjj2��k � min( C1�� ; 1� ).Now onsider �Æk. For any vetor h,jjP �khjj2�Æk = �Æk(P �kh)2� (1� Æ)�P �kh2 + Æ�kP �kh2� C(1� Æ)�h2 + Æ�kh2� C(1� Æ)jjhjj2� + Æjjhjj2�k(where we used the property of the steady distribu-tion �k = �kP �k). Moreover, � = 11�Æ (�Æk � Æ�k),thus jjhjj2� = 11�Æ (jjhjj2�Æk � Æjjhjj2�k ). Thus jjP �khjj2�Æk �C(jjhjj2�Æk � Æjjhjj2�k ) + Æjjhjj�k � Cjjhjj2�Æk sine C � 1.Thus jjjP �khjjj2�Æk � C. �Proof of Theorem 2:For any distribution �, putting together (2),(7) and (6), we have lim supk!1 jjlkjj� �2(1�)2 lim supk!1qjj�k�k jj1jjjI � P �k jjj��k ".Now, from Lemmas 1, 5, 6, and by using the fat thatjjjI � P �jjj�� � 1+ jjjP �jjj�� , we dedue the boundin jj � jj�, but sine this is true for any distribution �,the same bound holds in jj � jj1. �Proof of Theorem 3For any distribution �, let e�k = � eQk with eQk de�nedin Theorem 1. Analogously to (7) we have jjekjj2e�k �jj e�k�k jj1 jjekjj2�k . Similarly to Lemma 1, we have e�k �C�, thus jj e�k�k jj1 � �C. Sine �k is the steady-statedistribution, jjekjj�k � "1� , thus jjekjje�k � p�C "1� ,and from (3),lim supk!1 jjlkjj� � 2(1� )3p�C "and sine this bound holds for any distribution �, italso holds in max-norm. �
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