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Abstract

We provide a natural gradient method that represents the steepest
descent direction based on the underlying structure of the param-
eter space. Although gradient methods cannot make large changes
in the values of the parameters, we show that the natural gradi-
ent is moving toward choosing a greedy optimal action rather than
just a better action. These greedy optimal actions are those that
would be chosen under one improvement step of policy iteration
with approximate, compatible value functions, as de�ned by Sut-
ton et al. [9]. We then show drastic performance improvements in
simple MDPs and in the more challenging MDP of Tetris.

1 Introduction

There has been a growing interest in direct policy-gradient methods for approximate
planning in large Markov decision problems (MDPs). Such methods seek to �nd
a good policy � among some restricted class of policies, by following the gradient
of the future reward. Unfortunately, the standard gradient descent rule is non-
covariant. Crudely speaking, the rule ��i = �@f=@�i is dimensionally inconsistent
since the left hand side has units of �i and the right hand side has units of 1=�i
(and all �i do not necessarily have the same dimensions).

In this paper, we present a covariant gradient by de�ning a metric based on the
underlying structure of the policy. We make the connection to policy iteration
by showing that the natural gradient is moving toward choosing a greedy optimal
action. We then analyze the performance of the natural gradient in both simple
and complicated MDPs. Consistent with Amari's �ndings [1], our work suggests
that the plateau phenomenon might not be as severe using this method.

2 A Natural Gradient

A �nite MDP is a tuple (S; s0; A;R; P ) where: S is �nite set of states, s0 is a start
state, A is a �nite set of actions, R is a reward function R : S�A! [0; Rmax], and
P is the transition model. The agent's decision making procedure is characterized
by a stochastic policy �(a; s), which is the probability of taking action a in state
s (a semi-colon is used to distinguish the random variables from the parameters of



the distribution). We make the assumption that every policy � is ergodic, ie has a
well-de�ned stationary distribution ��. Under this assumption, the average reward
(or undiscounted reward) is �(�) �

P
s;a �

�(s)�(a; s)R(s; a), the state-action value

is Q�(s; a) � E�f
P
1

t=0 R(st; at) � �(�)js0 = s; a0 = ag and the value function is
J�(s) � E�(a0;s)fQ

�(s; a0)g, where and st and at are the state and action at time t.
We consider the more di�cult case where the goal of the agent is to �nd a policy that
maximizes the average reward over some restricted class of smoothly parameterized
policies, ~� = f�� : � 2 <mg, where �� represents the policy �(a; s; �).

The exact gradient of the average reward (see [8, 9]) is:

r�(�) =
X
s;a

��(s)r�(a; s; �)Q�(s; a) (1)

where we abuse notation by using �(�) instead of �(��). The steepest descent
direction of �(�) is de�ned as the vector d� that minimizes �(� + d�) under
the constraint that the squared length jd�j2 is held to a small constant. This
squared length is de�ned with respect to some positive-de�nite matrix G(�), ie
jd�j2 �

P
ij Gij(�)d�id�j = d�TG(�)d� (using vector notation). The steepest de-

scent direction is then given by G�1r�(�) [1]. Standard gradient descent follows
the direction r�(�) which is the steepest descent under the assumption that G(�)
is the identity matrix, I . However, this as hoc choice of a metric is not necessarily
appropriate. As suggested by Amari [1], it is better to de�ne a metric based not
on the choice of coordinates but rather on the manifold (ie the surface) that these
coordinates parameterize. This metric de�nes the natural gradient.

Though we slightly abuse notation by writing �(�), the average reward is technically
a function on the set of distributions f�� : � 2 <mg. To each state s, there
corresponds a probability manifold, where the distribution �(a; s; �) is a point on
this manifold with coordinates �. The Fisher information matrix of this distribution
�(a; s; �) is

Fs(�) � E�(a;s;�)[
@ log�(a; s; �)

@�i

@ log�(a; s; �)

@�j
] ; (2)

and it is clearly positive de�nite. As shown by Amari (see [1]), the Fisher infor-
mation matrix, up to a scale, is an invariant metric on the space of the parameters
of probability distributions. It is invariant in the sense that it de�nes the same
distance between two points regardless of the choice of coordinates (ie the param-
eterization) used, unlike G = I .

Since the average reward is de�ned on a set of these distributions, the straightfor-
ward choice we make for the metric is:

F (�) � E��(s)[Fs(�)] (3)

where the expectation is with respect to the stationary distribution of ��. Notice
that although each Fs is independent of the parameters of the MDP's transition
model, the weighting by the stationary distribution introduces dependence on these
parameters. Intuitively, Fs(�) measures distance on a probability manifold corre-
sponding to state s and F (�) is the average such distance. The steepest descent
direction this gives is:

er�(�) � F (�)�1r�(�) : (4)



3 The Natural Gradient and Policy Iteration

We now compare policy improvement under the natural gradient to policy iteration.
For an appropriate comparison, consider the case in which Q�(s; a) is approximated
by some compatible function approximator f�(s; a;!) parameterized by ! [9, 6].

3.1 Compatible Function Approximation

For vectors �; ! 2 <m, we de�ne:

 (s; a)� = r log�(a; s; �); f�(s; a;!) = !T �(s; a) (5)

where [r log�(a; s; �)]i = @ log�(a; s; �)=@�i. Let ~! minimize the squared error
�(!; �) �

P
s;a �

�(s)�(a; s; �)(f�(s; a;!)�Q�(s; a))2. This function approximator is

compatible with the policy in the sense that if we use the approximations f�(s; a; ~!)
in lieu of their true values to compute the gradient (equation 1), then the result
would still be exact [9, 6] (and is thus a sensible choice to use in actor-critic schemes).

Theorem 1. Let ~! minimize the squared error �(!; ��). Then

~! = er�(�) :
Proof. Since ~! minimizes the squared error, it satis�es the condition @�=@!i = 0,
which implies:

X
s;a

��(s)�(a; s; �) �(s; a)( �(s; a)T ~! �Q�(s; a)) = 0 :

or equivalently:

(
X
s;a

��(s)�(a; s; �) �(s; a) �(s; a)T )~! =
X
s;a

��(s)�(a; s; �) �(s; a)Q�(s; a) :

By de�nition of  �, r�(a; s; �) = �(a; s; �) �(s; a) and so the right hand side is
equal to r�. Also by de�nition of  �, F (�) =

P
s;a �

�(s)�(a; s; �) �(s; a) �(s; a)T .
Substitution leads to:

F (�)~! = r�(�) :

Solving for ~! gives ~! = F (�)�1r�(�), and the result follows from the de�nition of
the natural gradient.

Thus, sensible actor-critic frameworks (those using f�(s; a;!)) are forced to use the
natural gradient as the weights of a linear function approximator. If the function ap-
proximation is accurate, then good actions (ie those with large state-action values)
have feature vectors that have a large inner product with the natural gradient.

3.2 Greedy Policy Improvement

A greedy policy improvement step using our function approximator would choose
action a in state s if a 2 argmaxa0f�(s; a0; ~!). In this section, we show that the
natural gradient tends to move toward this best action, rather than just a good
action.

Let us �rst consider policies in the exponential family (�(a; s; �) / exp(�T�sa)
where �sa is some feature vector in <m). The motivation for the exponential family
is because it has a�ne geometry (ie the �at geometry of a plane), so a translation of
a point by a tangent vector will keep the point on the manifold. In general, crudely



speaking, the probability manifold of �(a; s; �) could be curved, so a translation of
a point by a tangent vector would not necessarily keep the point on the manifold
(such as on a sphere). We consider the general (non-exponential) case later.

We now show, for the exponential family, that a su�ciently large step in the natural
gradient direction will lead to a policy that is equivalent to a policy found after a
greedy policy improvement step.

Theorem 2. For �(a; s; �) / exp(�T�sa), assume that er�(�) is non-zero and that

~! minimizes the approximation error. Let �1(a; s) = lim�!1 �(a; s; � + �er�(�)).
Then �1(a; s) 6= 0 if and only if a 2 argmaxa0f�(s; a0; ~!).

Proof. By the previous result, f�(s; a; ~!) = er�(�)T �(s; a). By de�nition of
�(a; s; �),  �(s; a) = �sa � E�(a0;s;�)(�sa0 ). Since E�(a0;s;�)(�sa0) is not a function
of a, it follows that

argmaxa0f�(s; a0; ~!) = argmaxa0
er�(�)T�sa0 :

After a gradient step, �(a; s; � + �er�(�)) / exp(�T�sa + �er�(�)T �sa). Since
er�(�) 6= 0, it is clear that as � ! 1 the term er�(�)T�sa dominates, and so

�1(a; s) = 0 if and only if a =2 argmaxa0
er�(�)T�sa0 .

It is in this sense that the natural gradient tends to move toward choosing the best
action. It is straightforward to show that if the standard non-covariant gradient
rule is used instead then �1(a; s) will select only a better action (not necessarily
the best), ie it will choose an action a such that f�(s; a; ~!) > E�(a0;s)ff

�(s; a0; ~!)g.
Our use of the exponential family was only to demonstrate this point in the extreme
case of an in�nite learning rate.

Let us return to case of a general parameterized policy. The following theorem shows
that the natural gradient is locally moving toward the best action, determined by
the local linear approximator for Q�(s; a).

Theorem 3. Assume that ~! minimizes the approximation error and let the update

to the parameter be �0 = � + �er�(�). Then

�(a; s; �0) = �(a; s; �)(1 + f�(s; a; ~!)) +O(�2)

Proof. The change in �, ��, is �er�(�), so by theorem 1, �� = �~!. To �rst order,

�(a; s; �0) = �(a; s; �) +
@�(a; s; �)T

@�
�� +O(��2)

= �(a; s; �)(1 +  (s; a)T��) +O(��2)

= �(a; s; �)(1 + � (s; a)T ~!) +O(�2)

= �(a; s; �)(1 + �f�(s; a; ~!)) +O(�2) ;

where we have used the de�nition of  and f .

It is interesting to note that choosing the greedy action will not in general improve
the policy, and many detailed studies have gone into understanding this failure [3].
However, with the overhead of a line search, we can guarantee improvement and
move toward this greedy one step improvement. Initial improvement is guaranteed
since F is positive de�nite.



4 Metrics and Curvatures

Obviously, our choice of F is not unique and the question arises as to whether or
not there is a better metric to use than F . In the di�erent setting of parameter
estimation, the Fisher information converges to the Hessian, so it is asymptotically
e�cient [1], ie attains the Cramer-Rao bound. Our situation is more similar to
the blind source separation case where a metric is chosen based on the underlying
parameter space [1] (of non-singular matrices) and is not necessarily asymptotically
e�cient (ie does not attain second order convergence). As argued by Mackay [7],
one strategy is to pull a metric out of the data-independent terms of the Hessian (if
possible), and in fact, Mackay [7] arrives at the same result as Amari for the blind
source separation case.

Although the previous sections argued that our choice is appropriate, we would like
to understand how F relates to the Hessian r2�(�), which, as shown in [5], has the
form:

r2�(�) =
X
sa

��(s)(r2�(a; s)Q�(s; a)+r�(a; s)rQ�(s; a)T+rQ�(s; a)r�(a; s)T ):

(6)
Unfortunately, all terms in this Hessian are data-dependent (ie are coupled to state-
action values). It is clear that F does not capture any information from these last
two terms, due to their rQ� dependence. The �rst term might have some relation
to F due the factor of r2�. However, the Q values weight this curvature of our
policy and our metric is neglecting such weighting.

Similar to the blind source separation case, our metric clearly does not necessarily
converge to the Hessian and so it is not necessarily asymptotically e�cient (ie does
not attain a second order convergence rate). However, in general, the Hessian will
not be positive de�nite and so the curvature it provides could be of little use until
� is close to a local maxima. Conjugate methods would be expected to be more
e�cient near a local maximum.

5 Experiments

We �rst look at the performance of the natural gradient in a few simple MDPs
before examining its performance in the more challenging MDP of Tetris. It is
straightforward to estimate F in an online manner, since the derivatives r log�
must be computed anyway to estimate r�(�). If the update rule

f  f +r log �(at; st; �)r log �(at; st; �)
T

is used in a T -length trajectory, then f=T is a consistent estimate of F . In our
�rst two examples, we do not concern ourselves with sampling issues and instead

numerically integrate the exact derivative (�t = �0 +
R t
0 r�(�t)d�). In all of our

simulations, the policies tend to become deterministic (r log� ! 0) and to prevent
F from becoming singular, we add about 10�3I at every step in all our simulations.

We simulated the natural policy gradient in a simple 1-dimensional linear quadratic
regulator with dynamics x(t + 1) = :7x(t) + u(t) + �(t) and noise distribution
� � G(0; 1). The goal is to apply a control signal u to keep the system at
x = 0, (incurring a cost of x(t)2 at each step). The parameterized policy used
was �(u;x; �) / exp(�1x

2 + �2x). Figure 1A shows the performance improvement
when the units of the parameters are scaled by a factor of 10 (see �gure text). No-
tice that the time to obtain a score of about 22 is about three orders of magnitude
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Figure 1: A) The cost vs. log10(time) for an LQG (with 20 time step trajectories).
The policy used was �(u;x; �) / exp(�1s1x

2+�2s2x) where the rescaling constants,
s1 and s2, are shown in the legend. Under equivalent starting distributions (�1s1 =
�2s2 = �:8), the right-most three curves are generated using the standard gradient
method and the rest use the natural gradient. B) See text. C top) The average
reward vs. time (on a 107 scale) of a policy under standard gradient descent using
the sigmoidal policy parameterization (�(1; s; �i) / exp(�i)=(1 + exp(�i)), with the
initial conditions �(i; 1) = :8 and �(j; 1) = :1. C bottom) The average reward vs.
time (unscaled) under standard gradient descent (solid line) and natural gradient
descent (dashed line) for an early window of the above plot. D) Phase space plot
for the standard gradient case (the solid line) and the natural gradient case (dashed
line).

faster. Also notice that the curves under di�erent rescaling are not identical. This
is because F is not an invariant metric due to the weighting by �s.

The e�ects of the weighting by �(s) are particularly clear in a simple 2-state MDP
(Figure 1B), which has self- and cross-transition actions and rewards as shown.
Increasing the chance of a self-loop at i decreases the stationary probability of j.
Using a sigmoidal policy parameterization (see �gure text) and initial conditions
corresponding to �(i) = :8 and �(j) = :2, both self-loop action probabilities will ini-
tially be increased under a gradient rule (since one step policy improvement chooses
the self-loop for each state). Since the standard gradient weights the learning to
each parameter by �(s) (see equation 1), the self-loop action at state i is increased
faster than the self loop probability at j, which has the e�ect of decreasing the ef-
fective learning-rate to state j even further. This leads to an extremely �at plateau
with average reward 1 (shown in Figure 1C top), where the learning for state j is
thwarted by its low stationary probability. This problem is so severe that before the
optimal policy is reached �(j) drops as low as 10�7 from its initial value of :2, which
is disastrous for sampling methods. Figure 1C bottom shows the performance of
the natural gradient (in a very early time window of Figure 1C top). Not only is
the time to the optimal policy decreased by a factor of 107, the stationary distri-
bution of state i never drops below :05. Note though the standard gradient does
increase the average reward faster at the start, but only to be seduced by sticking
at state i. The phase space plot in Figure 1D shows the uneven learning to the
di�erent parameters, which is at the heart of the problem. In general, if a table
lookup Boltzmann policy is used (ie �(a; s; �) / exp(�sa)), it is straightforward to

show that the natural gradient weights the components of er� uniformly (instead of
using �(s)), thus evening evening out the learning to all parameters.

The game of Tetris provides a challenging high dimensional problem. As shown in
[3], greedy policy iteration methods using a linear function approximator exhibit
drastic performance degradation after providing impressive improvement (see [3]
for a description of the game, methods, and results). The upper curve in Figure2A
replicates these results. Tetris provides an interesting case to test gradient methods,
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Figure 2: A) Points vs. log(Iterations). The top curve duplicates the same results
in [3] using the same features (which were simple functions of the heights of each
column and the number of holes in the game). We have no explanation for this per-
formance degradation (nor does [3]). The lower curve shows the poor performance
of the standard gradient rule. B) The curve on the right shows the natural policy
gradient method (and uses the biased gradient method of [2] though this method
alone gave poor performance). We found we could obtain faster improvement and
higher asymptotes if the robustifying factor of 10�3I that we added to F was more
carefully controlled (we did not carefully control the parameters). C) Due to the
intensive computational power required of these simulations we ran the gradient in a
smaller Tetris game (height of 10 rather than 20) to demonstrate that the standard
gradient updates (right curve) would eventually reach the same performance of the
natural gradient (left curve).

which are guaranteed not to degrade the policy. We consider a policy compatible
with the linear function approximator used in [3] (ie �(a; s; �) / exp(�T�sa) where
�sa are the same feature vectors). The features used in [3] are the heights of each
column, the di�erences in height between adjacent columns, the maximum height,
and the number of 'holes'. The lower curve in Figure 2A shows the particularly
poor performance of the standard gradient method. In an attempt to speed learn-
ing, we tried a variety of more sophisticated methods to no avail, such as conjugate
methods, weight decay, annealing, the variance reduction method of [2], the Hes-
sian in equation 6, etc. Figure 2B shows a drastic improvement using the natural
gradient (note that the timescale is linear). This performance is consistent with our
theoretical results in section 3, which showed that the natural gradient is moving
toward the solution of a greedy policy improvement step. The performance is some-
what slower than the greedy policy iteration (left curve in Figure 2B) which is to be
expected using smaller steps. However, the policy does not degrade with a gradient
method. Figure 2 shows that the performance of the standard gradient rule (right
curve) eventually reaches the the same performance of the natural gradient, in a
scaled down version of the game (see �gure text).

6 Discussion

Although gradient methods cannot make large policy changes compared to greedy
policy iteration, section 3 implies that these two methods might not be that dis-
parate, since a natural gradient method is moving toward the solution of a policy
improvement step. With the overhead of a line search, the methods are even more
similar. The bene�t is that performance improvement is now guaranteed, unlike in
a greedy policy iteration step.

It is interesting, and unfortunate, to note that the F does not asymptotically con-
verge to the Hessian, so conjugate gradient methods might be more sensible asymp-
totically. However, far from the converge point, the Hessian is not necessarily



informative, and the natural gradient could be more e�cient (as demonstrated in
Tetris). The intuition as to why the natural gradient could be e�cient far from the
maximum, is that it is pushing the policy toward choosing greedy optimal actions.
Often, the region (in parameter space) far from from the maximum is where large
performance changes could occur. Su�ciently close to the maximum, little perfor-
mance change occurs (due to the small gradient), so although conjugate methods
might converge faster near the maximum, the corresponding performance change
might be negligible. More experimental work is necessary to further understand the
e�ectiveness of the natural gradient.
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