
A New Extension of the Kalman Filter to NonlinearSystemsSimon J. Julier Je�rey K. Uhlmannsiju@robots.ox.ac.uk uhlmann@robots.ox.ac.ukThe Robotics Research Group, Department of Engineering Science, The University of OxfordOxford, OX1 3PJ, UK, Phone: +44-1865-282180, Fax: +44-1865-273908ABSTRACTThe Kalman �lter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity,optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be di�cult.The most common approach is to use the Extended Kalman Filter (EKF) which simply linearises all nonlinearmodels so that the traditional linear Kalman �lter can be applied. Although the EKF (in its many forms) is awidely used �ltering strategy, over thirty years of experience with it has led to a general consensus within thetracking and control community that it is di�cult to implement, di�cult to tune, and only reliable for systemswhich are almost linear on the time scale of the update intervals.In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretelysampled points can be used to parameterise mean and covariance, the estimator yields performance equivalent tothe KF for linear systems yet generalises elegantly to nonlinear systems without the linearisation steps requiredby the EKF. We show analytically that the expected performance of the new approach is superior to that of theEKF and, in fact, is directly comparable to that of the second order Gauss �lter. The method is not restrictedto assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation andmore accurate estimation features of the new �lter recommend its use over the EKF in virtually all applications.Keywords: Navigation, estimation, non-linear systems, Kalman �ltering, sampling.1 INTRODUCTIONFiltering and estimation are two of the most pervasive tools of engineering. Whenever the state of a systemmust be estimated from noisy sensor information, some kind of state estimator is employed to fuse the data fromdi�erent sensors together to produce an accurate estimate of the true system state. When the system dynamicsand observation models are linear, the minimum mean squared error (MMSE) estimate may be computed usingthe Kalman �lter. However, in most applications of interest the system dynamics and observation equations arenonlinear and suitable extensions to the Kalman �lter have been sought. It is well-known that the optimal solutionto the nonlinear �ltering problem requires that a complete description of the conditional probability density ismaintained14. Unfortunately this exact description requires a potentially unbounded number of parameters anda number of suboptimal approximations have been proposed6�8; 13; 16; 21.



Probably the most widely used estimator for nonlinear systems is the extended Kalman �lter (EKF)20; 22.The EKF applies the Kalman �lter to nonlinear systems by simply linearising all the nonlinear models so thatthe traditional linear Kalman �lter equations can be applied. However, in practice, the use of the EKF has twowell-known drawbacks:1. Linearisation can produce highly unstable �lters if the assumptions of local linearity is violated.2. The derivation of the Jacobian matrices are nontrivial in most applications and often lead to signi�cantimplementation di�culties.In this paper we derive a new linear estimator which yields performance equivalent to the Kalman �lter forlinear systems, yet generalises elegantly to nonlinear systems without the linearisation steps required by theEKF. The fundamental component of this �lter is the unscented transformation which uses a set of appropriatelychosen weighted points to parameterise the means and covariances of probability distributions. We argue thatthe expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparableto that of the second order Gauss �lter. Further, the nature of the transform is such that the process andobservation models can be treated as \black boxes". It is not necessary to calculate Jacobians and so thealgorithm has superior implementation properties to the EKF. We demonstrate the di�erences in performance inan example application, and we argue that the ease of implementation and more accurate estimation features ofthe new �lter recommend its use over the EKF in virtually all applications.The structure of this paper is as follows. In Section 2 we describe the problem statement for applying aKalman �lter to nonlinear systems. We argue that the principle problem is the ability to predict the state ofthe system. Section 3 introduces the unscented transformation. Its properties are analysed and a full �lteringalgorithm, which includes the e�ects of process noise, is developed. In Section 4 an example is presented. Usingrealistic data, the comparison of the unscented �lter and EKF for the tracking of a reentry body is considered.Conclusions are drawn in Section 5. A companion paper10, extends the basic method and shows that judiciouslyselecting additional points can lead to any desired level of accuracy for any given prior distribution.2 ESTIMATION IN NONLINEAR SYSTEMS2.1 Problem StatementWe wish to apply a Kalman �lter to a nonlinear discrete time system of the formx (k + 1) = f [x (k) ;u (k) ;v(k); k] ; (1)z (k) = h [x (k) ;u (k) ; k] +w(k); (2)where x (k) is the n-dimensional state of the system at timestep k, u (k) is the input vector, v(k) is the q-dimensional state noise process vector due to disturbances and modelling errors, z (k) is the observation vectorand w(k) is the measurement noise. It is assumed that the noise vectors v(k) and w(k), are zero-mean andE �v(i)vT (j)� = �ijQ (i) ; E �w(i)wT (j)� = �ijR (i) ; E �v(i)wT (j)� = 0; 8i; j:The Kalman �lter propagates the �rst two moments of the distribution of x (k) recursively and has a distinctive\predictor-corrector" structure. Let x̂ (i j j) be the estimate of x (i) using the observation information informationup to and including time j, Zj = [z (1) ; : : : ; z (j)]. The covariance of this estimate is P (i j j). Given an estimatex̂ (k j k), the �lter �rst predicts what the future state of the system will be using the process model. Ideally, thepredicted quantities are given by the expectationsx̂ (k + 1 j k) = E �f [x (k) ;u (k) ;v(k); k] jZk� (3)P (k + 1 j k) = E hfx (k + 1)� x̂ (k + 1 j k)g fx (k + 1)� x̂ (k + 1 j k)gT jZki : (4)



When f [�] and h [�] are nonlinear, the precise values of these statistics can only be calculated if the distributionof x (k), condition on Zk, is known. However, this distribution has no general form and a potentially unboundednumber of parameters are required. In many applications, the distribution of x (k) is approximated so that only a�nite and tractable number of parameters need be propagated. It is conventionally assumed that the distributionof x (k) is Gaussian for two reasons. First, the distribution is completely parameterised by just the mean andcovariance. Second, given that only the �rst two moments are known, the Gaussian distribution is the leastinformative3.The estimate x̂ (k + 1 j k + 1) is given by updating the prediction with the current sensor measurement. Inthe Kalman �lter a linear update rule is speci�ed and the weights are chosen to minimise the mean squared errorof the estimate. The update rule isx̂ (k + 1 j k + 1) = x̂ (k + 1 j k) +W (k + 1) � (k + 1) ;P (k + 1 j k + 1) = P (k + 1 j k)�W (k + 1)P�� (k + 1 j k)WT (k + 1)� (k + 1) = z (k + 1)� ẑ (k + 1 j k)W (k + 1) = Px� (k + 1 j k)P�1�� (k + 1 j k) :It is important to note that these equations are only a function of the predicted values of the �rst two momentsof x (k) and z (k). Therefore, the problem of applying the Kalman �lter to a nonlinear system is the ability topredict the �rst two moments of x (k) and z (k). This problem is a speci�c case of a general problem | to beable to calculate the statistics of a random variable which has undergone a nonlinear transformation.2.2 The Transformation of UncertaintyThe problem of predicting the future state or observation of the system can be expressed in the followingform. Suppose that x is a random variable with mean �x and covariance Pxx. A second random variable, y isrelated to x through the nonlinear function y = f [x] : (5)We wish to calculate the mean �y and covariance Pyy of y.The statistics of y are calculated by (i) determining the density function of the transformed distribution and(ii) evaluating the statistics from that distribution. In some special cases (for example when f [�] is linear) exact,closed form solutions exist. However, such solutions do not exist in general and approximate methods must beused. In this paper we advocate that the method should yield consistent statistics. Ideally, these should bee�cient and unbiased.The transformed statistics are consistent if the inequalityPyy � E hfy � �yg fy� �ygT i � 0 (6)holds. This condition is extremely important for the validity of the transformation method. If the statistics arenot consistent, the value of Pyy is under -estimated. If a Kalman �lter uses the inconsistent set of statistics, itwill place too much weight on the information and under estimate the covariance, raising the possibility thatthe �lter will diverge. By ensuring that the transformation is consistent, the �lter is guaranteed to be consistentas well. However, consistency does not necessary imply usefulness because the calculated value of Pyy might begreatly in excess of the actual mean squared error. It is desirable that the transformation is e�cient | the valueof the left hand side of Equation 6 should be minimised. Finally, it is desirable that the estimate is unbiased or�y � E [y].The problem of developing a consistent, e�cient and unbiased transformation procedure can be examined byconsidering the Taylor series expansion of Equation 5 about �x. This series can be expressed (using rather informal



notation) as: f [x] = f [�x+ ���x]= f [�x] +rrrf���x+ 12rrr2f���x2 + 13!rrr3f���x3 + 14!rrr4f���x4 + � � � (7)where ���x is a zero mean Gaussian variable with covariance Pxx, and rrrnf���xn is the appropriate nth order termin the multidimensional Taylor Series. Taking expectations, it can be shown that the transformed mean andcovariance are �y = f [�x] + 12rrr2f Pxx + 12rrr4f E ����x4�+ � � � (8)Pyy =rrrf Pxx(rrrf)T + 12� 4!rrr2f �E ����x4�� E ����x2Pyy�� E �Pyy���x2�+ P2yy� (rrr2f)T +13!rrr3fE ����x4� (rrrf)T + � � � : (9)In other words, the nth order term in the series for �x is a function of the nth order moments of x multiplied bythe nth order derivatives of f [�] evaluated at x = �x. If the moments and derivatives can be evaluated correctlyup to the nth order, the mean is correct up to the nth order as well. Similar comments hold for the covarianceequation as well, although the structure of each term is more complicated. Since each term in the series is scaledby a progressively smaller and smaller term, the lowest order terms in the series are likely to have the greatestimpact. Therefore, the prediction procedure should be concentrated on evaluating the lower order terms.Linearisation assumes that the second and higher order terms of ���x in Equation 7 can be neglected. Underthis assumption, �y = f [�x] ; (10)Pyy =rrrf Pxx (rrrf)T : (11)Comparing these expressions with Equations 8 and 9, it is clear that these approximations are accurate only ifthe second and higher order terms in the mean and fourth and higher order terms in the covariance are negligible.However, in many practical situations linearisation introduces signi�cant biases or errors. An extremely commonand important problem is the transformation of information between polar and Cartesian coordinate systems10; 15.This is demonstrated by the simple example given in the next subsection.2.3 ExampleSuppose a mobile robot detects beacons in its environment using a range-optimised sonar sensor. The sensorreturns polar information (range r and bearing �) and this is to be converted to estimate to Cartesian coordinates.The transformation is: �xy� = �r cos �r sin �� with rrrf = �cos � �r sin �sin � r cos � � :The real location of the target is (0; 1). The di�culty with this transformation arises from the physical propertiesof the sonar. Fairly good range accuracy (with 2cm standard deviation) is traded o� to give a very poor bearingmeasurement (standard deviation of 15�). The large bearing uncertainty causes the assumption of local linearityto be violated.
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True mean: x      EKF mean: oFigure 1: The mean and standard deviation el-lipses for the actual and linearised form of thetransformation. The true mean is at � and theuncertainty ellipse is solid. Linearisation calcu-lates the mean at � and the uncertainty ellipse isdashed.

To appreciate the errors which can be caused bylinearisation, its values of the statistics of (x; y) werecompared with those calculated by the true statisticswhich are calculated by Monte Carlo simulation. Dueto the slow convergence of random sampling methods,an extremely large number of samples (3:5�106) wereused to ensure that accurate estimates of the true stat-istics were obtained. The results are shown in Figure 1.This �gure shows the mean and 1� contours for whichare calculated by each method. The 1� contour is thelocus of points fy : (y � �y)P�1y (y � �y) = 1g and is agraphical representation of the size and orientation ofPyy. As can be seen, the linearised transformation isbiased and inconsistent. This is most pronounced inthe range direction, where linearisation estimates thatthe position is 1m whereas in reality it is 96.7cm. Thisis extremely substantial. Linearisation errors e�ect-ively introduce an error which is over 1.5 times thestandard deviation of the range measurement. Since itis a bias which arises from the transformation processitself, the same error with the same sign will be com-mitted each time a coordinate transformation takesplace. Even if there were no bias, the transformationis inconsistent. Its ellipse is not long enough in the r direction. In fact, the nature of the inconsistency compoundsthe problem of the biased-ness: not only is the estimate or r in error, but also its estimated mean squared erroris much smaller than the true value.In practice the inconsistency can be resolved by introducing additional stabilising noise which increases thesize of the transformed covariance. This is one possible of why EKFs are so di�cult to tune | su�cient noisemust be introduced to o�set the defects of linearisation. However, introducing stabilising noise is an undesirablesolution since the estimate remains biased and there is no general guarantee that the transformed estimate remainsconsistent or e�cient. A more accurate prediction algorithm is required.3 THE UNSCENTED TRANSFORM3.1 The Basic Idea
Transformation

Nonlinear 

Figure 2: The principle of the unscented trans-form.
The unscented transformation is a new, novelmethod for calculating the statistics of a random vari-able which undergoes a nonlinear transformation. It isfounded on the intuition that it is easier to approxim-ate a Gaussian distribution than it is to approximatean arbitrary nonlinear function or transformation23.The approach is illustrated in Figure 2. A set of points(or sigma points) are chosen so that their sample meanand sample covariance are �x and Pxx. The nonlinearfunction is applied to each point in turn to yield a cloudof transformed points and �y and Pyy are the statist-ics of the transformed points. Although this methodbares a super�cial resemblance to Monte Carlo-type



methods, there is an extremely important and fundamental di�erence. The samples are not drawn at randombut rather according to a speci�c, deterministic algorithm. Since the problems of statistical convergence are notan issue, high order information about the distribution can be captured using only a very small number of points.The n-dimensional random variable x with mean �x and covariance Pxx is approximated by 2n + 1 weightedpoints given by X 0 = �x W0 = �=(n+ �)X i = �x+ �p(n+ �)Pxx�i Wi = 1=2(n+ �)X i+n = �x� �p(n+ �)Pxx�i Wi+n = 1=2(n+ �) (12)where � 2 <, �p(n+ �)Pxx�i is the ith row or column of the matrix square root of (n + �)Pxx and Wi is theweight which is associated with the ith point. The transformation procedure is as follows:1. Instantiate each point through the function to yield the set of transformed sigma points,Y i = f [X i] :2. The mean is given by the weighted average of the transformed points,�y = 2nXi=0WiY i: (13)3. The covariance is the weighted outer product of the transformed points,Pyy = 2nXi=0 Wi fY i � �yg fY i � �ygT : (14)The properties of this algorithm have been studied in detail elsewhere9; 12 and we present a summary of theresults here:1. Since the mean and covariance of x are captured precisely up to the second order, the calculated valuesof the mean and covariance of y are correct to the second order as well. This means that the mean iscalculated to a higher order of accuracy than the EKF, whereas the covariance is calculated to the sameorder of accuracy. However, there are further performance bene�ts. Since the distribution of x is beingapproximated rather than f [�], its series expansion is not truncated at a particular order. It can be shownthat the unscented algorithm is able to partially incorporate information from the higher orders, leading toeven greater accuracy.2. The sigma points capture the same mean and covariance irrespective of the choice of matrix square rootwhich is used. Numerically e�cient and stable methods such as the Cholesky decomposition18 can be used.3. The mean and covariance are calculated using standard vector and matrix operations. This means that thealgorithm is suitable for any choice of process model, and implementation is extremely rapid because it isnot necessary to evaluate the Jacobians which are needed in an EKF.4. � provides an extra degree of freedom to \�ne tune" the higher order moments of the approximation, andcan be used to reduce the overall prediction errors. When x (k) is assumed Gaussian, a useful heuristic is toselect n+ � = 3. If a di�erent distribution is assumed for x (k) then a di�erent choice of � might be moreappropriate.



5. Although � can be positive or negative, a negative choice of � can lead to a non-positive semide�nite estimateof Pyy. This problem is not uncommon for methods which approximate higher order moments or probabilitydensity distributions8; 16; 21. In this situation, it is possible to use amodi�ed form of the prediction algorithm.The mean is still calculated as before, but the \covariance" is evaluated about X 0 (k + 1 j k) : It can beshown that the modi�ed form ensures positive semi-de�niteness and, in the limit as (n+ �)! 0,lim(n+�)!0 �y = f [�x] + 12rrr2f Pxx; lim(n+�)!0 Pyy =rrrf Pxx (rrrf)T :In other words, the algorithm can be made to perform exactly like the second Order Gauss Filter, butwithout the need to calculate Jacobians or Hessians.
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True mean: x      EKF mean: o       Kappa mean: +Figure 3: The unscented transform as applied tothe measurement example.

The performance bene�ts of using the unscentedtransform can be seen in Figure 3 which shows themeans and 1� contours determined by the di�erentmethods. The true mean lies at � with a dotted cov-ariance contour. The position of the unscented meanis indicated by a ? and its contour is solid. The linear-ised mean is at � and used a dashed contour. As can beseen the unscented mean value is the same as the truevalue | on the scale of the graph, the two points lie ontop of one another. Further, the unscented transformis consistent | in fact, its contour is slightly largerthan the true contour in the r direction.Given its properties of superior estimation accuracyand ease of implementation, the unscented transformis better suited than linearisation for �ltering applica-tions. Indeed, since it can predict the mean and covari-ance with second order accuracy, any �lter which usesthe unscented transform will have the same perform-ance as the Truncated Second Order Gauss Filter1 butdoes not require the derivation of Jacobians or Hessi-ans. The next subsection examines the application ofthe unscented transform to the �ltering problem and develops the unscented �lter.3.2 The Unscented FilterThe transformation processes which occur in a Kalman �lter consist of the following steps:� Predict the new state of the system x̂ (k + 1 j k) and its associated covariance P (k + 1 j k). This predictionmust take account of the e�ects of process noise.� Predict the expected observation ẑ (k + 1 j k) and the innovation covariance P�� (k + 1 j k). This predictionshould include the e�ects of observation noise.� Finally, predict the cross-correlation matrix Pxz (k + 1 j k) :These steps can be easily accommodated by slightly restructuring the state vector and process and observationmodels. First, the state vector is augmented with the process and noise terms to give an na = n+ q dimensional



1. The set of sigma points are created by applying Equation 12 to the augmented system given by Equa-tion 15.2. The transformed set is given by instantiating each point through the process model,X i (k + 1 j k) = f [Xai (k j k) ; u (k) ; k] :3. The predicted mean is computed asx̂ (k + 1 j k) = 2naXi=0 WiX ai (k + 1 j k) :4. And the predicted covariance is computed asP (k + 1 j k) 2naXi=0 Wi fX i (k + 1 j k)� x̂ (k + 1 j k)g fX i (k + 1 j k)� x̂ (k + 1 j k)gT5. Instantiate each of the prediction points through the observation model,Zi (k + 1 j k) = h [X i (k + 1 j k) ; u (k) ; k]6. The predicted observation is calculated byẑ (k + 1 j k) = 2naXi=1 WiZi (k + 1 j k) :7. Since the observation noise is additive and independent, the innovation covariance isP�� (k + 1 j k) = R (k + 1) + 2naXi=0 Wi fZi (k j k � 1)� ẑ (k + 1 j k)g fZi (k j k � 1)� ẑ (k + 1 j k)gT8. Finally the cross correlation matrix is determined byPxz (k + 1 j k) = 2naXi=0 Wi fX i (k j k � 1)� x̂ (k + 1 j k)g fZi (k j k � 1)� ẑ (k + 1 j k)gTBox 3.1: The prediction algorithm using the unscented transform.vector, xa (k) = �x (k)v(k)� :The process model is rewritten as a function of xa (k),x (k + 1) = f [xa (k) ;u (k) ; k]and the unscented transform uses 2na + 1 sigma points which are drawn fromx̂a (k j k) = �x̂ (k j k)0q�1 � and Pa (k j k) = � P (k j k) Pxv (k j k)Pxv (k j k) Q (k) � : (15)The matrices on the leading diagonal are the covariances and o�-diagonal sub-blocks are the correlationsbetween the state errors and the process noises. Although this method requires the use of additional sigmapoints, it means that the e�ects of the process noise (in terms of its impact on the mean and covariance) areintroduced with the same order of accuracy as the uncertainty in the state. The formulation also means that



correlated noise sources (which can arise in Schmidt-Kalman �lters19) can be implemented extremely easily. Theexpression for the unscented transform is given by the equations in Box 3.1.Various extensions and modi�cations can be made to this basic method to take account of speci�c details ofa given application. For example, if the observation noise is introduced in a nonlinear fashion, or is correlatedwith process and/or observation noise, then the augmented vector is expanded to include the observation terms.This section has developed the unscented transform so that it can be used in �ltering and tracking applications.The next section demonstrates its bene�ts over the EKF for a sample application.4 EXAMPLE APPLICATION
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Figure 4: The reentry problem. The dashed lineis the sample vehicle trajectory and the solid lineis a portion of the Earth's surface. The positionof the radar is marked by a �.

In this section we consider the problem which is il-lustrated in Figure 4: a vehicle enters the atmosphereat high altitude and at a very high speed. The positionof the body is to be tracked by a radar which accuratelymeasures range and bearing. This type of problem hasbeen identi�ed by a number of authors1; 2; 5; 17 as beingparticularly stressful for �lters and trackers because ofthe strong nonlinearities exhibited by the forces whichact on the vehicle. There are three types of forceswhich act. The most dominant is aerodynamic drag,which is a function of vehicle speed and has a substan-tial nonlinear variation in altitude. The second type offorce is gravity which accelerates the vehicle towardsthe centre of the earth. The �nal forces are randombu�eting terms. The e�ect of these forces gives a tra-jectory of the form shown in Figure 4: initially thetrajectory is almost ballistic but as the density of theatmosphere increases, drag e�ects become importantand the vehicle rapidly decelerates until its motion isalmost vertical. The tracking problem is made moredi�cult by the fact that the drag properties of thevehicle might be only very crudely known.In summary, the tracking system should be able totrack an object which experiences a set of complicated, highly nonlinear forces. These depend on the currentposition and velocity of the vehicle as well as on certain characteristics which are not known precisely. The �lter'sstate space consists of the position of the body (x1 and x2), its velocity (x3 and x4) and a parameter of itsaerodynamic properties (x5). The vehicle state dynamics are_x1(k) = x3(k)_x2(k) = x4(k)_x3(k) = D(k)x3(k) +G(k)x1(k) + v1(k)_x4(k) = D(k)x4(k) +G(k)x2(k) + v2(k)_x5(k) = v3(k) (16)where D(k) is the drag-related force term, G(k) is the gravity-related force term and v�(k) are the process noiseterms. De�ning R(k) =px21(k) + x22(k) as the distance from the centre of the Earth and V (k) =px23(k) + x24(k)



as absolute vehicle speed then the drag and gravitational terms areD(k) = ��(k) exp� [R0 �R(k)]H0 � V (k); G(k) = �Gm0r3(k)and �(k) = �0 expx5(k):For this example the parameter values are �0 = �0:59783, H0 = 13:406, Gm0 = 3:9860� 105 and R0 = 6374 andreect typical environmental and vehicle characteristics2. The parameterisation of the ballistic coe�cient, �(k),reects the uncertainty in vehicle characteristics5. �0 is the ballistic coe�cient of a \typical vehicle" and it isscaled by expx5(k) to ensure that its value is always positive. This is vital for �lter stability.The motion of the vehicle is measured by a radar which is located at (xr ; yr). It is able to measure range rand bearing � at a frequency of 10Hz, whererr(k) =p(x1(k)� xr)2 + (x2(k)� yr)2 + w1(k)�(k) = tan�1�x2(k)� yrx1(k)� xr�+ w2(k)w1(k) and w2(k) are zero mean uncorrelated noise processes with variances of 1m and 17mrad respectively4. Thehigh update rate and extreme accuracy of the sensor means that a large quantity of extremely high quality data isavailable for the �lter. The bearing uncertainty is su�ciently that the EKF is able to predict the sensor readingsaccurately with very little bias.The true initial conditions for the vehicle arex (0) = 0BBBB@ 6500:4349:14�1:8093�6:79670:6932 1CCCCA and P (0) = 26666410�6 0 0 0 00 10�6 0 0 00 0 10�6 0 00 0 0 10�6 00 0 0 0 0377775 :In other words, the vehicle's coe�cient is twice the nominal coe�cient.The vehicle is bu�eted by random accelerations,Q (k) = 242:4064� 10�5 0 00 2:4064� 10�5 00 0 035The initial conditions assumed by the �lter are,x̂ (0 j 0) = 0BBBB@ 6500:4349:14�1:8093�6:79670 1CCCCA and P (0 j 0) = 26666410�6 0 0 0 00 10�6 0 0 00 0 10�6 0 00 0 0 10�6 00 0 0 0 1377775 :The �lter uses the nominal initial condition and, to o�set for the uncertainty, the variance on this initial estimateis 1.Both �lters were implemented in discrete time and observations were taken at a frequency of 10Hz. However,due to the intense nonlinearities of the vehicle dynamics equations, the Euler approximation of Equation 16 wasonly valid for small time steps. The integration step was set to be 50ms which meant that two predictions were
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(c) Results for x5.Figure 5: The mean squared errors and estimated covariances calculated by an EKF and anunscented �lter. In all the graphs, the solid line is the mean squared error calculated by the EKF,and the dotted line is its estimated covariance. The dashed line is the unscented mean squarederror and the dot-dashed line its estimated covariance.made per update. For the unscented �lter, each sigma point was applied through the dynamics equations twice.For the EKF, it was necessary to perform an initial prediction step and re-linearise before the second step.The performance of each �lter is shown in Figure 5. This �gure plots the estimated mean squared estimationerror (the diagonal elements of P (k j k)) against actual mean squared estimation error (which is evaluated using100 Monte Carlo simulations). Only x1, x3 and x5 are shown | the results for x2 are similar to x1, and x4 is thesame as that for x3. In all cases it can be seen that the unscented �lter estimates its mean squared error veryaccurately, and it is possible to be con�dent with the �lter estimates. The EKF, however, is highly inconsistent:the peak mean squared error in x1 is 0:4km2, whereas its estimated covariance is over one hundred times smaller.Similarly, the peak mean squared velocity error is 3:4� 10�4km2s�2 which is over 5 times the true mean squarederror. Finally, it can be seen that x5 is highly biased, and this bias only slowly decreases over time. This poorperformance is the direct result of linearisation errors.5 CONCLUSIONSIn this paper we have argued that the principle di�culty for applying the Kalman �lter to nonlinear systems isthe need to consistently predict the new state and observation of the system. We have introduced a new �lteringalgorithm, called the unscented �lter. By virtue of the unscented transformation, this algorithm has two greatadvantages over the EKF. First, it is able to predict the state of the system more accurately. Second, it is muchless di�cult to implement. The bene�ts of the algorithm were demonstrated in a realistic example.This paper has considered one speci�c form of the unscented transform for one particular set of assumptions.In a companion paper11, we extend the development of the unscented transform and yield a general framework forits derivation and application. It is shown that the number of sigma points can be extended to yield a �lter whichmatches moments up to the fourth order. This higher order extension e�ectively de-biases almost all commonnonlinear coordinate transformations.
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