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� PS2: due Friday 23:59pm.

� Final project: 45% of the grade, 10% presentation, 35% 

write-up

� Presentations: in lecture Dec 1 and 3 --- schedule:

Announcements

CS 287: Advanced Robotics

Fall 2009

Lecture 24: 

SLAM

Pieter Abbeel

UC Berkeley EECS
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Types of SLAM-Problems

� Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 

01;…]

� Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

� State variables: 

� Robot pose

� Coordinates of each of the landmarks

� Robot dynamics model: P(xt+1 | xt, ut)

� Sensor model: P(zt+1 | xt, m)

� Probability of landmark observations given the state

� Can run EKF, SEIF, various other approaches

� Result: path of robot, location of landmarks

KF-type approaches are a good fit b/c they can keep track of 

correlations between landmarks

Note: Could then use path of robot + sensor log and build a map 

assuming known robot poses

Recap Landmark based SLAM
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� Can we solve the SLAM problem if no pre-defined landmarks 

are available?

� As with landmarks, the map depends on the poses of the 

robot during data acquisition

� If the poses are known, grid-based mapping is easy 

(“mapping with known poses”)

Grid-based SLAM
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Occupancy Grid Maps

� Introduced by Moravec and Elfes in 1985

� Represent environment by a grid.

� Estimate the probability that a location is 
occupied by an obstacle.

� Key assumptions

� Occupancy of individual cells (m[xy]) is independent

� Robot positions are known!
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z+d1 z+d2
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Occupancy Value Depending on the 
Measured Distance

log
P (m[xy] = 1)

P (m[xy] = 0)
← log

P (m[xy] = 1)

P (m[xy] = 0)
+ log

P (m[xy] = 1|zt)

P (m[xy] = 0|zt)
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Incremental Updating 
of Occupancy Grids (Example) 
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Alternative: Simple Counting

� For every cell count
� hits(x,y): number of cases where a beam ended at 

<x,y>

� misses(x,y): number of cases where a beam passed 
through <x,y>

� Value of interest: P(reflects(x,y))
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Difference between Occupancy Grid Maps and Counting

� The counting model determines how often a cell reflects a 

beam.

� The occupancy model represents whether or not a cell is 

occupied by an object.

� Although a cell might be occupied by an object, the 

reflection probability of this object might be very small.
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Example Occupancy Map

14

Example Reflection Map

glass panes
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Example

� Out of 1000 beams only 60% are reflected from a cell and 

40% intercept it without ending in it.

� Accordingly, the reflection probability will be 0.6.

� Suppose p(occ | z) = 0.55 when a beam ends in a cell and 

p(occ | z) = 0.45 when a cell is intercepted by a beam that 

does not end in it.

� Accordingly, after n measurements we will have 

� Whereas the reflection map yields a value of 0.6, the 

occupancy grid value converges to 1.
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Mapping using Raw Odometry
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� Standard particle filter represents the distribution by a 

set of samples

Distribution over robot poses and maps
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Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements

20

Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 

from the MCL part and apply 

mapping with known poses
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Rao-Blackwellized Mapping

� Each particle represents a possible trajectory of the 
robot

� Each particle 

� maintains its own map and 

� updates it upon “mapping with known poses”

� Each particle survives with a probability proportional to 
the likelihood of the observations relative to its own 
map

23

Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Problem

� Each map is quite big in case of grid maps

� Since each particle maintains its own map

� Therefore, one needs to keep the number of particles 
small

� Solution:
Compute better proposal distributions!

� Idea:
Improve the pose estimate before applying the particle 
filter
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Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to 

the (i-1)-th pose and map

{ })ˆ,|( )ˆ ,|( maxargˆ
111 −−− ⋅= tttttt

x
t xuxpmxzpx

t

robot motioncurrent measurement

map constructed so far



Page 12

26

Motion Model for Scan Matching

Raw Odometry

Scan Matching
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FastSLAM with Scan-Matching
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Map of the Intel Lab

� 15 particles

� four times faster 
than real-time
P4, 2.8GHz

� 5cm resolution 
during scan 
matching

� 1cm resolution in 
final map

32

FastSLAM with Scan-Matching

Loop Closure
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Scan matching: likelihood field

Map m Likelihood field

=map convolved with a Gaussian

34

Scan Matching

� Extract likelihood field from scan and use it to match 

different scan.
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� Rao-Blackwellized representation:

� Particle instantiates entire path of robot

� Map associated with each path

� Scan matching: improves proposal distribution

� Original FastSLAM:

� Map associated with each particle was a Gaussian 

distribution over landmark positions

� DP-SLAM: extension which has very efficient map 

management, enabling having a relatively large number 

of particles   [Eliazar and Parr, 2002/2005]

FastSLAM recap

� Landmark based  vs. occupancy grid

� Probability distribution representation:

� EKF vs. particle filter vs. Rao-Blackwellized particle 

filter

� EKF, SEIF, FastSLAM are all “online”

� Currently popular 4th alternative: GraphSLAM

SLAM thus far
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Graph-based Formulation

� Use a graph to represent the problem

� Every node in the graph corresponds to a pose of the 
robot during mapping

� Every edge between two nodes corresponds to the 
spatial constraints between them

� Goal: 
Find a configuration of the nodes that minimize the error
introduced by the constraints

JGraphSLAM = x⊤0 Ω0x0 +
∑

t

(xt − g(ut, xt−1))
⊤R−1t (xt − g(ut, xt−1))

+
∑

t

∑

i

(zit − h(xt,m, c
i
t))

⊤Q−1t (zit − h(xt,m, c
i
t))

The KUKA Production Site
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The KUKA Production Site

The KUKA Production Site

scans 59668

total acquisition time      4,699.71 seconds

traveled distance     2,587.71 meters

total rotations 262.07 radians

size 180 x 110 meters

processing time < 30 minutes
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GraphSLAM

Visual SLAM for Flying Vehicles
Bastian Steder, Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard

Autonomous Blimp
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� Control: underactuation, controllability, Lyapunov, dynamic 

programming, LQR, feedback linearization, MPC

� Reinforcement learning: value iteration, policy iteration, linear 

programming, Q learning, TD, value function approximation, Sarsa, 

LSTD, LSPI, policy gradient, imitation learning, inverse 

reinforcement learning, reward shaping, exploration vs. exploitation

� Estimation: Bayes filters, KF, EKF, UKF, particle filter, occupancy 

grid mapping, EKF slam, GraphSLAM, SEIF, FastSLAM

� Manipulation and grasping: force closure, grasp point selection, 

visual servo-ing, more sub-topics tbd

� Case studies: autonomous helicopter, Darpa Grand/Urban 

Challenge, walking, mobile manipulation.

� Brief coverage of: system identification, simulation, pomdps, k-

armed bandits, separation principle

Recap – tentative syllabus


