Announcements

= PS2:due Friday 23:59pm.

= Final project: 45% of the grade, 10% presentation, 35%
write-up

= Presentations: in lecture Dec 1 and 3 --- schedule:

CS 287: Advanced Robotics
Fall 2009

Lecture 24:
SLAM

Pieter Abbeel
UC Berkeley EECS
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‘Types of SLAM-Problems

|
= Grid maps or scans
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Recap Landmark based SLAM

State variables:

= Robot pose

= Coordinates of each of the landmarks

= Robot dynamics model: P(x;,q | X;, Uy)

= Sensor model: P(z,, | X, m)

= Probability of landmark observations given the state

= Can run EKF, SEIF, various other approaches

EN

Result: path of robot, location of landmarks

KF-type approaches are a good fit b/c they can keep track of
correlations between landmarks

Note: Could then use path of robot + sensor log and build a map
assuming known robot poses
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Grid-based SLAM

® Can we solve the SLAM problem if no pre-defined landmarks
are available?

= As with landmarks, the map depends on the poses of the
robot during data acquisition

= If the poses are known, grid-based mapping is easy
(“"mapping with known poses”)

Occupancy Grid Maps

= Introduced by Moravec and Elfes in 1985
= Represent environment by a grid.

= Estimate the probability that a location is
occupied by an obstacle.

= Key assumptions
= Occupancy of individual cells (m[xy]) is independent

= Robot positions are known!
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Occupancy Value Depending on the
|Measured Distance

1
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Incremental Updating
‘of Occupancy Grids (Example)




Alternative: Simple Counting

= For every cell count

= hits(x,y): number of cases where a beam ended at
<X, y>

= misses(x,y): number of cases where a beam passed
through <x,y>

= Value of interest: P(reflects(x,y))

10

Difference between Occupancy Grid Maps and Counting

= The counting model determines how often a cell reflects a
beam.

= The occupancy model represents whether or not a cell is
occupied by an object.

= Although a cell might be occupied by an object, the
reflection probability of this object might be very small.

12
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‘ Example Occupancy Map

13

‘ Example Reflection Map

glass panes

14
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Example

= Out of 1000 beams only 60% are reflected from a cell and
40% intercept it without ending in it.

= Accordingly, the reflection probability will be 0.6.

= Suppose p(occ | z) = 0.55 when a beam ends in a cell and
p(occ | z) = 0.45 when a cell is intercepted by a beam that
does not end in it.

= Accordingly, after n measurements we will have

0.55 11*0.6* 0.45 11*0.4_ E n*()‘ﬁ* E 711*0.4_ E n*0.2
0.45 0.55 9 9 9

= Whereas the reflection map yields a value of 0.6, the
occupancy grid value converges to 1.

15

Mapping using Raw Odometry

16
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Distribution over robot poses and maps

p(x1:4,m | 21:4,u0:¢—1)

= Standard particle filter represents the distribution by a
set of samples

(< @), m®) w® >y

‘ Rao-Blackwellization

I [l
poses map observations & movements

p(mlitam | Zl:taUO:t—l) ==
p(wlzt | Zl:taUO:t—l) 'p(m | wl:t,zlzt)

Factorization first introduced by Murphy in 1999 18

Page 8




‘ Rao-Blackwellization

I L]
poses map observations & movements

SLAM posterior I

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999 19

‘ Rao-Blackwellization

p(xlitam | zl:t7u02t—1) —
p(x1:¢ | 21:¢,u0e—1) - P(M | T1:¢, 21:¢)

- \

This is localization, use MCL

Use the pose estimate
from the MCL part and apply
mapping with known poses

20
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Rao-Blackwellized Mapping

» Each particle represents a possible trajectory of the
robot

» Each particle
* maintains its own map and
» updates it upon “mapping with known poses”

= Each particle survives with a probability proportional to
the likelihood of the observations relative to its own
map

22

‘Particle Filter Example

3 particles

map of particle 2 23
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Problem

= Each map is quite big in case of grid maps

» Since each particle maintains its own map

» Therefore, one needs to keep the number of particles
small

= Solution:
Compute better proposal distributions!

» Idea:
Improve the pose estimate before applying the particle
filter

24

Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to
the (i-1)-th pose and map

)%t = argmax{p(zt | Xis ﬁ/l,_l) P (xz | U 1 )%t—l )}

"/ /

current measurement robot motion

map constructed so far
25
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Motion Model for Scan Matching

e - Raw Odometry
Scan Matching

26

FastSLAM with Scan-Matching

30
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Map of the Intel Lab

= 15 particles

R = four times faster
W S S A B R N than real-time
| / = o P4, 2.8GHz

pl L g \ = 5cm resolution
o == b o 7 = during scan
‘ \ 1= *\ R matching

= \ L
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\ final map

Loop Closure

32
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Scan matching: likelihood field

Likelihood field

Map m
=map convolved with a Gaussian

33

Scan Matching

s Extract likelihood field from scan and use it to match
different scan.
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FastSLAM recap

= Rao-Blackwellized representation:
» Particle instantiates entire path of robot
» Map associated with each path

= Scan matching: improves proposal distribution

= Original FastSLAM:

= Map associated with each particle was a Gaussian
distribution over landmark positions

= DP-SLAM: extension which has very efficient map
management, enabling having a relatively large number
of particles [Eliazar and Parr, 2002/2005]

SLAM thus far

= Landmark based vs. occupancy grid

Probability distribution representation:

» EKF vs. particle filter vs. Rao-Blackwellized particle
filter

EKF, SEIF, FastSLAM are all “online”

Currently popular 4t alternative: GraphSLAM
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braph-based Formulation

= Use a graph to represent the problem

= Every node in the graph corresponds to a pose of the
robot during mapping

= Every edge between two nodes corresponds to the
spatial constraints between them

= Goal:
Find a configuration of the nodes that minimize the error
introduced by the constraints

JaraphsLaM = g Qoo + Z(l‘t — g(ug, 1)) Ry (i — glug, 1))
t

+ Z Z(Zz - h(xt?m? ci))TQt_l(zz - h(th) Ci))
t %

The KUKA Production Site

—
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The KUKA Production Site

scans 59668

total acquisition time 4,699.71 seconds
traveled distance 2,587.71 meters
total rotations 262.07 radians
size 180 x 110 meters
processing time < 30 minutes
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‘ GraphSLAM

Visual SLAM for Flying Vehicles
Bastian Steder, Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard

Autonomous Blimp
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Recap — tentative syllabus

Control: underactuation, controllability, Lyapunov, dynamic
programming, LQR, feedback linearization, MPC

Reinforcement learning: value iteration, policy iteration, linear
programming, Q learning, TD, value function approximation, Sarsa,
LSTD, LSPI, policy gradient, imitation learning, inverse
reinforcement learning, reward shaping, exploration vs. exploitation

Estimation: Bayes filters, KF, EKF, UKF, particle filter, occupancy
grid mapping, EKF slam, GraphSLAM, SEIF, FastSLAM

Manipulation and grasping: force closure, grasp point selection,
visual servo-ing, more sub-topics tbd

Case studies: autonomous helicopter, Darpa Grand/Urban
Challenge, walking, mobile manipulation.

Brief coverage of: system identification, simulation, pomdps, k-
armed bandits, separation principle
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