
Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 14: Reinforcement Learning with Function Approximation and TD

Gammon case study

Pieter Abbeel

UC Berkeley EECS

� Roll-out: nice example paper: X. Yan, P. Diaconis, P. Rusmevichientong,
and B. Van Roy, ``Solitaire: Man Versus Machine,'' Advances in Neural

Information Processing Systems 17, MIT Press, 2005.

Assignment #1

� When model is available:

� VI, PI, GPI, LP

� When model is not available:

� Model-based RL: collect data, estimate model, run one of the

above methods for estimated model

� Model-free RL: learn V, Q directly from experience:

� TD(λ), sarsa(λ): on policy updates

� Q: off policy updates

� What about large MDPs for which we cannot represent
all states in memory or cannot collect experience from
all states?

� Function Approximation

Recap RL so far

� Represent the value function using a parameterized
function Vθ(s), e.g.:

� Neural network: θ is a vector with the weights on the

connections in the network

� Linear function approximator: Vθ(s) = θ⊤φ(s)

� Radial basis functions

� Tilings: (often multiple) partitions of the state space

� Polynomials:

� Fourier basis

� [Note: most algorithms kernelizable]

� Often also specifically designed for the problem at hand

Generalization and function approximation

φi(s) = exp
(
1
2 (s− si)

⊤Σ−1(s− si)
)

φi(s) = x
ji
1

1 x
ji
2

2 . . . x
jin
n

{1, sin(2π x1
L1
), cos(2π x1

L1
), sin(2π x2

L2
), cos(2π x2

L2
), . . .}

� state: board configuration + shape of the falling piece ~2200

states!

� action: rotation and translation applied to the falling piece

� 22 features aka basis functions φi

� Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each

of the ten columns.

� Nine basis functions, 10, . . . , 18, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] − h[k]|, k = 1, .
. . , 9.

� One basis function, 19, that maps state to the maximum column height:
maxk h[k]

� One basis function, 20, that maps state to the number of ’holes’ in the
board.

� One basis function, 21, that is equal to 1 in every state.

Example: tetris

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V (s) =
∑22

i=1 θiφi(s)

� A standard way to find θ in supervised learning, optimize

MSE:

� Is this the correct objective?

Objective

minθ
∑

s P (s) (V (s)− Vθ(s))
2

Page 2

� When performing policy evaluation, we can obtain
samples by simply executing the policy and
recording the empirical (discounted) sum of rewards

� TD methods: use as a
substitute for

Evaluating the objective

minθ
∑
encountered states s

(
V̂ π(s)− V π

θ (s)
)2

vt = rt + γV π
θ (st+1)

V π(s)

� Stochastic gradient descent to optimize MSE objective:

� Iterate

� Draw a state s according to P

� Update:

� TD(0): use as a substitute for

Stochastic gradient descent

θ ← θ − 1
2
α∇θ (V

π(s)− V π
θ (s))

2
= θ + α(V π(s) − V π

θ (s))∇θV
π
θ (s)

vt = rt + γV π
θ (st+1) V π(s)

θt+1 ← θt + α
(
R(st, at, st+1) + γV π

θt
(st+1) − V π

θt
(st)

)
∇θV

π
θt
(st)

� time t:

� time t+1:

Combined:

TD(λ) with function approximation

θt+1 ← θt + α
(
R(st, at, st+1) + γV π

θt
(st+1)− V π

θt
(st)

)

︸ ︷︷ ︸
δt

∇θV
π
θt
(st)︸ ︷︷ ︸

et

δt+1 = R(st+1, at+1, st+2) + γV π
θ (st+2)− V π

θt+1
(st+1)

et+1 = γλet +∇θt+1V
π
θt+1

(st+1)

θt+2 = θt+1 + αδt+1et+1

θt+2 ← θt+1+α
(
R(st+1, at+1, st+2) + γV π

θt+1
(st+2) − V π

θt+1
(st+1)

)

︸ ︷︷ ︸
δt+1

∇θV
π
θt+1

(st+1)

θt+2 ← θt+2 + αδt+1γλet [“improving previous update”]

TD(λ) with function approximation

Can similarly adapt sarsa(λ) and Q(λ) eligibility vectors

for function approximation

� Monte Carlo based evaluation:

� Provides unbiased estimates under current policy

� Will converge to true value of current policy

� Temporal difference based evaluations:

� TD(λλλλ) w/linear function approximation: [Tsitsiklis and Van Roy, 1997]
If samples are generated from traces of execution of the policy π, and for
appropriate choice of step-sizes α, TD(λ) converges and at convergence: [D =

expected discounted state visitation frequencies under policy π]

� Sarsa(λλλλ) w/linear function approximation: same as TD

� Q w/linear function approximation: [Melo and Ribeiro, 2007] Convergence
to “reasonable” Q value under certain assumptions, including:

� [Could also use infinity norm contraction function approximators to attain
convergence --- see earlier lectures. However, this class of function

approximators tends to be more restrictive.]

Guarantees

‖Vθ − V ∗‖D ≤
1− λγ

1− γ
‖ΠDV ∗ − V ∗‖D

∀s, a‖φ(s, a)‖1 ≤ 1

� Baird’s counterexample for off policy updates:

Off-policy counterexamples

Page 3

� Tsitsiklis and Van Roy counterexample: complete back-
up with “off-policy” linear regression [i.e., uniform least
squares, rather than waited by state visitation rates]

Off-policy counterexamples

� Stochastic approximation of the following operations:

� Back-up:

� Weighted linear regression:

with solution:

� Key observations:

Intuition behind TD(0) with linear
function approximation guarantees

(TπV)(s) =
∑

s′ T (s, π(s), s′) [R(s, π(s), s′) + γV (s′)]

∀V1, V2 : ‖T
πV1 − TπV2‖D ≤ γ‖V1 − V2‖D, here : ‖x‖D =

√∑

i

D(i)x(i)2

∀V1, V2 : ‖ΠDV1 −ΠDV2‖D ≤ ‖V1 − V2‖D

minθ
∑

s D(s)((TπV)(s)− θ⊤φ(s))2

Φθ = Φ(Φ⊤DΦ)−1Φ⊤D
︸ ︷︷ ︸

ΠD

(T πV)

Intuition behind TD(λ) guarantees

� Bellman operator:

� Tλ operator:

� Tλ operator is contraction w.r.t. \| \|_D for all λ ∈ [0,1]

(TπJ)(s) =
∑

s′ P (s′|s, π(s)) [g(s) + γJ(s′)] = E [g(s) + γJ(s′)]

TλJ(s) = (1− λ)
∑

∞

m=0 λmE
[∑m

k=0 γtg(sk) + γm+1J(sm+1)
]

� At convergence:

Should we use TD than well Monte Carlo?

‖Vθ − V ∗‖D ≤
1− λγ

1− γ
‖ΠDV ∗ − V ∗‖D

Empirical comparison (See, Sutton&Barto p.221 for details)

� 15 pieces, try go reach “other side”

� Move according to roll of dice

� If hitting an opponent piece: it gets reset to the middle row

� Cannot hit points with two or more opponent pieces

Backgammon

Page 4

� 30 pieces, 24+2 possible locations

� For typical state and dice roll: often 20 moves

Backgammon

� Reward = 1 for winning the game

= 0 other states

� Function approximator: 2 layer neural network

TD Gammon [Tesauro 92,94,95]

� For each point on the backgammon board, 4 input units
indicate the number of white pieces as follows:

� 1 piece � unit1=1;

� 2 pieces � unit1=1, unit2=1;

� 3 pieces � unit1=1, unit2=1, unit3=1;

� n>3 pieces � unit1=1, unit2=1, unit3=1, unit4 = (n-3)/2

� Similarly for black

[This already makes for 2*4*24 = 192 input units.]

� Last six: number of pieces on the bar (w/b), number of
pieces that completed the game (w/b), white’s move,
black’s move

Input features

� Each hidden unit computes:

� Output unit computes:

� Overall:

Neural net

h(j) = σ(
∑
i wijφ(i)) =

1

1+exp(−
∑

i
wijφ(i))

φ(i), i = 1, . . . , 198

o = σ(
∑

j wjh(j)) =
1

1+exp
(
−

∑
j
wjh(j)

)

o = f (φ(1), . . . , φ(198);w)

� Popular at that time for function approximation / learning
in general

� Derivatives/Gradients are easily derived analytically

� Turns out they can be computed through backward
error propagation --- name “error backpropagation”

� Susceptible to local optima!

Neural nets

� Initialize weights randomly

� TD(λ) [λ = 0.7, α = 0.1]

� Source of games: self-play, greedy w.r.t. current value
function [results suggest game has enough
stochasticity built in for exploration purposes]

Learning

Page 5

� After 300,000 games as good as best previous
computer programs

� Neurogammon: highly tuned neural network trained
on large corpus of exemplary moves

� TD Gammon 1.0: add Neurogammon features

� Substantially better than all previous computer
players; human expert level

� TD Gammon 2.0, 2.1: selective 2-ply search

� TD Gammon 3.0: selective 3-ply search, 160 hidden
units

Results

