CS 287: Advanced Robotics Fall 2009 Lecture 14: Reinforcement Learning with Function Approximation and TD Gammon case study

Pieter Abbeel UC Berkeley EECS

Generalization and function approximation

- Represent the value function using a parameterized function V_θ(s), e.g.:
 - Neural network: $\boldsymbol{\theta}$ is a vector with the weights on the connections in the network
 - Linear function approximator: $V_{\theta}(s) = \theta^{\top} \phi(s)$
 - Radial basis functions $\phi_i(s) = \exp\left(\frac{1}{2}(s-s_i)^\top \Sigma^{-1}(s-s_i)\right)$
 - Tilings: (often multiple) partitions of the state space
 - Polynomials: $\phi_i(s) = x_1^{j_1^i} x_2^{j_2^i} \dots x_n^{j_n^i}$
 - Fourier basis $\{1, \sin(2\pi \frac{x_1}{L_1}), \cos(2\pi \frac{x_1}{L_1}), \sin(2\pi \frac{x_2}{L_2}), \cos(2\pi \frac{x_2}{L_2}), \ldots\}$
 - [Note: most algorithms kernelizable]
 - Often also specifically designed for the problem at hand

Recap RL so far

- When model is available:
 - VI, PI, GPI, LP
- When model is not available:
 - Model-based RL: collect data, estimate model, run one of the above methods for estimated model
 - Model-free RL: learn V, Q directly from experience:
 - TD(λ), sarsa(λ): on policy updates
 Q: off policy updates
- What about large MDPs for which we cannot represent all states in memory or cannot collect experience from all states?
 - → Function Approximation

 A standard way to find θ in supervised learning, optimize MSE:

Objective

 $\min_{\theta} \sum_{s} P(s) \left(V(s) - V_{\theta}(s) \right)^2$

Is this the correct objective?

Evaluating the objective

 When performing policy evaluation, we can obtain samples by simply executing the policy and recording the empirical (discounted) sum of rewards

 $\min_{\theta} \sum_{\text{encountered states } s} \left(\hat{V}^{\pi}(s) - V^{\pi}_{\theta}(s) \right)^2$

• TD methods: use $v_t = r_t + \gamma V_{\theta}^{\pi}(s_{t+1})$ as a substitute for $V^{\pi}(s)$

Input features

- For each point on the backgammon board, 4 input units indicate the number of white pieces as follows:
 - 1 piece → unit1=1;
 - 2 pieces \rightarrow unit1=1, unit2=1;
 - 3 pieces → unit1=1, unit2=1, unit3=1;
 - n>3 pieces \rightarrow unit1=1, unit2=1, unit3=1, unit4 = (n-3)/2
- Similarly for black
- [This already makes for 2*4*24 = 192 input units.]
- Last six: number of pieces on the bar (w/b), number of pieces that completed the game (w/b), white's move, black's move

Learning

- Initialize weights randomly
- $TD(\lambda)$ [$\lambda = 0.7, \alpha = 0.1$]
- Source of games: self-play, greedy w.r.t. current value function [results suggest game has enough stochasticity built in for exploration purposes]

Results

- After 300,000 games as good as best previous computer programs
 - Neurogammon: highly tuned neural network trained on large corpus of exemplary moves
- TD Gammon 1.0: add Neurogammon features
 - Substantially better than all previous computer players; human expert level
- TD Gammon 2.0, 2.1: selective 2-ply search
- TD Gammon 3.0: selective 3-ply search, 160 hidden units