CS 287: Advanced Robotics
Fall 2009

Lecture 14: Reinforcement Learning with Function Approximation and TD
Gammon case study

Pieter Abbeel
UC Berkeley EECS

‘ Assignment #1

I
= Roll-out: nice example paper: X. Yan, P. Diaconis, P. Rusmevichientong,
and B. Van Roy, “Solitaire: Man Versus Machine," Advances in Neural
Information Processing Systems 17, MIT Press, 2005.

Success Rate vs. Number of Rollouts

2.6

26 = 1

24 . -
” m

Success Rate

H u 1 2 3 a k]
Number of Rollouts (H = human)

Recap RL so far

= When model is available:
« VI, Pl, GPI, LP

= When model is not available:

= Model-based RL: collect data, estimate model, run one of the
above methods for estimated model

= Model-free RL: learn V, Q directly from experience:
= TD()), sarsa(A): on policy updates
= Q: off policy updates
= What about large MDPs for which we cannot represent
all states in memory or cannot collect experience from
all states?

-> Function Approximation

Generalization and function approximation

T
= Represent the value function using a parameterized
function V(s), e.g.:

= Neural network: ¢ is a vector with the weights on the
connections in the network

= Linear function approximator: V(s) = 67¢(s)
+ Radial basis functions ~ ¢;(s) = exp (4 (s — 5;) TS (s — 5;))

= Tilings: (often multiple) partitions of the state space

= Polynomials:  ¢i(s) = z{;x? Ll

« Fourier basis {1, sin(2m*), cos(2m £+), sin(2m72), cos(2m42), ...}

= [Note: most algorithms kernelizable]

= Often also specifically designed for the problem at hand

Example: tetris

I state: board configuration + shape of the falling piece ~2200
states!

= action: rotation and translation applied to the falling piece

V(s) =7, 0:i(s)
= 22 features aka basis functions ¢,

Ten basis functions, 0, . . ., 9, mapping the state to the height h[k] of each
of the ten columns.

Nine basis functions, 10, .. ., 18, each mapping the state to the absolute
difference between heights of successive columns: |hfk+1] - h[k]l, k=1, .
9

One basis function, 19, that maps state to the maximum column height:
max, hfk]

One basis function, 20, that maps state to the number of *holes’ in the
board.

One basis function, 21, that is equal to 1 in every state.

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

Obijective

T
= A standard way to find 6 in supervised learning, optimize
MSE:

ming 3%, P(s) (V(s) - Vi(s))*

= |s this the correct objective?

Page 1



Evaluating the objective

= When performing policy evaluation, we can obtain
samples by simply executing the policy and
recording the empirical (discounted) sum of rewards

N 2
Ming 3 countered states s (V"(S) - Veﬂ(s))

= TD methods: use
substitute for v7(s)

v =71+ 7V (se41) @s a

‘TD(A) with function approximatior]

Initialize ¢ arbitrarily
Repeal (for cach episode):
=
s « initial state of episode
Repeat (for each step of episode):
a «— action given by 7 for 5
Take action a, observe reward, r, and next state, s’
Ser+aV(s) - Vis)
€= YAE+ ViV (5)
G—0+ade
s—s

until s is terminal

Can similarly adapt sarsa(\) and Q(\) eligibility vectors
for function approximation

Stochastic gradient descent

= Stochastic gradient descent to optimize MSE objective:

= lterate
= Draw a state s according to P
= Update:

00— 1aVe (V7(s) = Vi(s))® = 0+ a(V™(s) — Vi (s)) VeV (5)

= TD(0): use v =r+1Vy(st+1) as a substitute for v=(s)

Orp1 0 +a (R(Shahstﬂ) + "/ng(saﬂ) - Vg’:(sl)) VSV{;’:(SL)

Guarantees

I .
= Monte Carlo based evaluation:
= Provides unbiased estimates under current policy

= Willconverge to true value of current policy

= Temporal difference based evaluations:

= TD(X) w/linear function approximation: [Tsitsiklis and Van Roy, 1997]
***If*** samples are generated from traces of execution of the policy =, and for
appropriate choice of step-sizes a, TD(A) converges and at convergence: [D =
expected discounted state visitation frequencies under policy 7]

1- My
MoV - v*in
1—v

Ve = V*llp <

= Sarsa(\) w/linear function approximation: same as TD

= Q wi/linear function approximation: [Melo and Ribeiro, 2007] Convergence
to “reasonable” Q value under certain assumptions, including: s, al|¢(s,a)[, < 1

= [Could also use infinity norm contraction function approximators to attain
convergence --- see earlier lectures. However, this class of function
approximators tends to be more restrictive.]

TD(X) with function approximation

= timet:

Opy1 < 0r + o (R(st, a1, 5.41) + YV (s041) — Vi (s0)) VoV (st)
—

8t et

s time t+1:

Ory2 < Op1+a (R(Swh at41,8t42) + ’YVof“ (8t42) — Vofﬂ (Sc+1)) VGVJZH (5t41)

Se+1

Ot12 < Oi0 + adiy17Ae:  [“improving previous update”]

Combined:
[ R(st41, ae41, se42) + YVg (se42) = Vi, (se41)
err1 = yAer+ Vo Vi, (s041)
Oprz = Opp1 +adiprenyn

Off-policy counterexamples

= Baird’s counterexample for off policy updates:

Fos\ oSN oo\

o) s ) i i)

J

Vel
o)

D= —
N4 |

Parameter
values, 6,()

broken at=1)

Iterations (k)

Page 2



Off-policy counterexamples

= Tsitsiklis and Van Roy counterexample: complete back-
up with “off-policy” linear regression [i.e., uniform least
squares, rather than waited by state visitation rates]

Should we use TD than well Monte Carlo?

Intuition behind TD(0) with linear

function approximation guarantees
I

= Stochastic approximation of the following operations:
= Back-up:  (T7V)(s) = 32, T(s,7(s), ') [R(s, m(s), s) + 7V (s)]
= Weighted linear regression: ming Y., D(s)((T™V)(s) — 07 ¢(s))?
with solution: &0 = &(®' D®)~1d" D(T™V)
—_—

Ip

= Key observations:

YV, Vo o ||[T™VE — T™Va|lp <4|Vi — Vallp, here: |z|p = ZD(z)ac(z)i’
Vo

VY1, Va 1 |[lIpVi = TIpVa|p < Vi = Va|lp

= Atconvergence: |V, -V*|p < ﬂi:"HHDV* -V*p
Empirical comparison (See, Sutton&Barto p.221 for details)
I
RANDOM WALK

IMOUNTAIN CAR
T T

3
i H
ol accumulatingg accumulating] [
Steps per ., | "ac?" rass RMS error
episade = de b,
repiacing ¥ st ool
traces 0
o races
T e: o1 a0 on 1 T oz os o8 ar 1
PupbLE WORLD CART AND POLE
] ¢
] i
210
Costper 4 0 Fallures por
episode o] replacing ~ 100,000 steps
traces 5. 150
wd p
] ¥
1w
150

02 o4 o8 08 o o2

Intuition behind TD()\) guarantees

]
= Bellman operator:

(T7J)(s) = X0 P(s'|s,m(5)) [9(s) + 7T (s')] = Eg(5) + 77 (s")]

= T operator:

T (s) = (L= A) Xooo AE [Z70 7 9(s8) + 7™ (sm41)]

= T* operator is contraction w.r.t.\| \|_D forall A € [0,1]

Backgammon

white pieces move

242022 2020 1% 18 g 1s v 0 counterclockwise

black pieces
move clockwise

= 15 pieces, try go reach “other side”
= Move according to roll of dice
= If hitting an opponent piece: it gets reset to the middle row

= Cannot hit points with two or more opponent pieces

Page 3




Backgammon

white pieces move
counterclockwise

black pieces
move clockwise

= 30 pieces, 24+2 possible locations
= For typical state and dice roll: often 20 moves

TD Gammon [Tesauro 92,94,95]

= Reward = 1 for winning the game
= 0 other states
= Function approximator: 2 layer neural network

predicted probability
of winning, V;

n position (198 input units)

backgammo

Input features

= For each point on the backgammon board, 4 input units
indicate the number of white pieces as follows:

= 1piece - unitl=1;

= 2 pieces > unit1=1, unit2=1;

= 3 pieces - unit1=1, unit2=1, unit3=1;

= n>3 pieces > unit1=1, unit2=1, unit3=1, unit4 = (n-3)/2
= Similarly for black
[This already makes for 2*4*24 = 192 input units.]

= Last six: number of pieces on the bar (w/b), number of
pieces that completed the game (w/b), white’s move,
black’s move

Neural net

predicted probability
of winning, v,

= Each hidden unit computes:
h(j) = o (3 wijd(i)) =

—_
Tresp(— 3, wiad()
= Output unit computes:

o=0(¥;w;h(j) = 7”&”](7% o)

= Overall: o= f(#(1),...,¢(198);w)

Neural nets

= Popular at that time for function approximation / learning
in general

= Derivatives/Gradients are easily derived analytically

= Turns out they can be computed through backward
error propagation --- name “error backpropagation”

= Susceptible to local optima!

Learning

= Initialize weights randomly
= TD(\) [A=0.7,a=0.1]

= Source of games: self-play, greedy w.r.t. current value
function [results suggest game has enough
stochasticity built in for exploration purposes]

Page 4




Results

= After 300,000 games as good as best previous
computer programs

= Neurogammon: highly tuned neural network trained
on large corpus of exemplary moves

= TD Gammon 1.0: add Neurogammon features

= Substantially better than all previous computer
players; human expert level

= TD Gammon 2.0, 2.1: selective 2-ply search

= TD Gammon 3.0: selective 3-ply search, 160 hidden
units

Page 5



