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� LP approach for finding the optimal value function of 

MDPs

� Model-free approaches

Outline
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Solving an MDP with linear programming

Solving an MDP with linear programming
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Solving an MDP with linear programming

The dual LP
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� Meaning λ(s,a) ?

� Meaning c(s) ?

The dual LP: interpretation

max
λ≥0

∑

s,a,s′

T (s, a, s′)λ(s, a)R(s, a, s′)

s.t. ∀s
∑

a

λ(s, a) = c(s) +
∑

s′,a

λ(s′, a)T (s′, a, s)

The optimal value function satisfies:

∀s : V (s) = max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] .

We can relax these non-linear equality constraints to inequality constraints:

∀s : V (s) ≥ max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] .

Equivalently, (x ≥ maxi yi is equivalent to ∀i x ≥ yi), we have:

∀s, ∀a : V (s) ≥
∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] . (1)

The relaxation still has the optimal value function as one of its solutions, but we
might have introduced new solutions. So we look for an objective function that
will favor the optimal value function over other solutions of (1). To this extent,
we observed the following monotonicity property of the Bellman operator T :

∀s V1(s) ≥ V2(s) implies : ∀s (TV1)(s) ≥ (TV2)(s)

Any solution to (1) satisfies V ≥ TV , hence also: TV ≥ T 2V , hence also:
T 2V ≥ T 3V ... “T∞−1”V ≥ T∞V = V ∗. Stringing these together, we get for
any solution V of (1) that the following holds:

V ≥ V ∗

Hence to find V ∗ as the solution to (1), it suffices to add an objective function
which favors the smallest solution:

min
V
c⊤V s.t.∀s,∀a : V (s) ≥

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] . (2)

If c(s) > 0 for all s, the unique solution to (2) is V ∗.
Taking the Lagrange dual of (2), we obtain another interesting LP:

max
λ≥0

∑

s,a,s′

T (s, a, s′)λ(s, a)R(s, a, s′)

s.t. ∀s
∑

a

λ(s, a) = c(s) + γ
∑

s′,a

λ(s′, a)T (s′, a, s)

LP approach recap
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� PS 1: posted on class website, due Monday October 26.

� Final project abstracts due tomorrow.

Announcements

� Value iteration:

� Start with V0(s) = 0 for all s.  Iterate until convergence:

� Policy iteration:

� Policy evaluation: Iterate until values converge

� Policy improvement:

� Generalized policy iteration:

� Any interleaving of policy evaluation and policy improvement

� Note: for particular choice of interleaving � value iteration

� Linear programming:
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� Model-based reinforcement learning

� Estimate model from experience

� Solve the MDP as if the model were correct

� Model-free reinforcement learning

� Adaptations of the exact algorithms which only require (s, a, r, s’) 

traces [some of them use (s, a, r, s’, a’)]

� No model is built in the process

What if T and R unknown

Sample Avg to Replace Expectation?

� Who needs T and R?  Approximate the 
expectation with samples (drawn from T!)

Problem: We need 
to estimate these 

too!
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Sample Avg to Replace Expectation?

Sample of V(s):

Update to V(s):

Same update:

� We could estimate Vπ(s) for all states simultaneously:

� Old updates will use very poor estimates of Vπ(s’)

� This will surely affect our estimates of Vπ(s) initially, 

but will this also affect our final estimate?

Sample Avg to Replace Expectation?

� Big idea: why bother learning T?

� Update V(s) each time we experience (s,a,s’)

� Likely s’ will contribute updates more often

� Temporal difference learning ( TD or TD(0) )

� Policy still fixed!

� Move values toward value of whatever 

successor occurs: running average!

Sample of V(s):

Update to V(s):

Same update:
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Exponential Moving Average

� Weighted averages emphasize certain samples

� Exponential moving average 

� Makes recent samples more important

� Forgets about the past (which contains mistakes in TD)

� Easy to compute from the running average 

� Decreasing learning rate can give converging averages

TD(0) for estimating Vπ

Note: this is really Vπ
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� Convergence with probability 1 for the states which are 

visited infinitely often if the step-size parameter 

decreases according to the “usual” stochastic 

approximation conditions

� Examples: 

� 1/k

� C/(C+k)

Convergence guarantees for TD(0)

∞∑

k=0

αk = ∞

∞∑

k=0

α2k <∞

� If limited number of trials available: could repeatedly go 

through the data and perform the TD updates again

� Under this procedure, the values will converge to the 

values under the empirical transition and reward model.

Experience replay


