Reinforcement Learning

- Model: Markov decision process (S, A, T, R, \(\gamma \))
- Goal: Find \(\pi \) that maximizes expected sum of rewards
- T and R might be unknown

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]
Examples

MDP (S, A, T, \(\gamma\), R),

\[
\text{goal: } \max_{\pi} \mathbb{E} \left[\sum_i \gamma^i R(s_i, a_i) \mid \pi \right]
\]

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end
Solving MDPs

- In deterministic single-agent search problem, want an optimal plan, or sequence of actions, from start to a goal.
- In an MDP, we want an optimal policy \(\pi^*: S \rightarrow A \):
 - A policy \(\pi \) gives an action for each state.
 - An optimal policy maximizes expected utility if followed.
 - Defines a reflex agent.

Example Optimal Policies

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up</td>
<td>-2.0</td>
</tr>
<tr>
<td>2</td>
<td>Down</td>
<td>-0.1</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>-0.04</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

R(s) = -0.02
R(s) = -0.04
R(s) = -0.1
R(s) = -2.0
Outline current and next few lectures

- Recap and extend exact methods
 - Value iteration
 - Policy iteration
 - Generalized policy iteration
 - Linear programming [later]

- Additional challenges we will address by building on top of the above:
 - Unknown transition model and reward function
 - Very large state spaces

Value Iteration

- Algorithm:
 - Start with $V_0(s) = 0$ for all s.
 - Given V_i, calculate the values for all states for depth $i+1$:
 $$ V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] $$

- This is called a value update or Bellman update/back-up
- Repeat until convergence
Example: Bellman Updates

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]

\[V_2((3, 3)) = \sum_{s'} T((3, 3), \text{right}, s') \left[R((3, 3)) + 0.9 V_1(s') \right] \]

\[= 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0] \]

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates
Convergence

Infinity norm: $\|V\|_\infty = \max_s |V(s)|$

Fact. Value iteration converges to the optimal value function V^* which satisfies the Bellman equation:

$$\forall s \in S : V^*(s) = \max_a \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V^*(s'))$$

Or in operator notation: $V^* = TV^*$ where T denotes the Bellman operator.

Fact. If an estimate V satisfies $\|V - TV\|_\infty \leq \epsilon$ then we have that

$$\|V - V^*\|_\infty \leq \frac{\epsilon}{1 - \gamma}$$

Practice: Computing Actions

- Which action should we choose from state s:
 - Given optimal values V^*?

 $$\pi(s) = \arg \max_a \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V^*(s'))$$

 - = greedy action with respect to V^*
 - = action choice with one step lookahead w.r.t. V^*
Policy Iteration

- Alternative approach:
 - **Step 1: Policy evaluation**: calculate value function for a fixed policy (not optimal!) until convergence
 - **Step 2: Policy improvement**: update policy using one-step lookahead with resulting converged (but not optimal!) value function
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

$$V^{\pi_k}_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V^{\pi_k}_{i}(s') \right]$$

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}_{i}(s') \right]$$
Comparison

- Value iteration:
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- Policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- Generalized policy iteration:
 - General idea of two interacting processes revolving around an approximate policy and an approximate value

- Asynchronous versions:
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often