CS 287: Advanced Robotics
Fall 2009

Lecture 1: Introduction

Pieter Abbeel
UC Berkeley EECS

WWW

- http://www.cs.berkeley.edu/~pabbeel/cs287-fa09
Announcements

- Communication:
 - Announcements: webpage
 - Email: pabbeel@cs.berkeley.edu
 - Office hours: Thursday 2-3pm + by email arrangement, 746 SDH

- Enrollment:
 - Undergrads stay after lecture and see me

Class Details

- Prerequisites:
 - Familiarity with mathematical proofs, probability, algorithms, linear algebra, calculus.
 - Ability to implement algorithmic ideas in code.
 - Strong interest in robotics

- Work and grading:
 - Four large assignments (4 * 15%)
 - One smaller assignment (5%)
 - Open-ended final project (35%)

- Collaboration policy: Students may discuss assignments with each other. However, each student must code up their solutions independently and write down their answers independently.
Class Goals

- Learn the issues and techniques underneath state of the art robotic systems
- Build and experiment with some of the prevalent algorithms
- Be able to understand research papers in the field
 - Main conferences: ICRA, IROS, RSS, ISER, ISRR
 - Main journals: IJRR, T-RO, Autonomous Robots
- Try out some ideas / extensions of your own

Lecture outline

- Logistics --- questions? [textbook slide forthcoming]
- A few sample robotic success stories
- Outline of topics to be covered
Driverless cars

- Darpa Grand Challenge
 - First long-distance driverless car competition
 - 2004: CMU vehicle drove 7.36 out of 150 miles
 - 2005: 5 teams finished, Stanford team won

- Darpa Urban Challenge (2007)
 - Urban environment: other vehicles present
 - 6 teams finished (CMU won)

- Ernst Dickmanns / Mercedes Benz: autonomous car on European highways
 - Human in car for interventions
 - Paris highway and 1758km trip Munich -> Odense, lane changes at up to 140km/h; longest autonomous stretch: 158km

Kalman filtering, Lyapunov, LQR, mapping, (terrain & object recognition)

Autonomous Helicopter Flight

[Koates, Abbeel & Ng]

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning
Four-legged locomotion

[Kolter, Abbeel & Ng]

Inverse reinforcement learning, hierarchical RL, value iteration, receding horizon control, motion planning

Two-legged locomotion

[Tedrake +al.]

TD learning, policy search, Poincare map, stability
"baseline": Raw odometry data + laser range finder scans

FastSLAM: particle filter + occupancy grid mapping
Mobile Manipulation

[Quigley, Gould, Saxena, Ng + al.]

SLAM, localization, motion planning for navigation and grasping, grasp point selection, (visual category recognition, speech recognition and synthesis)

Outline of Topics

- **Control**: underactuation, controllability, Lyapunov, dynamic programming, LQR, feedback linearization, MPC
- **Estimation**: Bayes filters, KF, EKF, UKF, particle filter, occupancy grid mapping, EKF slam, GraphSLAM, SEIF, FastSLAM
- **Manipulation and grasping**: force closure, grasp point selection, visual servo-ing, more sub-topics tbd
- **Reinforcement learning**: value iteration, policy iteration, linear programming, Q learning, TD, value function approximation, Sarsa, LSTD, LSPI, policy gradient, inverse reinforcement learning, reward shaping, hierarchical reinforcement learning, inference based methods, exploration vs. exploitation
- **Brief coverage of**: system identification, simulation, pomdps, k-armed bandits, separation principle
- **Case studies**: autonomous helicopter, Darpa Grand/Urban Challenge, walking, mobile manipulation.
1. Control

- Overarching theme: mathematically capture
 - What makes control problems hard
 - What techniques do we have available to tackle the hard problems

- E.g.: “Helicopters have underactuated, non-minimum phase, highly non-linear and stochastic (within our modeling capabilities) dynamics.”
 → Hard or easy to control?

1. Control (ctd)

- Under-actuated vs. fully actuated
 - Example: acrobot swing-up and balance task
1. Control (ctd)

- Other mathematical formalizations of what makes some control problems easy/hard:
 - Linear vs. non-linear
 - Minimum-phase vs. non-minimum phase
 - Deterministic vs. stochastic

- Solution and proof techniques we will study:
 - Lyapunov, dynamic programming, LQR, feedback linearization, MPC

2. Estimation

- Bayes filters: KF, EKF, UKF, particle filter

- One of the key estimation problems in robotics: Simultaneous Localization And Mapping (SLAM)

- Essence: compute posterior over robot pose(s) and environment map given
 - (i) Sensor model
 - (ii) Robot motion model

- Challenge: Computationally impractical to compute exact posterior because this is a very high-dimensional distribution to represent
 - [You will benefit from 281A for this part of the course.]
3. Grasping and Manipulation

- Extensive mathematical theory on grasping: force closure, types of contact, robustness of grasp
- Empirical studies showcasing the relatively small vocabulary of grasps being used by humans (compared to the number of degrees of freedom in the human hand)
- Perception: grasp point detection

4. Reinforcement learning

- Learning to act, often in discrete state spaces
- Value iteration, policy iteration, linear programming, Q learning, TD, value function approximation, Sarsa, LSTD, LSPI, policy gradient, inverse reinforcement learning, reward shaping, hierarchical reinforcement learning, inference based methods, exploration vs. exploitation
5. Misc. Topics

- system identification: frequency domain vs. time domain
- Simulation / FEM
- Pomdps
- k-armed bandits
- separation principle
- ...

Reading materials

- Control
- Estimation
 - Probabilistic Robotics, Thrun, Burgard and Fox.
- Manipulation and grasping
- Reinforcement learning
 - Sutton and Barto, Reinforcement Learning (free online)
- Misc. topics
 - -
Next lecture we will start with our study of control!