Pseudorandom Permutations of a Prescribed Type [NR00]

Orr Paradise*and Neil Vexler ${ }^{\dagger}$

March 3, 2019

An interpretation of [NR00], mistakes are likely ours.
Part one of two in a talk on pseudorandom objects of a prescribed type (notes for the second part are unavailable, unfortunately.

1 Introduction

1.1 Cycle notation

Let S_{n} be the set of bijections from $[n]$ to itself. Endowed with the composition operation (o) it forms a group. Further, each $\sigma \in S_{n}$ can be decomposed into its cycles:

1. Initialize $N:=[n]$ and an empty cycle set. While $N \neq \emptyset:$
(a) Choose $i \in N$, and initialize $\gamma=(i)$. Let $j:=\sigma(i)$. While $j \neq i$:
i. Append j to γ and let $j:=\sigma(j)$.
(b) Add c to the cycle set and update $N:=N \backslash \gamma$.

We know of Cauchy's two-line notation for permutations, in which we represent $\sigma \equiv\left(\begin{array}{ccc}1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n)\end{array}\right)$. We can now represent σ by listing its cycles, $\sigma \equiv(1, \sigma(1), \ldots)(i, \sigma(i), \ldots), \ldots$ Notice that this representation is unique only up to the order of cycles, and the starting element of each cycle ${ }^{1}$. Also, single-element cycles are usually omitted.

We associate with each permutation σ its cycle type $\mathrm{CT}(\sigma)$, which is simply a list of the lengths of each cycle of σ. Again this property is determined only up to the order of cycles. Three examples:

Two-line notation	Cycle notation	Cycle Type
$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$	$(1,2,3,4) \equiv(4,1,2,3)$	(4)
$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$	$(1,2)(3,4)$	$(2,2)$
$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$	$(1,3)(1)(4) \equiv(1,3)$	$(1,1,2) \equiv(2,1,1)$

For any cycle type C, let $S_{n}(C):=\left\{\sigma \in S_{n} \mid \mathrm{CT}(\sigma)=C\right\}$ be the set of all permutations on [n] elements with cycle type C. Elements of $S_{n}(C)$ will be known as C-permutations (on n elements). ${ }^{2}$ A final important notion is the conjugation of $\sigma \in S_{n}$ by $\pi \in S_{n}$, defined by $\sigma^{\pi}:=\pi \circ \sigma \circ \pi^{-1}$. An elementary result in group theory is that $\mathrm{CT}(\sigma)=\mathrm{CT}\left(\sigma^{\pi}\right)$ and that $S_{n}(C)$ is the set of all conjugations of σ, hence $S_{n}(C)$ is known as σ 's conjugacy class. We will in fact show a stronger result in lemma 2.

[^0]
1.2 Pseudo-random Permutations

Definition 1. A family of permutations $\mathcal{P}_{n}=\left\{P_{k} \in S_{n} \mid k \in\{0,1\}^{l}\right\}$ is called pseudo-random if it satisfies the following:

1. Succinct Representation: The key length l is polynomial in the input/output length n.
2. Efficient Computation: For any k, P_{k}, P_{k}^{-1} can be computed efficiently, i.e in time polynomial in l.
3. Indistinguishability: No efficient distinguisher, given oracle access to $\pi, \pi^{-1} \in S_{n}$ can distinguish whether τ is a random member of \mathcal{P}_{n} or a truly random permutation with non-negligible probability. That is, for any efficient distinguisher D there exists a negligible negl (\cdot) such that

$$
\left|\mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D}\left[D^{P_{k}, P_{k}^{-1}}\left(1^{n}\right)=1\right]-\mathbb{P}_{\pi \sim U\left(S_{n}\right), D}\left[D^{\pi, \pi^{-1}}\left(1^{n}\right)=1\right]\right| \leq \operatorname{negl}(n)
$$

For any cycle type C we could replace S_{n} with $S_{n}(C)$ in the above definition to obtain a definition for pseudo-random C-permutations. Notice that the adversary would then be required to distinguish between a random member of \mathcal{P}_{n} and a random C-permutation. Also notice that we require \mathcal{P}_{n} to truly be a family of C-permutations and not just computationally indistinguishable from one-more on this later.

2 Pseudo-random C-permutations

The first main result we will see is due to Moni Naor and Omer Reingold [NR00], and asserts that if there are pseudo-random permutations then there are pseudo-random C-permutations for any cycle type C. Also, these pseudo-random C-permutations have the fast-forward property, meaning that they can be iterated at 'zero' cost.

2.1 The construction

Let \mathcal{P}_{n} be a family of pseudo-random permutations, and let C be a cycle type. The construction is straightforward. Fix $\sigma \in S_{n}(C)$. The family is

$$
\mathcal{F}_{n}:=\left\{F_{k}:=\sigma^{P_{k}}:=P_{k} \circ \sigma \circ P_{k}^{-1} \mid k \in\{0,1\}^{l}\right\}
$$

2.2 Correctness

We turn to to prove that \mathcal{F}_{n} is a family of pseudo-random C-permutations.

2.2.1 Truthfulness

We first need to prove that indeed $F_{k} \in S_{n}(C)$ for all k. We prove a stronger result.
Lemma 2. If π is a random permutation then σ^{π} is a random C-permutation. That is, if $\pi \sim U\left(S_{n}\right)$ then $\sigma^{\pi} \sim U\left(S_{n}(C)\right)$.

Proof. Let $\tau, \tau^{\prime} \in S_{n}(C)$. We need to show that

$$
\mathbb{P}_{\pi}\left[\sigma^{\pi}=\tau\right]=\mathbb{P}_{\pi}\left[\sigma^{\pi}=\tau^{\prime}\right]
$$

Since π is uniformly chosen from S_{n}, letting $\Pi=\left\{\pi \in S_{n} \mid \sigma^{\pi}=\tau\right\}$ and $\Pi^{\prime}=\left\{\pi \in S_{n} \mid \sigma^{\pi}=\tau^{\prime}\right\}$ it suffices to prove that $|\Pi|=\left|\Pi^{\prime}\right|$. This is shown by constructing a bijection between the sets. Assume there exists $P \in S_{n}$ such that $\tau^{\prime}=\tau^{P}$. The bijection from Π to Π^{\prime} is then $\pi \mapsto P \circ \pi$.

- It is well defined: If $\pi \in \Pi$ then $\sigma^{P \circ \pi}=\left(\sigma^{\pi}\right)^{P}=\tau^{P}=\tau^{\prime}$, so $P \circ \pi \in \Pi^{\prime}$.
- It is invertible: Its inverse is clearly $\pi^{\prime} \mapsto P^{-1} \circ \pi^{\prime}$, and is well defined since if $\pi^{\prime} \in \Pi^{\prime}$ then $\sigma^{P^{-1} \circ \pi^{\prime}}=$ $\left(\sigma^{\pi^{\prime}}\right)^{P^{-1}}=\left(\tau^{\prime}\right)^{P^{-1}}=\left(\tau^{P}\right)^{P^{-1}}=\tau$.
What's left is to construct such P. Since CT $(\tau)=\mathrm{CT}\left(\tau^{\prime}\right)$ we can uniquely associate each cycle γ in τ with a cycle of same length γ^{\prime} in τ^{\prime}. For any such cycles $\gamma=\left(i_{0}, \ldots, i_{g}\right)$ and $\gamma^{\prime}=\left(i_{0}^{\prime}, \ldots, i_{g}^{\prime}\right)$, let $P\left(i_{j}^{\prime}\right):=i_{j}$. This defines a permutation $P \in S_{n}$ for which $\tau^{\prime}=\tau^{P}$. Indeed
- P is a well defined permutation because each $i \in[n]$ appears exactly once in the cycles of τ and of τ^{\prime}, and the correspondence of those cycles is 1 -to- 1 and onto.
- For any $i \in[n]$, assume that $i=i_{j}$ in cycle γ of τ. with corresponging i_{j}^{\prime} in cycle γ^{\prime} of τ,

$$
\tau^{\prime}\left(P\left(i_{j}\right)\right)=\tau^{\prime}\left(i_{j}^{\prime}\right)=i_{j+1}^{\prime} \quad \bmod g=P\left(i_{j+1} \bmod g\right)=P\left(\tau\left(i_{j}\right)\right)
$$

therefore $\tau^{\prime} \circ P=P \circ \tau$ and so $\tau^{\prime}=\tau^{P}$.

Proving the first two axioms of pseudo-randomness is easy, so we turn to prove indistinguishability.

2.2.2 Indistinguishability

Suppose that we have an efficient distinguisher D for which

$$
\left|\mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D}\left[D^{F_{k}, F_{k}^{-1}}\left(1^{n}\right)=1\right]-\mathbb{P}_{\tau \sim U\left(S_{n}(C)\right), D}\left[D^{\tau, \tau^{-1}}\left(1^{n}\right)=1\right]\right|>\frac{1}{p(n)}
$$

for some polynomial p. Let $t(n), q(n)$ denote the polynomial time, query complexities (resp.) of D on inputs of length n. We construct a distinguisher E that will contradict \mathcal{P}_{n} being a pseudo-random permutation family.

Algorithm 1 The distinguisher E
The run $E^{\pi, \pi^{-1}}\left(1^{n}\right)$ simulates D in the following way:

1. Let $\tau=\sigma^{\pi}=\pi \circ \tau \circ \pi^{-1}$. E simulates $D^{\tau, \tau^{-1}}\left(1^{n}\right)$ as follows:
(a) When D makes the query $\tau(x), E$ queries its oracle twice: Once for $z:=\pi^{-1}(x)$ and again for $y:=\pi(\sigma(z))$. E answers D 's query with y.
(b) When D makes the query $\tau^{-1}(x), E$ queries its oracle twice: Once for $z:=\pi(x)$ and gain for $y:=\pi^{-1}(\sigma(z))$. E answers D 's query with y.
2. E answers the same as D.

Denoting σ 's runtime with s-which is fixed in the context of this analysis. Then E 's query and runtime complexities are

$$
t_{E}(n) \leq \underbrace{q(n)(2+s)}_{\text {queries of } D \text { other operations of } D} q_{E}(n)=2 q_{D}(n)
$$

so E is efficient, and it holds that

$$
\begin{gathered}
\mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), D}\left[D^{F_{k}, F_{k}^{-1}}\left(1^{n}\right)=1\right]=\mathbb{P}_{k \sim U\left(\{0,1\}^{l}\right), E}\left[E^{P_{k}, P_{k}^{-1}}\left(1^{n}\right)=1\right] \\
\mathbb{P}_{\tau \sim U\left(S_{n}(C)\right), D}\left[D^{\tau, \tau^{-1}}\left(1^{n}\right)=1\right] \underset{\text { Lemma }}{=} \mathbb{P}_{\pi \sim U\left(S_{n}\right), D}\left[D^{\sigma^{\pi},\left(\sigma^{\pi}\right)^{-1}}\left(1^{n}\right)=1\right]=\mathbb{P}_{\pi \sim U\left(S_{n}\right), E}\left[E^{\pi, \pi^{-1}}\left(1^{n}\right)=1\right]
\end{gathered}
$$

2.2.3 Fast Forward Property

An appealing property of this construction is that it enables fast-forwarding. Denote the runtime of computing $\sigma^{(m)}=\sigma \circ \cdots \circ \sigma$ by $s(m)$. Notice that

$$
F_{k}^{(m)}=\left(P_{k} \circ \sigma \circ P_{k}^{-1}\right)^{(m)}=\left(P_{k} \circ \sigma \circ P_{k}^{-1}\right) \circ\left(P_{k} \circ \sigma \circ P_{k}^{-1}\right) \circ \cdots \circ\left(P_{k} \circ \sigma \circ P_{k}^{-1}\right)=P_{k} \circ \sigma^{(m)} \circ P_{k}^{-1}
$$

so iterating m times over F_{k} adds only $s(m)$ to the evaluation runtime complexity. Therefore if we assume that σ also has the fast forward property ${ }^{3}$, that is that $s(m)=s\left(m^{\prime}\right)$ for all m, m^{\prime}, then we could have provided the distinguisher D with more power, namely issuing queries to $\tau^{(m)}$, while maintaining security. If we assume σ^{-1} has the fast forward property as well, this holds also for negative m.

References

[NR00] Naor, Moni and Omer Reingold. "Constructing Pseudo-Random Permutations with a Prescribed Structure." Journal of Cryptology 15 (2000): 97-102.

[^1]
[^0]: *orr.paradise@weizmann.ac.il
 ${ }^{\dagger}$ neil.vexler@weizmann.ac.il
 ${ }^{1}$ This depends on the choice of i in 1 a and can be canonicalized by always choosing $i=\min N$.
 ${ }^{2}$ These two definitions are nonstandard.

[^1]: ${ }^{3}$ For example when σ is the cyclic permutation $\sigma=\left(1, \ldots, 2^{n}\right)$, then $\sigma^{(m)}(x)=x+m \bmod 2^{n}$.

