
Pseudorandom Permutations of a Prescribed Type [NR00]

Orr Paradise∗and Neil Vexler†

March 3, 2019

An interpretation of [NR00], mistakes are likely ours.
Part one of two in a talk on pseudorandom objects of a prescribed type (notes for the second

part are unavailable, unfortunately.

1 Introduction

1.1 Cycle notation

Let Sn be the set of bijections from [n] to itself. Endowed with the composition operation (◦) it forms a
group. Further, each σ ∈ Sn can be decomposed into its cycles:

1. Initialize N := [n] and an empty cycle set. While N 6= ∅:

(a) Choose i ∈ N , and initialize γ = (i). Let j := σ (i). While j 6= i:

i. Append j to γ and let j := σ (j).

(b) Add c to the cycle set and update N := N \ γ.

We know of Cauchy's two-line notation for permutations, in which we represent σ ≡
(

1 · · · n
σ (1) · · · σ (n)

)
.

We can now represent σ by listing its cycles, σ ≡ (1, σ (1) , . . .) (i, σ (i) , . . .) , Notice that this represen-
tation is unique only up to the order of cycles, and the starting element of each cycle1. Also, single-element
cycles are usually omitted.

We associate with each permutation σ its cycle type CT (σ), which is simply a list of the lengths of each
cycle of σ. Again this property is determined only up to the order of cycles. Three examples:

Two-line notation Cycle notation Cycle Type(
1 2 3 4
2 3 4 1

)
(1, 2, 3, 4) ≡ (4, 1, 2, 3) (4)(

1 2 3 4
2 1 4 3

)
(1, 2) (3, 4) (2, 2)(

1 2 3 4
3 2 1 4

)
(1, 3) (1) (4) ≡ (1, 3) (1, 1, 2) ≡ (2, 1, 1)

For any cycle type C, let Sn (C) := {σ ∈ Sn|CT (σ) = C} be the set of all permutations on [n] elements
with cycle type C. Elements of Sn (C) will be known as C-permutations (on n elements).2 A �nal important
notion is the conjugation of σ ∈ Sn by π ∈ Sn, de�ned by σπ := π ◦ σ ◦ π−1. An elementary result in group
theory is that CT (σ) = CT (σπ) and that Sn (C) is the set of all conjugations of σ, hence Sn (C) is known
as σ's conjugacy class. We will in fact show a stronger result in lemma 2.

∗orr.paradise@weizmann.ac.il
†neil.vexler@weizmann.ac.il
1This depends on the choice of i in 1a and can be canonicalized by always choosing i = minN .
2These two de�nitions are nonstandard.

1

1.2 Pseudo-random Permutations

De�nition 1. A family of permutations Pn =
{
Pk ∈ Sn|k ∈ {0, 1}l

}
is called pseudo-random if it satis�es

the following:

1. Succinct Representation: The key length l is polynomial in the input/output length n.

2. E�cient Computation: For any k, Pk,P
−1
k can be computed e�ciently, i.e in time polynomial in l.

3. Indistinguishability : No e�cient distinguisher, given oracle access to π, π−1 ∈ Sn can distinguish
whether τ is a random member of Pn or a truly random permutation with non-negligible probability.
That is, for any e�cient distinguisher D there exists a negligible negl (·) such that∣∣∣Pk∼U({0,1}l),D

[
DPk,P

−1
k (1n) = 1

]
− Pπ∼U(Sn),D

[
Dπ,π−1

(1n) = 1
]∣∣∣ ≤ negl (n)

For any cycle type C we could replace Sn with Sn (C) in the above de�nition to obtain a de�nition for
pseudo-random C-permutations. Notice that the adversary would then be required to distinguish between a
random member of Pn and a random C-permutation. Also notice that we require Pn to truly be a family of
C-permutations and not just computationally indistinguishable from one�more on this later.

2 Pseudo-random C-permutations

The �rst main result we will see is due to Moni Naor and Omer Reingold [NR00], and asserts that if there
are pseudo-random permutations then there are pseudo-random C-permutations for any cycle type C. Also,
these pseudo-random C-permutations have the fast-forward property, meaning that they can be iterated at
'zero' cost.

2.1 The construction

Let Pn be a family of pseudo-random permutations, and let C be a cycle type. The construction is straight-
forward. Fix σ ∈ Sn (C). The family is

Fn :=
{
Fk := σPk := Pk ◦ σ ◦ P−1k |k ∈ {0, 1}

l
}

2.2 Correctness

We turn to to prove that Fn is a family of pseudo-random C-permutations.

2.2.1 Truthfulness

We �rst need to prove that indeed Fk ∈ Sn (C) for all k. We prove a stronger result.

Lemma 2. If π is a random permutation then σπ is a random C-permutation. That is, if π ∼ U (Sn) then

σπ ∼ U (Sn (C)).

Proof. Let τ, τ ′ ∈ Sn (C). We need to show that

Pπ [σπ = τ] = Pπ [σπ = τ ′]

Since π is uniformly chosen from Sn, letting Π = {π ∈ Sn|σπ = τ} and Π′ = {π ∈ Sn|σπ = τ ′} it su�ces
to prove that |Π| = |Π′|. This is shown by constructing a bijection between the sets. Assume there exists
P ∈ Sn such that τ ′ = τP . The bijection from Π to Π′ is then π 7→ P ◦ π.

• It is well de�ned: If π ∈ Π then σP◦π = (σπ)
P

= τP = τ ′, so P ◦ π ∈ Π′.

2

• It is invertible: Its inverse is clearly π′ 7→ P−1 ◦ π′, and is well de�ned since if π′ ∈ Π′ then σP
−1◦π′ =(

σπ
′
)P−1

= (τ ′)
P−1

=
(
τP
)P−1

= τ .

What's left is to construct such P . Since CT (τ) = CT (τ ′) we can uniquely associate each cycle γ in τ with
a cycle of same length γ′ in τ ′. For any such cycles γ = (i0, . . . , ig) and γ′ =

(
i′0, . . . , i

′
g

)
, let P

(
i′j
)

:= ij .

This de�nes a permutation P ∈ Sn for which τ ′ = τP . Indeed

• P is a well de�ned permutation because each i ∈ [n] appears exactly once in the cycles of τ and of τ ′,
and the correspondence of those cycles is 1-to-1 and onto.

• For any i ∈ [n], assume that i = ij in cycle γ of τ . with corresponging i′j in cycle γ′ of τ ,

τ ′ (P (ij)) = τ ′
(
i′j
)

= i′j+1 mod g = P (ij+1 mod g) = P (τ (ij))

therefore τ ′ ◦ P = P ◦ τ and so τ ′ = τP .

Proving the �rst two axioms of pseudo-randomness is easy, so we turn to prove indistinguishability.

2.2.2 Indistinguishability

Suppose that we have an e�cient distinguisher D for which∣∣∣Pk∼U({0,1}l),D

[
DFk,F

−1
k (1n) = 1

]
− Pτ∼U(Sn(C)),D

[
Dτ,τ−1

(1n) = 1
]∣∣∣ > 1

p (n)

for some polynomial p. Let t (n) , q (n) denote the polynomial time, query complexities (resp.) of D on inputs
of length n. We construct a distinguisher E that will contradict Pn being a pseudo-random permutation
family.

Algorithm 1 The distinguisher E

The run Eπ,π
−1

(1n) simulates D in the following way:

1. Let τ = σπ = π ◦ τ ◦ π−1. E simulates Dτ,τ−1

(1n) as follows:

(a) When D makes the query τ (x), E queries its oracle twice: Once for z := π−1 (x) and again for
y := π (σ (z)). E answers D's query with y.

(b) When D makes the query τ−1 (x), E queries its oracle twice: Once for z := π (x) and gain for
y := π−1 (σ (z)). E answers D's query with y.

2. E answers the same as D.

Denoting σ's runtime with s�which is �xed in the context of this analysis. Then E's query and runtime
complexities are

qE (n) = 2qD (n)

tE (n) ≤ q (n) (2 + s)︸ ︷︷ ︸
queries of D

p (n)︸︷︷︸
other operations of D

≤ p (n) (3 + s) = O (p (n))

so E is e�cient, and it holds that

Pk∼U({0,1}l),D

[
DFk,F

−1
k (1n) = 1

]
= Pk∼U({0,1}l),E

[
EPk,P

−1
k (1n) = 1

]
Pτ∼U(Sn(C)),D

[
Dτ,τ−1

(1n) = 1
]

=
Lemma

Pπ∼U(Sn),D

[
Dσπ,(σπ)−1

(1n) = 1
]

= Pπ∼U(Sn),E

[
Eπ,π

−1

(1n) = 1
]

3

2.2.3 Fast Forward Property

An appealing property of this construction is that it enables fast-forwarding. Denote the runtime of com-
puting σ(m) = σ ◦ · · · ◦ σ by s (m). Notice that

F
(m)
k =

(
Pk ◦ σ ◦ P−1k

)(m)
=
(
Pk ◦ σ ◦ P−1k

)
◦
(
Pk ◦ σ ◦ P−1k

)
◦ · · · ◦

(
Pk ◦ σ ◦ P−1k

)
= Pk ◦ σ(m) ◦ P−1k

so iterating m times over Fk adds only s (m) to the evaluation runtime complexity. Therefore if we assume
that σ also has the fast forward property3, that is that s (m) = s (m′) for all m,m′, then we could have
provided the distinguisher D with more power, namely issuing queries to τ (m), while maintaining security.
If we assume σ−1 has the fast forward property as well, this holds also for negative m.

References

[NR00] Naor, Moni and Omer Reingold. �Constructing Pseudo-Random Permutations with a Prescribed
Structure.� Journal of Cryptology 15 (2000): 97-102.

3For example when σ is the cyclic permutation σ = (1, . . . , 2n), then σ(m) (x) = x+m mod 2n.

4

	Introduction
	Cycle notation
	Pseudo-random Permutations

	Pseudo-random C-permutations
	The construction
	Correctness

