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Prepared for a Theorist’s Toolkit, a course taught by Irit Dinur at the Weizmann Institute of Science.
The purpose of these notes is to help the students (including, most importantly, me) during
the presentation, so informalities and inaccuracies are to be expected.

1 Introduction

We present an simple construction of an expander family due to [M75] and [GGS81]. As is often the case, a
simple construction requires complicated analysis, but we present the analysis of [T14], 6.2], which is composed
of three straightforward steps and is beautiful in its own right. As you will see, it also incorporates and
generalizes many of the concepts we saw in the course.

1.1 Overview

Our alleged expander will be {G,,} where G,, is a graph on vertices Z,, X Z,, where (a,b) is connected

to

neN?

S (a,b), 57" (a,5), T (a,b), 7" (a,b), (a £ 1,0), (a,b £ 1)

b
where S (a,b) = (a,a +b), T (a,b) == (a+b,b), S~ (a,b) = (a,b—a), T~ (a,b) = (a — b,b) with addition
and subtraction modulus n.
To show that {G,}, oy is an expander family, we must show that

ey B [ -0
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and we do this by constructing an infinite version of this graph which would be easier to analyze in terms
of expansion, and showing that the infinite version has similar expansion properties to G,,. In fact, we will
have an additional (infinite) intermediate graph.

For a more detailed explanation, we must introduce two additional actors.

e The graph family {R,}, . Each R, is a graph on vertices [0,n) x [0, 1), where each (z,y) is connected
to S (z,y),S 1 (z,y),T (z,y), T (z,y).

e Graph Z on vertices ZxZ\{0, 0}, Each vertex (a, b) is connected to S (z,y), S~ (z,y), T (z,y), T~ (z,y),
only now we define S and T using regular addition (not addition modulus n).

Informallyﬂ we will then prove each of the following inequalities,

O (A2(Gn)) =2 A2 (Rn) = X2 (2) = (1)
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T'As we have not yet defined Az (Ry,) and A2 (2).
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2 The countable case

Let’s start at the end. The notion of conductence of a graph can be generalized to countably infinite graphs
by letting
E(AA
b (6 £ (4.7)

o A finite and nonempty |A|
We then reason about Z’s conductence.
Proposition 2.1. ®(Z) > 1/3.
Proof. Let A be a finite nonempty subset of Z?\ {0,0}. Let A; be the intersection of A with the i-th quadrant
of Z2, and let Ag be the intersection of A with each axis.
Claim 2.2. |E (A\ A, A)| > |A\ Ag| = |A] — |Ao]
Proof. Consider A;. The following three properties hold:
o [S(A)| =T (A1) = |A4]
— S(A41)NT (A1) = (. Otherwise we’d have (a,a +b) = (¢’ +¥',b") which implies that b = —d/,
which the fact that (a,b) and (a’,b’) reside in the first quadrant.
— S(A;) and T (A4;) are contained in the first quadrant.
S (A1) UT (Ay) is twice Ay’s size and is contained in the first quadrant, so at least half of its elemnts aren’t
in A. Since the set of edges with one point in A; contains S (A1) UT (A;), this means that there are at least
|A1] edges leaving A; and landing in A.
Repeating the above claim for Ay, A3 and A (while considering (S~,771), (S,T) and (S~*,T7!)
respectively) gives that for all i € [4], |A;| of edges leaving A; land in A. In other words,

UE(Ai,Z)

(47 40, )| =

= 2B (A )] = 3 1A = 140 Aol

Claim 2.3. |E (Ao, A)| > 5]Ao| — 3|A|

Proof. Each vertex in Ay has two outgoing edges that land outside Ag (e.g. (a,0) is connected to (a, ﬂ:a))ﬂ
Some of these edges land in A\ Ay and some land in A. A\ Ay can account for at most 4|4\ Ap| edges,
therefore the number of edges landing in A is at least 2| Ag| —4|A \ Ag|. But using the previous claim we see
that A\ Ag can account for at most 3 |4\ Ag| edges, as at least | A\ Ag| edges come from A (and specifically
do not come from Ay), giving us that |E (Ao, A)| > 2|Ao| — 3|A\ Ao| = 5|Ae| — 3|A]. O

To conclude the proof, add 5/6 of the first inequality to 1/6 of the second. Formally, observe that

5|A| —5]Ao| +5]A0[—3]4] _ 1
6 3
O

B (A, )] = |5 (A\ Ao, ) |+]E (40, A)| > 2| B (4\ Ao, A) [+ |E (40, 4)| > A

Similarly to the finite case (following the Courant-Fischer theorem), for a countably infinite graph G we
define A2 (G) to be the infimum of the Rayleigh quotient taken over all zero-meaned functions (that are nice

enough)ﬂ
Z(u,u)eE(G) (f(w) = f (U))2

ZuEV(G) f (w)?

/\2 (G) = inf

2The other two edges are self-loops.
3We could have defined a Laplacian for countably infinite graphs and proven that its second eigenvalue is equal to said
infimum, but this is not needed for our proof.



Where the infimum is taken over f : Z? — R such that > __,. fe)? < 00, > ezz f(¢) = 0,f # 0. The
dilligent reader can try to generalize the total variation and variance over finite graphs to countably infinite
ones, and find that their ratio (i.e. the Rayleigh quotient) is exactly as above. Plugging Z into our definition,
we get

- f%/ Sz [(F () = (S @)+ (f () — F (T (w)))?]
POy Sz 1)

We ignore the factor of 1/2 (and keep it in mind for the final tally if we wish to make it). Following these
definition, it is natural to prove a Cheeger inequality for them, and indeed such a relation holds.

Fact 2.4. For any countably infinite d-reqular graph G,

P (G) < V2dX2 (G)

The proof is similiar to the proof for the finite case we saw in class (use Fiedler’s algorithm). From this
and the above we get that Ay (G) > ® (G)* /16 > 1/144.

3 Countable to continuous

This is where things get interesting. Again, we define an analogue to the Rayleigh quotient, this time for
continuous (uncountable) graphs. To avoid many technicalities, not only do we skip the definition of a
Laplacian operator (and proof of the eigenvalue and Rayleigh qutient correspondence), but also plug R,
straight into the definition from the get—goﬂ Let Lo denote . Let

 fEL, ‘ﬁo)n)g f (u)2 du

Where the infimum is taken over the space of functions f : [0,n)° — R such that f[o w2 f (2)*dz is well-
defined (i.e. f is Lebesgue integrable), finite and nonzero, and that f[o ) f(z)dz=0.

Proposition 3.1.
A2 (R,) > A2 (Z)

Proof. Each f € L, has a Fourier decomposition given by f(z) = > .y f(c) - Xe (%), where

Yoo o) = 2 Fo = (f) = [ F@ne)es

[0,n)*

Our goal is to show a correspondance between the expression minimized in the LHS and the expression
minimized in the RHS. Specifically, we will show that the Rayleigh quotient of f : [0, n)2 — R (wrt R,) is
equal to the Rayleigh quotient of f: 7Z? — R (w.r.t Z), which gives the requires result.

For the denomnators, we use the Parseval equality (for this continuous product space) to get

> Fer=Yier=[  ferae

c€Z2\{(0,0)} c€Z? [0,n)?

where the leftmost equality is from the assumption that fA(O7 0) = f[o n)? f(z)dz=0.
For the numerators, let s(z) = f(2) — f(S(z)) and similarly ¢(z) = f(z) — f(T'(Z)), then using
Parseval’s equality and linearity of Fourier coefficients (i.e. linearity of an inner product),

/[O RSO SECETEDY (F@) - Fos5) + (Fl0) - FoT ()

ce72 c€Z2\{(0,0)}

4What’s important is that we’re be able to reason about this expression both now and in the following section.



To conclude, we observe that

/O\ _ l 27i(ax+by) _ l 27i(ax+by)
Fos@y = o[ E@mener i@y = L e e ety
veern = o [ PO < fla by = for b
and similarly f/ﬁ”(a, b) = fost (a,b).
As such,
[ reere = 3 (fo-Fose) + (Fo-FoTe)
yn cE€ZL?
N N 2 . 2
= Y (FO-TFor @) +(Fle) - Fos'(0)
c€Z?
= Y (fer(o- f(c))2 +(Fos(o- f(c))2
c€Z?
so the numerators are equal as well. O

4 M (Gp) > Q (N (Ry))

We have all the tools we need, so we can jump straight to the proof.

Proof. Let f be the minimizer of G,,’s Rayleigh quotient. That is, f : Z2 — R such that f # 0, ",z f (u) =

0, and’

Puezz (f (@) = f (S)? + (f (w) = f (T (@)* + (f (w) = f (w+ex))” + (f (u) = f (u+e2))”
ZUEZEL f (U)2

A2 (G) =

>~ =

Again, we wish to show a correspondence between functions f : Z2 — R and functions f: [O,n)2 — R.
This time, we extend f : Z2 — R (nonzero, zero meaned) to all of [0,n) by breaking [0,n)” into a grid of

1 x 1 squares, and letting the value of the fon each square be equal to the value of the f on the square’s
bottom-left vertex. That is, we let f (z,y) == f (|z], |y])- y

Since the area of each square in the grid is exactly 1, then f[o,n)z f(z)dz = ZuGZ% f (u), and so the
denominators are equal (up to factor 4).

We show that the numerators are equal. Let’s focus on the left addend of the RHS, f[o’n)Q (f (2) = £ (S (2)>
Integrating over each square (of the grid) seperately, we have

/[O’H)Q (f (2) = f(S (z)))Q dz = (a%e:m /[a,a+1>x[b,b+1> (f(z) ~f(s (z)))2 dz

Now, in a given square, the top-left to bottom-right diagonal splits the square in half, and in the bottom
triangle it holds that [a 4+ b] = |a]| + |b], whereas in the top triangle it holds that |a 4+ b] = |a]| + [b] + 1.

5Tn very few details, this follows from

Bun [(F(0) = £ @))] = ¢ > Buer (f (0) ~ £ (6 () = > 2o [(f () — £ (6 ()]

¢e{SEL T (tey,()tea} pe{S,T,(-)+e1,(-)+ea}

and since 7 (Gy’s stationary distribution) is uniform as Gy, is d-regular.



As such,

/ (Fe) -FsEn) de = 2 ((F@b)—Flaa+b)*+(f (@) - f@aatb+ 1))
la,a+1)x[b,b+1)
wr = 3 (PO FE@) (O~ F (500 +e))?)
o 1<(f(c)f(5())) 2(f () - <<>+e2>>2)
(a=m2<2((@=B)2+(B-7)%) = 79 +2(f (c+e2) — F(S(c) + e2))?
= L@ FSEN (@)~ F(©)+ex))* +(F (et e) — F(S () +e2))?

now summing over all squares,

Flo) - F(5)) dz = L@ = F(S@)) +(F () = f((e) +e2))”
/[aa+1) [bb+1)<f(z) f(S())) e = Z ( f(s 2 )

(a,b)ez2 (a,b)€Z2 +(fete) = f(S(e) +e2))
Changing order of summation — Z g (f (C) - f (S (C)))2 + (f (C) - f ((C) + 62))2
(a,b)eZ?
< g Yo F@©=FS @) + ()= f(e)+e))
(a,b)eZ2

Making the analgous observations for 7', we have
~ - 2
/[0 L(Fo-Fre)) ds S @@ ()~ F () +e)?
" (a,b)€Z2

Summing both inequalities, we get that the numerator of G,,’s Rayleigh quotient is at least two-thirds the
numerator of R,’s Rayleigh quotient. Putting everything together, we have that

22 (Go) 2 5+ D (Ra) = £ (R)
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