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The purpose of these notes is to help the students (including, most importantly, me) during

the presentation, so informalities and inaccuracies are to be expected.

1 Introduction

We present an simple construction of an expander family due to [M75] and [GG81]. As is often the case, a
simple construction requires complicated analysis, but we present the analysis of [T14, 6.2], which is composed
of three straightforward steps and is beautiful in its own right. As you will see, it also incorporates and
generalizes many of the concepts we saw in the course.

1.1 Overview

Our alleged expander will be {Gn}n∈N, where Gn is a graph on vertices Zn × Zn, where (a, b) is connected
to

S (a, b) , S−1 (a, b) , T (a, b) , T−1 (a, b) , (a± 1, b) , (a, b± 1)

where S (a, b) := (a, a+ b), T (a, b) := (a+ b, b), S−1 (a, b) = (a, b− a), T−1 (a, b) = (a− b, b) with addition
and subtraction modulus n.

To show that {Gn}n∈N is an expander family, we must show that

λ2 (Gn) = min
f⊥1,f 6=0

ε (f)

Var (f)
= min
f⊥1,f 6=0

Eu∼v
[
(f (u)− f (v))

2
]

Eu←π
[
f (u)

2
] = Ω (1)

and we do this by constructing an in�nite version of this graph which would be easier to analyze in terms
of expansion, and showing that the in�nite version has similar expansion properties to Gn. In fact, we will
have an additional (in�nite) intermediate graph.

For a more detailed explanation, we must introduce two additional actors.

• The graph family {Rn}n∈N. Each Rn is a graph on vertices [0, n)× [0, n), where each (x, y) is connected
to S (x, y) , S−1 (x, y) , T (x, y) , T−1 (x, y).

• Graph Z on vertices Z×Z\{0, 0}, Each vertex (a, b) is connected to S (x, y) , S−1 (x, y) , T (x, y) , T−1 (x, y),
only now we de�ne S and T using regular addition (not addition modulus n).

Informally1, we will then prove each of the following inequalities,

Θ (λ2 (Gn)) ≥ λ2 (Rn) ≥ λ2 (Z) = Ω (1)
∗orr.paradise@weizmann.ac.il
1As we have not yet de�ned λ2 (Rn) and λ2 (Z).
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2 The countable case

Let's start at the end. The notion of conductence of a graph can be generalized to countably in�nite graphs
by letting

Φ (G) := inf
A �nite and nonempty

∣∣E (A,A)∣∣
|A|

We then reason about Z's conductence.

Proposition 2.1. Φ (Z) ≥ 1/3.

Proof. Let A be a �nite nonempty subset of Z2\{0, 0}. Let Ai be the intersection of A with the i-th quadrant
of Z2, and let A0 be the intersection of A with each axis.

Claim 2.2.
∣∣E (A \A0, A

)∣∣ ≥ |A \A0| = |A| − |A0|

Proof. Consider A1. The following three properties hold:

• |S (A1)| = |T (A1)| = |A1|

� S (A1) ∩ T (A1) = ∅. Otherwise we'd have (a, a+ b) = (a′ + b′, b′) which implies that b = −a′,
which the fact that (a, b) and (a′, b′) reside in the �rst quadrant.

� S (A1) and T (A1) are contained in the �rst quadrant.

S (A1)t T (A1) is twice A1's size and is contained in the �rst quadrant, so at least half of its elemnts aren't
in A. Since the set of edges with one point in A1 contains S (A1)tT (A1), this means that there are at least
|A1| edges leaving A1 and landing in A.

Repeating the above claim for A2, A3 and A4 (while considering
(
S−1, T−1

)
, (S, T ) and

(
S−1, T−1

)
respectively) gives that for all i ∈ [4], |Ai| of edges leaving Ai land in A. In other words,

∣∣E (A \A0, A
)∣∣ =

∣∣∣∣∣⊔
i

E
(
Ai, A

)∣∣∣∣∣ =
∑
i

∣∣E (Ai, A)∣∣ ≥∑
i

|Ai| = |A \A0|

Claim 2.3.
∣∣E (A0, A

)∣∣ ≥ 5 |A0| − 3 |A|

Proof. Each vertex in A0 has two outgoing edges that land outside A0 (e.g. (a, 0) is connected to (a,±a)).2

Some of these edges land in A \ A0 and some land in A. A \ A0 can account for at most 4 |A \A0| edges,
therefore the number of edges landing in A is at least 2 |A0|−4 |A \A0|. But using the previous claim we see
that A\A0 can account for at most 3 |A \A0| edges, as at least |A \A0| edges come from A (and speci�cally
do not come from A0), giving us that

∣∣E (A0, A
)∣∣ ≥ 2 |A0| − 3 |A \A0| = 5 |A0| − 3 |A|.

To conclude the proof, add 5/6 of the �rst inequality to 1/6 of the second. Formally, observe that∣∣E (A,A)∣∣ =
∣∣E (A \A0, A

)∣∣+∣∣E (A0, A
)∣∣ ≥ 5

6

∣∣E (A \A0, A
)∣∣+1

6

∣∣E (A0, A
)∣∣ ≥ 5 |A| − 5 |A0|+ 5 |A0| − 3 |A|

6
=

1

3
|A|

Similarly to the �nite case (following the Courant-Fischer theorem), for a countably in�nite graph G we
de�ne λ2 (G) to be the in�mum of the Rayleigh quotient taken over all zero-meaned functions (that are nice
enough)3.

λ2 (G) := inf

∑
(u,v)∈E(G) (f (u)− f (v))

2∑
u∈V (G) f (u)

2

2The other two edges are self-loops.
3We could have de�ned a Laplacian for countably in�nite graphs and proven that its second eigenvalue is equal to said

in�mum, but this is not needed for our proof.
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Where the in�mum is taken over f : Z2 → R such that
∑
c∈Z2 f (c)

2
< ∞,

∑
c∈Z2 f (c) = 0, f 6≡ 0. The

dilligent reader can try to generalize the total variation and variance over �nite graphs to countably in�nite
ones, and �nd that their ratio (i.e. the Rayleigh quotient) is exactly as above. Plugging Z into our de�nition,
we get

λ2 (Z) := inf
�
��1

2
·

∑
u∈Z2

[
(f (u)− f (S (u)))

2
+ (f (u)− f (T (u)))

2
]

∑
u∈Z2 f (u)

We ignore the factor of 1/2 (and keep it in mind for the �nal tally if we wish to make it). Following these
de�nition, it is natural to prove a Cheeger inequality for them, and indeed such a relation holds.

Fact 2.4. For any countably in�nite d-regular graph G,

Φ (G) ≤
√

2dλ2 (G)

The proof is similiar to the proof for the �nite case we saw in class (use Fiedler's algorithm). From this

and the above we get that λ2 (G) ≥ Φ (G)
2
/16 ≥ 1/144.

3 Countable to continuous

This is where things get interesting. Again, we de�ne an analogue to the Rayleigh quotient, this time for
continuous (uncountable) graphs. To avoid many technicalities, not only do we skip the de�nition of a
Laplacian operator (and proof of the eigenvalue and Rayleigh qutient correspondence), but also plug Rn
straight into the de�nition from the get-go.4 Let L2 denote . Let

λ2 (Rn) := inf
f∈L2

∫
[0,n)2

(f (u)− f (S (u)))
2

+ (f (u)− f (T (u)))
2

du∫
[0,n)2

f (u)
2

du

Where the in�mum is taken over the space of functions f : [0, n)
2 → R such that

∫
[0,n)2

f (z)
2

dz is well-

de�ned (i.e. f is Lebesgue integrable), �nite and nonzero, and that
∫
[0,n)

f (z) dz = 0 .

Proposition 3.1.

λ2 (Rn) ≥ λ2 (Z)

Proof. Each f ∈ L2 has a Fourier decomposition given by f (z) =
∑
c∈Z2 f̂ (c) · χc (z), where

χa,b (x, y) =
1

n
e2πi(ax+by) f̂ (c) = 〈f, χc〉 =

∫
[0,n)2

f (z)χc (z) dz

Our goal is to show a correspondance between the expression minimized in the LHS and the expression
minimized in the RHS. Speci�cally, we will show that the Rayleigh quotient of f : [0, n)

2 → R (w.r.t Rn) is

equal to the Rayleigh quotient of f̂ : Z2 → R (w.r.t Z), which gives the requires result.
For the denomnators, we use the Parseval equality (for this continuous product space) to get∑

c∈Z2\{(0,0)}

f̂ (c)
2

=
∑
c∈Z2

f̂ (c)
2

=

∫
[0,n)2

f (z)
2

dz

where the leftmost equality is from the assumption that f̂ (0, 0) =
∫
[0,n)2

f (z) dz = 0.

For the numerators, let s (z) := f (z) − f (S (z)) and similarly t (z) := f (z) − f (T (Z)), then using
Parseval's equality and linearity of Fourier coe�cients (i.e. linearity of an inner product),∫

[0,n)2
s (z)

2
+ t (z)

2
dz =

∑
c∈Z2

ŝ (c)
2

+ t̂ (c)
2

=
∑

c∈Z2\{(0,0)}

(
f̂ (c)− f̂ ◦ S (c)

)2
+
(
f̂ (c)− f̂ ◦ T (c)

)2
4What's important is that we're be able to reason about this expression both now and in the following section.
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To conclude, we observe that

f̂ ◦ S (a, b) =
1

n

∫
[0,n)2

f (S (a, b)) e2πi(ax+by)d (x, y) =
1

n

∫
[0,n)2

f (x, x+ y) e2πi(ax+by)d (x, y)

y′=x+y =
1

n

∫
[0,n)2

f (x, y′) e2πi((a−b)x+by
′) = f̂ (a− b, b) = f̂ ◦ T−1 (a, b)

and similarly f̂ ◦ T (a, b) = f̂ ◦ S−1 (a, b).
As such, ∫

[0,n)2
s (z)

2
+ t (z)

2
dz =

∑
c∈Z2

(
f̂ (c)− f̂ ◦ S (c)

)2
+
(
f̂ (c)− f̂ ◦ T (c)

)2
=

∑
c∈Z2

(
f̂ (c)− f̂ ◦ T−1 (c)

)2
+
(
f̂ (c)− f̂ ◦ S−1 (c)

)2
=

∑
c∈Z2

(
f̂ ◦ T (c)− f̂ (c)

)2
+
(
f̂ ◦ S (c)− f̂ (c)

)2
so the numerators are equal as well.

4 λ2 (Gn) ≥ Ω (λ2 (Rn))

We have all the tools we need, so we can jump straight to the proof.

Proof. Let f be the minimizer ofGn's Rayleigh quotient. That is, f : Z2
n → R such that f 6≡ 0,

∑
u∈Z2

n
f (u) =

0, and5

λ2 (G) =
1

4
·
∑
u∈Z2

n
(f (u)− f (S(u))

2
+ (f (u)− f (T (u)))

2
+ (f (u)− f (u+ e1))

2
+ (f (u)− f (u+ e2))

2∑
u∈Z2

n
f (u)

2

Again, we wish to show a correspondence between functions f : Z2
n → R and functions f̃ : [0, n)

2 → R.
This time, we extend f : Z2

n → R (nonzero, zero meaned) to all of [0, n)
2
by breaking [0, n)

2
into a grid of

1 × 1 squares, and letting the value of the f̃ on each square be equal to the value of the f on the square's
bottom-left vertex. That is, we let f̃ (x, y) := f (bxc , byc).

Since the area of each square in the grid is exactly 1, then
∫
[0,n)2

f̃ (z) dz =
∑
u∈Z2

n
f (u), and so the

denominators are equal (up to factor 4).

We show that the numerators are equal. Let's focus on the left addend of the RHS,
∫
[0,n)2

(f (z)− f (S (z)))
2
.

Integrating over each square (of the grid) seperately, we have∫
[0,n)2

(
f̃ (z)− f̃ (S (z))

)2
dz =

∑
(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

(
f̃ (z)− f̃ (S (z))

)2
dz

Now, in a given square, the top-left to bottom-right diagonal splits the square in half, and in the bottom
triangle it holds that ba+ bc = bac+ bbc, whereas in the top triangle it holds that ba+ bc = bac+ bbc+ 1.

5In very few details, this follows from

Eu∼v
[
(f (u)− f (v))2

]
=

1

8

∑
φ∈{S±1,T±1,(·)±e1,(·)±e2}

Eu←π (f (u)− f (φ (u)))2 =
1

8

∑
φ∈{S,T,(·)+e1,(·)+e2}

2Eu←π
[
(f (u)− f (φ (u)))2

]
and since π (Gn's stationary distribution) is uniform as Gn is d-regular.
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As such,∫
[a,a+1)×[b,b+1)

(
f̃ (z)− f̃ (S (z))

)2
dz =

1

2

(
(f (a, b)− f (a, a+ b))

2
+ (f (a, b)− f (a, a+ b+ 1))

2
)

c=(a,b) =
1

2

(
(f (c)− f (S (c)))

2
+ (f (c)− f (S (c) + e2))

2
)

(α−γ)2≤2((α−β)2+(β−γ)2) ≤ 1

2

(
(f (c)− f (S (c)))

2
+ 2 (f (c)− f ((c) + e2))

2

+2 (f (c+ e2)− f (S (c) + e2))
2

)
=

1

2
(f (c)− f (S (c)))

2
+ (f (c)− f ((c) + e2))

2
+ (f (c+ e2)− f (S (c) + e2))

2

now summing over all squares,

∑
(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

(
f̃ (z)− f̃ (S (z))

)2
dz =

∑
(a,b)∈Z2

n

(
1
2 (f (c)− f (S (c)))

2
+ (f (c)− f ((c) + e2))

2

+ (f (c+ e2)− f (S (c) + e2))
2

)

Changing order of summation =
∑

(a,b)∈Z2
n

3

2
(f (c)− f (S (c)))

2
+ (f (c)− f ((c) + e2))

2

≤ 3

2

∑
(a,b)∈Z2

n

(f (c)− f (S (c)))
2

+ (f (c)− f ((c) + e2))
2

Making the analgous observations for T , we have∫
[0,n)2

(
f̃ (z)− f̃ (T (z))

)2
dz ≤ 3

2

∑
(a,b)∈Z2

n

(f (c)− f (T (c)))
2

+ (f (c)− f ((c) + e1))
2

Summing both inequalities, we get that the numerator of Gn's Rayleigh quotient is at least two-thirds the
numerator of Rn's Rayleigh quotient. Putting everything together, we have that

λ2 (Gn) ≥ 2

3
· 1

4
λ2 (Rn) =

1

6
λ2 (Rn)
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