Bits and pieces of the nonnegative inverse eigenvalue problem

Olga Holtz
Department of Mathematics
University of California-Berkeley

holtz@math.berkeley.edu

ILAS XII, Regina, June 2005
Outline

- Nonnegative inverse eigenvalue problem (NIEP)
Outline

• Nonnegative inverse eigenvalue problem (NIEP)
• Necessary conditions
Outline

- Nonnegative inverse eigenvalue problem (NIEP)
- Necessary conditions
- Functions that preserve nonnegativity of matrices
Outline

- Nonnegative inverse eigenvalue problem (NIEP)
- Necessary conditions
- Functions that preserve nonnegativity of matrices
- Preserving subclasses of nonnegative matrices
Outline

- Nonnegative inverse eigenvalue problem (NIEP)
- Necessary conditions
- Functions that preserve nonnegativity of matrices
- Preserving subclasses of nonnegative matrices
- Related problems
Outline

- Nonnegative inverse eigenvalue problem (NIEP)
- Necessary conditions
- Functions that preserve nonnegativity of matrices
- Preserving subclasses of nonnegative matrices
- Related problems
- Open problems
Given an n-tuple of complex numbers

$$\Lambda := (\lambda_1, \lambda_2, \ldots, \lambda_n),$$

does there exist a nonnegative matrix A with

$$\sigma(A) = \Lambda?$$
NIEP

Given an n-tuple of complex numbers

$$\Lambda := (\lambda_1, \lambda_2, \ldots, \lambda_n),$$

does there exist a nonnegative matrix A with

$$\sigma(A) = \Lambda?$$

Contributions by:

Perron, Frobenius, Wielandt, Kellogg, Dmitriev, Dynkin, Suleimanova, Boyle, Handelman, Friedland, Laffey, Schneider, Neumann, Johnson, Chu, London, Loewy, and many more
Necessary conditions

- $\overline{\Lambda} = \Lambda$, conjugation
- $\max |\Lambda| \in \Lambda$, spectral radius
- $s_k(\Lambda) := \sum_{j=1}^{n} \lambda_j^k \geq 0, k \in \mathbb{N}$. moments

Moments \implies conjugation & spectral radius conditions [Friedland, 1978].
Necessary conditions

- $\overline{\Lambda} = \Lambda$, conjugation
- $\max |\Lambda| \in \Lambda$, spectral radius
- $s_k(\Lambda) := \sum_{j=1}^{n} \lambda_j^k \geq 0$, $k \in \mathbb{N}$, moments

Moments \iff conjugation & spectral radius conditions [Friedland, 1978].

Boyle & Handelman [1991]:

Any n-tuple Λ satisfying basic conditions (= nonnegativity of moments) can be augmented by sufficiently many zeros so that the resulting n-tuple $\tilde{\Lambda} = (\Lambda, 0)$ will be realizable.
Connection to M-matrices

- sign pattern

\[
\begin{bmatrix}
+ & - & - & \cdots & - \\
- & + & - & \cdots & - \\
- & - & + & \cdots & - \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
- & - & - & \cdots & +
\end{bmatrix}
\]
Connection to M-matrices

- **sign pattern**

\[
\begin{bmatrix}
+ & - & - & \cdots & - \\
- & + & - & \cdots & - \\
- & - & + & \cdots & - \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
- & - & - & \cdots & +
\end{bmatrix}
\]

- **nonnegativity of principal minors**

\[A[\alpha] \geq 0, \quad \text{all } \alpha\]
Connection to M-matrices

- A is an M-matrix iff $A = rI - B$ where $B \geq 0$ and $r \geq \rho(B)$.

If A is a nonsingular M-matrix, then A^{-1} is nonnegative.

Open problem: characterize inverses of M-matrices.
Connection to M-matrices

- A is an M-matrix iff $A = rI - B$ where $B \geq 0$ and $r \geq \varrho(B)$.
- If A is a nonsingular M-matrix, then A^{-1} is nonnegative.

Open problem: characterize inverses of M-matrices.
NIEP: further conditions

\[s_k^m(\Lambda) \leq n^{m-1}s_{km}(\Lambda), \quad k, m \in \mathbb{N}. \]
NIEP: further conditions

 \[s_k^m(\Lambda) \leq n^{m-1}s_{km}(\Lambda), \quad k, m \in \mathbb{N}. \]

- **Newton’s inequalities.**

 \(\Lambda \) is the spectrum of a nonnegative matrix \(\iff \)

 \[\mathcal{M} := r(1, 1, \ldots, 1) - \Lambda, \quad r \geq \max |\Lambda|, \]

 is the spectrum of an \(M \)-matrix. Then

 \[c_k^2(\mathcal{M}) \geq c_{k-1}(\mathcal{M})c_{k+1}(\mathcal{M}), \quad k = 1, \ldots, n, \]

 where \(c_k(\mathcal{M}) \) are normalized coefficients of the polynomial with roots \(\mathcal{M} \).
Newton’s inequalities

Theorem. Let A be similar to an M- or inverse M-matrix. Then the normalized coefficients

$$c_j(A) := \sum_{\#\alpha = j} A[\alpha]/\binom{n}{j}, \quad j = 0, \ldots, n,$$

of its characteristic polynomial satisfy Newton’s inequalities

$$c_j^2(A) \geq c_{j-1}(A)c_{j+1}(A), \quad j = 1, \ldots, n - 1.$$
Newton’s inequalities

Theorem. Let A be similar to an M- or inverse M-matrix. Then the normalized coefficients

$$c_j(A) := \sum_{\# \alpha = j} A[\alpha]/\binom{n}{j}, \quad j = 0, \ldots, n,$$

of its characteristic polynomial satisfy Newton’s inequalities

$$c_j^2(A) \geq c_{j-1}(A)c_{j+1}(A), \quad j = 1, \ldots, n - 1.$$

These are **spectral conditions**.
More on Newton’s inequalities

Corollary. If A is similar to an M- or an inverse M-matrix, then

$$c_j(A)^{1/j} \geq c_k(A)^{1/k} \quad \text{whenever } j \leq k.$$

In particular,

$$c_1(A) \geq c_j(A)^{1/j} \quad \text{for } j \geq 1.$$
Main question

For Λ to be a solution to NIEP, it must satisfy moments, JLL, and Newton. Suppose f is an entire function mapping nonnegative matrices of order n into themselves:

$$A \geq 0 \iff f(A) \geq 0.$$

Then $f(\Lambda)$ must satisfy moments, JLL, and Newton. Thus we obtain many new inequalities necessary to solve NIEP.
Main question

For Λ to be a solution to NIEP, it must satisfy moments, JLL, and Newton. Suppose f is an entire function mapping nonnegative matrices of order n into themselves:

$$A \geq 0 \iff f(A) \geq 0.$$

Then $f(\Lambda)$ must satisfy moments, JLL, and Newton. Thus we obtain many new inequalities necessary to solve NIEP.

Question: Characterize all entire functions that leave invariant the cone of nonnegative matrices of order n.

Bits and pieces of the nonnegative inverse eigenvalue problem – p.10/25
Preliminary observations

Denote the class of entire functions preserving nonnegativity of matrices of order n by \mathcal{F}_n and its restriction to polynomials by \mathcal{P}_n.

- \mathcal{F}_n contains all functions with nonnegative Taylor coefficients;
- \mathcal{F}_n is closed under addition, multiplication, and composition;
- \mathcal{P}_n is a union of proper cones obtained by restricting to polynomials of degree bounded by a fixed positive integer. The extreme directions of these cones may be of interest.
Easier questions

Which functions leave invariant these subclasses of nonnegative matrices of order n?

- ND_n: nonnegative symmetric nonnegative definite matrices;
Easier questions

Which functions leave invariant these subclasses of nonnegative matrices of order n?

- ND_n: nonnegative symmetric nonnegative definite matrices;
- S_n: nonnegative symmetric matrices;
Easier questions

Which functions leave invariant these subclasses of nonnegative matrices of order n?

- ND_n: nonnegative symmetric nonnegative definite matrices;
- S_n: nonnegative symmetric matrices;
- C_n: nonnegative circulant matrices;
Easier questions

Which functions leave invariant these subclasses of nonnegative matrices of order n?

- ND_n: nonnegative symmetric nonnegative definite matrices;
- S_n: nonnegative symmetric matrices;
- C_n: nonnegative circulant matrices;
- U_n (L_n): nonnegative upper/lower triangular matrices;
Easier questions

Which functions leave invariant these subclasses of nonnegative matrices of order n?

- ND_n: nonnegative symmetric nonnegative definite matrices;
- S_n: nonnegative symmetric matrices;
- C_n: nonnegative circulant matrices;
- $U_n (L_n)$: nonnegative upper/lower triangular matrices;
- $BU_n (BL_n)$: nonnegative block upper/lower triangular matrices.
Preserving the class ND_n

All continuous functions that leave ND_n invariant were characterized by Micchelli and Willoughby.

Result [Micchelli & Willoughby 1979]. A function f continuous on \mathbb{R}_+ leaves invariant the class ND_n of nonnegative definite entrywise nonnegative symmetric matrices of order n iff all the divided differences of f of order up to n are nonnegative over \mathbb{R}_+:

$$f[x_1, \ldots, x_k] \geq 0 \quad x_1, \ldots, x_k \geq 0, \quad k = 1, \ldots, n.$$
Remark on the MW result

The result is not strong enough to characterize matrices preserving the class \(S_n \).

Example.

\[
f(x) = 1 + x + \frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{1}{4}x^4
\]

satisfies the Micchelli-Willoughby conditions of order 2, but it maps the matrix

\[
\begin{bmatrix}
0 & r \\
r & 0
\end{bmatrix}, \quad r \text{ sufficiently large},
\]

to a matrix with negative elements.
Preserving the class U_n/L_n

Theorem. A function f continuous on \mathbb{R}_+ leaves invariant the class $U_n (L_n)$ of nonnegative upper-(lower-) triangular matrices of order n iff all the divided differences of f of order up to n are nonnegative over \mathbb{R}_+.

Proof: is based on an explicit formula due to Schmitt and Stafney.
Preserving the class U_n/L_n

Theorem. A function f continuous on \mathbb{IR}_+ leaves invariant the class U_n (L_n) of nonnegative upper-(lower-) triangular matrices of order n iff all the divided differences of f of order up to n are nonnegative over \mathbb{IR}_+.

Proof: is based on an explicit formula due to Schmitt and Stafney.

Result [Schmitt 1979, Stafney 1978].

\[
f(A)_{ij} = \begin{cases}
f(a_{ii}) \\
\sum a_{ii_1} \cdots a_{i_k j} f(a_{ii}, a_{i_1 i_1}, \ldots, a_{i_k i_k}, a_{jj}) \\ 0 \end{cases}
\]
Preserving the class C_n

Theorem. An entire function f maps the set C_n of nonnegative circulant matrices of order n into itself iff

$$
\sum_{k=0}^{n-1} \omega^{-lk} f(\sum_{j=0}^{n-1} \omega^{jk} a_j) \geq 0 \quad \text{whenever } a_j \geq 0,
$$

$$
j = 0, \ldots, n - 1, \quad \omega := e^{2\pi i/n}.
$$

Proof: is based on an explicit formula connecting eigenvalues of a circulant matrix to its elements.
Preserving the class C_n

Theorem. An entire function f maps the set C_n of nonnegative circulant matrices of order n into itself iff

$$\sum_{k=0}^{n-1} \omega^{-lk} f(\sum_{j=0}^{n-1} \omega^{jk} a_j) \geq 0 \quad \text{whenever } a_j \geq 0, \quad j = 0, \ldots, n - 1, \quad \omega := e^{2\pi i/n}.$$

Proof: is based on an explicit formula connecting eigenvalues of a circulant matrix to its elements.

Result. The eigenvalues of a circulant matrix with the first row (a_0, \ldots, a_{n-1}) are given by

$$\sum_{k=0}^{n-1} a_k \omega^{lk}, \quad l = 0, \ldots, n - 1.$$
Further results

- Preserving nonnegative block upper/lower triangular matrices (BU_n/BL_n).
Further results

- Preserving nonnegative block upper/lower triangular matrices (BU_n/BL_n).
- Complete characterization for small values of n.

\[
n = 2 \quad f(x + y) - f(x - y) \geq 0, \quad x, y \geq 0
\]

\[
(x + y)f(x - y) + (y - x)f(x + y) \geq 0, \quad y \geq x \geq 0.
\]
Further results

Preserving nonnegative symmetric matrices (S_n) [joint work with G. Bharali].
Further results

Preserving nonnegative symmetric matrices (S_n) [joint work with G. Bharali].

Theorem. An even function $x \mapsto f(x^2)$ leaves S_n invariant iff all the divided differences of f of order up to n are nonnegative over \mathbb{IR}_+:

$$f[x_1, \ldots, x_k] \geq 0 \quad x_1, \ldots, x_k \geq 0, \quad k = 1, \ldots, n.$$

The same condition is necessary and sufficient for an odd function $x \mapsto xf(x^2)$ to leave S_n invariant.
Further results

Preserving nonnegative symmetric matrices (S_n) [joint work with G. Bharali].

Theorem. An even function $x \mapsto f(x^2)$ leaves S_n invariant iff all the divided differences of f of order up to n are nonnegative over \mathbb{R}_+:

$$f[x_1, \ldots, x_k] \geq 0 \quad x_1, \ldots, x_k \geq 0, \quad k = 1, \ldots, n.$$

The same condition is necessary and sufficient for an odd function $x \mapsto xf(x^2)$ to leave S_n invariant.

The class of functions preserving S_n is **not the sum** of its even and odd subclasses.
Anti-bidiagonal matrix NIEP

Theorem. A real n-tuple Λ can be realized as the spectrum of a symmetric anti-bidiagonal matrix A if and only if $\Lambda = (\lambda_1, \ldots, \lambda_n)$ where

$$\lambda_1 > -\lambda_2 > \lambda_3 > \cdots > (-1)^{n-1}\lambda_n > 0.$$

The realizing matrix is necessarily unique.
Sketch of proof

An anti-bidiagonal matrix with two positive anti-diagonals is sign-regular with signature sequence

\[1, -1, -1, 1, 1, \cdots, (-1)^{\left\lfloor \frac{n-1}{2} \right\rfloor}. \]

Invoke a result by Gantmacher and Krein.
Sketch of proof

\[\rightarrow \] An anti-bidiagonal matrix with two positive anti-diagonals is sign-regular with signature sequence

\[1, -1, -1, 1, 1, \cdots, (-1)^{n-1/2}. \]

Invoke a result by Gantmacher and Krein.
\[\leftarrow \] Reduce to the same problem for Jacobi matrices

\[
\begin{bmatrix}
a_1 & a_2 & \cdots & 0 & 0 \\
a_2 & 0 & \cdots & 0 & 0 \\
& & & & \\
& & & & \\
0 & 0 & \cdots & 0 & a_n \\
0 & 0 & \cdots & a_n & 0
\end{bmatrix}
\]
Sketch of proof

“Reverse” the 3-term recurrence relation to arrive at

\[q_n(\lambda) = (\lambda - a_1)q_{n-1}(\lambda) - a_2^2 q_{n-2}(\lambda), \]
\[q_{n-j}(\lambda) = \lambda q_{n-j-1}(\lambda) - a_{j+2}^2 q_{n-j-2}(\lambda), \quad j = 1, \ldots, n - 2, \]
\[q_0(\lambda) = 1, \quad q_1(\lambda) = \lambda. \]

With \(q_n \) given, find \(q_{n-1} \) and \(q_{n-2} \) from parity considerations. Prove root interlacing for \(q_n \) and \(q_{n-1} \). The rest is easy (using interlacing repeatedly).
Application

Corollary. Let \mathcal{M} be a real positive n-tuple. Then there exists a Jacobi matrix that realizes \mathcal{M} as its spectrum and has a symmetric anti-bidiagonal square root of the form

$$A = \begin{bmatrix}
0 & 0 & \cdots & 0 & a_n \\
0 & 0 & \cdots & a_{n-2} & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & a_{n-2} & \cdots & 0 & 0 \\
a_n & a_{n-1} & \cdots & 0 & 0 \\
\end{bmatrix}, \quad a_1, \ldots, a_n > 0.$$
Open problems

- Can Newton’s inequalities be used to prove inequalities conjectured by Boyle & Handelman and Goldberger & Neumann?

- Can Newton’s inequalities be used to characterize nonnegative matrices that are inverses of M-matrices?

- What about functions preserving other subclasses of nonnegative matrices, e.g., Toeplitz or Hankel?

- Can the cone theory and the semigroup theory be used to characterize functions that preserve nonnegativity of matrices?
Open problems

- Can Newton’s inequalities be used to prove inequalities conjectured by Boyle & Handelman and Goldberger & Neumann?
- Can Newton’s inequalities be used to characterize nonnegative matrices that are inverses of M-matrices?
- What about functions preserving other subclasses of nonnegative matrices, e.g., Toeplitz or Hankel?
- Can the cone theory and the semigroup theory be used to characterize functions that preserve nonnegativity of matrices?
Open problems

• Can Newton’s inequalities be used to prove inequalities conjectured by Boyle & Handelman and Goldberger & Neumann?

• Can Newton’s inequalities be used to characterize nonnegative matrices that are inverses of M-matrices?

• What about functions preserving other subclasses of nonnegative matrices, e.g., Toeplitz or Hankel?
Open problems

- Can Newton’s inequalities be used to prove inequalities conjectured by Boyle & Handelman and Goldberger & Neumann?
- Can Newton’s inequalities be used to characterize nonnegative matrices that are inverses of M-matrices?
- What about functions preserving other subclasses of nonnegative matrices, e.g., Toeplitz or Hankel?
- Can the cone theory and the semigroup theory be used to characterize functions that preserve nonnegativity of matrices?
Papers

- M-matrices satisfy Newton’s inequalities [Proceedings of AMS 2005]
- The inverse eigenvalue problem for symmetric anti-bidiagonal matrices [LAA 200?]
- Functions preserving nonnegativity of matrices, with G. Bharali [coming soon]

http://www.cs.berkeley.edu/~oholtz
Acknowlegements

Thanks to Raphael Loewy, Michael Neumann, Plamen Koev.
Acknowledgements

Thanks to Raphael Loewy, Michael Neumann, Plamen Koev.

Thanks for your attention!