An Introduction to Compressive Sensing

Olga V. Holtz
UC Berkeley & TU Berlin

Stanford
January 2009
Compressed Sensing: History

Compressed Sensing (CS)

People involved, (Right to left: J. Claerbout, B. Logan, D. Donoho, E. Candés, T. Tao and R. DeVore)
Compressed Sensing: Introduction

Old-fashioned Thinking

- Collect data at grid points
- For n pixels, take n observations

Compressed Sensing (CS)

- Takes only $O(n^{1/4} \log^5(n))$ random measurements instead of n

(CS camera at Rice)
Model signals as band-limited functions $x(t)$

Support of \hat{x} is contained in $[-\Omega\pi, \Omega\pi]$

Shannon-Nyquist

Uniform time sampling with spacing $h \leq 1/\Omega$ gives exact reconstruction

A/D converters: sample and quantize

Problem: if Ω is very large, one cannot build circuits to sample at the desired rate
Compressive sensing seeks a way out of this dilemma

Two new components:

- New model classes for signals: signals are **sparse** in some representation system (basis/frame)
- New meaning of samples: sample is a **linear functional** applied to the signal
Compressive sensing seeks a way out of this dilemma

Two new components:

- New model classes for signals: signals are sparse in some representation system (basis/frame)
- New meaning of samples: sample is a linear functional applied to the signal

Given $x \in \mathbb{R}^n$ with n large, ask m non-adaptive questions about x

- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^n$ means sample
- Such sampling is described by an $m \times n$ linear system $\Phi x = y$
With no additional information on x cannot say anything
But we are interested in those x that have structure
Typically x can be represented by sparse linear combinations of certain building blocks (e.g., a basis)
Issue: in many problems, we do not know the basis
Here we assume the basis is known (for now)
Ansatz: look for k-sparse solutions:

$$x \in \Sigma_k \text{ that is } \# \text{supp}(x) \leq k.$$
Sparsest Solutions of Linear equations

Find a **sparsest** solution of linear system

\[(P_0) \quad \min \{ \|x\|_0 : \Phi x = b, \ x \in \mathbb{R}^n \}\]

where \(\|x\|_0 = \) number of nonzeros of \(x\) and \(\Phi \in \mathbb{R}^{m \times n}\) with \(m < n\).

- The solution is in general **not** unique.
- Moreover, this problem is **NP-Hard**
Basis Pursuit

Main idea:
Use the convex relaxation

\[(P_1) \quad \min \{ \|x\|_1 : \Phi x = b, \ x \in \mathbb{R}^n \}\]

Basis Pursuit [Chen, Donoho, and Saunders (1999)]

Solving \((P_1)\) in polynomial time
Can be solved by linear programming:

\[
\begin{align*}
\min & \quad \mathbb{1}^T y \\
\text{s.t.} & \quad \Phi x = b \\
& \quad -y \leq x \leq y
\end{align*}
\]
Mutual incoherence:

\[M(\Phi) = \max_{i \neq j} |\phi_i^T \phi_j| \]

where \(\Phi = [\phi_1 \ldots \phi_n] \in \mathbb{R}^{m \times n} \) and \(\|\phi_i\|_2 = 1 \).

Theorem (Elad and Bruckstein (2002))

Suppose that for the sparsest solution \(x^* \) we have

\[\| x^* \|_0 < \frac{(\sqrt{2} - \frac{1}{2})}{M(\Phi)}. \]

Then the solution of \((P_1)\) is equal to the solution of \((P_0)\).
Restricted Isometry Property of Order k [Candès, Romberg, Tao (2006)]: Let δ_k be the smallest number such that

$$(1 - \delta_k)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta_k)\|x\|_2^2$$

for all k-sparse vectors $x \in \mathbb{R}^n$ where $\Phi = [\phi_1 \ldots \phi_n] \in \mathbb{R}^{m \times n}$.

Theorem (E. J. Candès (2008))

If $\delta_{2k} < \sqrt{2} - 1$, then for all k-sparse vectors x such that $\Phi x = b$, the solution of (P_1) is equal to the solution of (P_0).
Basis Pursuit De-Noising (BPDN):

\[
(P_1^\epsilon) \quad \min \{ \| x \|_1 : \| \Phi x - b \|_2 \leq \epsilon \}
\]

[Chen, Donoho, and Saunders (1999)]

Theorem (E. J. Candès (2008))

Suppose that the matrix \(\Phi \) is given and \(b = \Phi \hat{x} + e \) where \(\| e \|_2 \leq \epsilon \). If \(\delta_{2k} < \sqrt{2} - 1 \), then

\[
\| x^* - \hat{x} \|_2 \leq C_0 k^{-1/2} \sigma_k(\hat{x})_1 + C_1 \epsilon,
\]

where \(x^* \) is the solution of \((P_1^\epsilon) \) and

\[
\sigma_k(\hat{x})_1 = \min_{z \in \Sigma_k} \| \hat{x} - z \|_1.
\]

Other Heuristics: Orthogonal Matching Pursuit, Mangasarian’s approach, Bilinear formulation, etc.
End of Part I.
Good compressive sensing (CS) matrices:

Known Result for Random matrices

- Known reconstruction bounds for matrices with entries drawn at random from various probability distributions:

 \[k \leq Cm/\log(n/m). \]

- Specific recipes include Gaussian, Bernoulli and other classical matrix ensembles.

- Particular case: there is a probabilistic construction of matrices \(\Phi \) of size \(m \times n \) with entries \(\{\pm \frac{1}{\sqrt{m}}\} \) satisfying RIP of order \(k \) with the above bound.
Introduce the **Concentration of Measure Inequality (CMI)** property on a probability space \((\Omega, \varrho)\)

Suppose \(\Phi = \Phi(\omega)\) is a collection of random \(m \times n\) matrices

Property \(PO(\delta)\): the collection is said to have CMI if, for each \(x \in \mathbb{R}^n\), there is a set \(\Omega_0(x, \delta) \subset \Omega\) s.t.

\[
(1 - \delta) \|x\|_2 \leq \|\Phi x\|_2 \leq (1 + \delta) \|x\|_2, \quad \omega \in \Omega(x, \delta)
\]

and \(\varrho(\Omega(x, \delta)^c) \leq C_0 e^{-c_0 m \delta^2}\)

Gaussian, Bernoulli and many other families have this property
Johnson-Lindenstrauss Lemma.

Given $\epsilon \in (0, 1)$, a set X of points in \mathbb{R}^n such that $\#X =: \sigma > \sigma_0 = O(\ln m / \epsilon^2)$, there is a Lipschitz function $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ s.t.

$$(1 - \epsilon)\|u - v\|_2 \leq \|\Phi(u) - \Phi(v)\|_2 \leq (1 + \epsilon)\|u - v\|_2.$$

If X is a set of points and $m > c \ln(\#X)\epsilon^{-2}$ with c sufficiently large, then the set $\Omega_0 := \cap_{x, x' \in X} \Omega(x - x', \epsilon)$ satisfies

$$\varrho(\Omega_0^c) \leq C_0(\#X)^2 e^{-c_0 n \epsilon^2} = e^{2 \ln(\#X) - c_0 m \epsilon^2 + \ln C_0}$$

If $m \geq (2 \ln(\#X) + \ln C_0) / c_0 \epsilon^2$, then the measure is < 1 hence we get the JL lemma.
If \(k \leq cm/\ln(n/m) \) and \(\Phi \) satisfies JL, then we have RIP of order \(k \).

For \(c \) sufficiently small, the probability that a Gaussian ensemble satisfies RIP is \(1 - Ce^{-cm} \).

If we have a collection of \(O(e^{cm}) \) bases, then a random draw of Gaussian will satisfy RIP with respect to all of these bases simultaneously.

Basic reason why this works

\[
\Pr \left[\left| \left\| \Phi(\omega)x \right\|_{\ell^2}^2 - \left\| x \right\|_{\ell^2}^2 \right| \geq \varepsilon \left\| x \right\|_{\ell^2}^2 \right] \leq 2e^{-mc_0(\varepsilon)}, \quad 0 < \varepsilon < 1.
\]
Difficulties in Deterministic Case

[DeVore]: Proposes a deterministic constructions of order

\[k \leq C\sqrt{m} \log n / \log(n/m) \]

which is still far from probabilistic results.

Very recent ideas

Find deterministic constructions with better bounds

- using bipartite **expander graphs** [Indyk, Hassibi, Xu];
- using **structured matrices** such as Toeplitz, cyclic, generalized Vandermonde matrices.
- Subgoal: deterministic **polynomial time** algorithm for constructing good CS matrices.
- Holy grail: \(k \leq Cm/\log(n/m) \) – achievable for random matrices but not yet in deterministic constructions.
Cohen, Dahmen, DeVore [2009]: Compressed sensing and best k-term approximation, JAMS.

Best k-term approximation error:

$$
\sigma_k(x) := \inf_{z \in \Sigma_k} \| x - z \|_X.
$$

Encoder-decoder viewpoint

The matrix Φ serves as an encoder producing $y = \Phi x$. To extract x / approximation to x, use a decoder Δ (not necessarily linear). Thus

$$\Delta(y) = \Delta(\Phi x) \text{ approximates } x.$$
Ask for the largest value of k s.t.

$$x \in \Sigma_k \implies \Delta(\Phi x) = x.$$

Ask for the largest value of k s.t., for a given class K,

$$E_n(K)_X \leq C\sigma_k(K)_X, \text{ where }$$

$$E_n(K)_X := \inf_{(\Phi, \Delta)} \sup_{x \in K} \|x - \Delta(\Phi x)\|,$$

$$\sigma_k(K)_X := \sup_{x \in K} \sigma_k(X).$$

A pair (Φ, Δ) is called instance-optimal of order k with constant C for the space X is

$$\|x - \Delta(\Phi x)\|_X \leq C\sigma_k(X)_X$$

for all $x \in X$ with a constant C independent of k and n.
Connection with Gelfand widths

Gelfand widths

For K a compact set in X and $m \in \mathbb{N}$, the **Gelfand width** of K of order m is

$$d^m(K)_X := \inf_{\text{codim } Y \leq m} \sup \{ \|x\|_X : x \in K \cap Y \}.$$

Basic result

Lemma. Let $K \subseteq \mathbb{R}^n$ be symmetric, i.e., $K = -K$, and satisfy $K + K \subseteq C_0K$ for some C_0. If $X \subseteq \mathbb{R}^n$ is any normed space, then

$$d^m(K)_X \leq E_m(K)_X \leq C_0 d^m(K)_X, \quad 1 \leq m \leq n.$$
Orders of Gelfand widths

Orders of Gelfand widths of ℓ_q balls

Theorem [Gluskin, Garnaev, Kashin (1977,1984)]

$$C_1 \psi(m, n, q, p) \leq d^m(U(\ell^n_q)) \leq C_2 \psi(m, n, q, p)$$

where

$$\psi(m, n, q, p) := \left(\min\{1, n^{1-1/q} m^{-1/2} \} \right)^{\frac{1/q-1/p}{1/q-1/2}},$$

$$\psi(m, n, 1, 2) := \min\{1, \sqrt{\frac{\log(n/m)}{m}} \}.$$

Corollary. The necessary number of measurements k satisfies

$$k \leq c_0 m/ \log(n/m).$$
Denote $\mathcal{N} := \mathcal{N}(\Phi) := \{x : \Phi x = 0\}$.

Uniqueness of recovery

Lemma. For an $m \times n$ matrix Φ and for $2k \leq m$, the following are equivalent:

- There is a decoder Δ s.t. $\Delta(\Phi x) = x$ for all $x \in \Sigma_k$.
- $\Sigma_{2k} \cap \mathcal{N} = \{0\}$.
- For any set T with $\#T = 2k$, the matrix Φ_T has rank $2k$.
- For any T as above, the matrix $\Phi^*_T \Phi_T$ is positive definite.
Approximate recovery

Approximation to accuracy σ_k

Theorem [Cohen, Dahmen, DeVore (2009)]. Given an $m \times n$ matrix Φ, a norm $\| \cdot \|_X$ and a value of k, a sufficient condition that there exists a decoder Δ s.t.

$$\| x - \Delta(\Phi x) \|_X \leq C\sigma_k(x)_X$$

is that

$$\| \eta \|_X \leq C/2 \cdot \sigma_{2k}(\eta)_X, \quad \eta \in \mathcal{N}.$$

A necessary condition is that

$$\| \eta \|_X \leq C \cdot \sigma_{2k}(\eta)_X, \quad \eta \in \mathcal{N}.$$

This gives rise to the **null space property** (in X of order $2k$):

$$\| \eta \|_X \leq C \cdot \sigma_{2k}(\eta)_X, \quad \eta \in \mathcal{N}.$$
The null space property

Approximation and the null space property

Corollary [Cohen, Dahmen, DeVore (2009)]. Suppose that X is an l_p^n space, $k \in \mathbb{N}$ and Φ is an encoding matrix. If Φ has the null space property in X of order $2k$ with constant $C/2$, then there exists a decoder Δ so that

$$\|x - \Delta(\Phi x)\|_X \leq C\sigma_k(x)_X.$$

Conversely, the validity of the above condition for some decoder Δ implies that Φ has the null space property in X of order $2k$ with constant C.
Theorem [Candès-Romberg-Tao (2006)]. Let Φ be any matrix with satisfies the RIP of order $3k$ with $\delta_{3k} \leq \delta < (\sqrt{2} - 1)^2 / 3$. Define the decoder Δ by

$$\Delta(y) := \arg\min_{\Phi z = y} \|z\|_{\ell_1}.$$

Then (Φ, Δ) satisfies

$$\|x - \Delta(\Phi x)\|_X \leq C\sigma_k(x)_X$$

in $X = \ell_1$ with $C = \frac{2\sqrt{2}+2-(2\sqrt{2}-2)\delta}{\sqrt{2}-1-(\sqrt{2}+1)\delta}$.
The End.