Hints for homework # 6.

1. Straightforward.
2. Determine the distance between the least and the biggest square. This restricts your choices quite a bit.
3. Pigeonhole principle.
4. Use vectors.
5. Use congruences mod 3 and mod 5.
6. Use Binomial theorem.
7. The limit exists and is directly related to the sum of the doubly infinite series \(\sum_{n=1}^{\infty} a_n \).
8. Examine the behavior of the sequence \(x, x^2 + c, (x^2 + c)^2 + c, \ldots \), for various values of \(x \) and \(c \).
9. Begin by considering two subsets, \(A \) and \(B \) and by putting into \(A \) all the terms that do not divide any other term of \(S \).
10.
11. Hard. First solve the following auxiliary problem: Let \(a \) and \(b \) be integers and let \(f \) be a function that is positive in the interval \(a \leq x \leq b \). Find the number of integer points in the region

\[
\begin{align*}
a \leq x \leq b, \quad 0 < y \leq f(x).
\end{align*}
\]

12. May be hard. Consider a new inner product defined by

\[
\langle x, y \rangle_{\text{new}} := \sum_{j=0}^{n-1} \langle T^j x, T^j y \rangle.
\]

The new space is isomorphic to the original space.