1. Consider the vector space \(P \) of all polynomials in \(t \) and the subsets \(V \) consisting of those vectors (polynomials) \(f \) for which:

(a) \(f \) has exact degree 3,
(b) \(2f(0) = f(1) \),
(c) \(f(t) \geq 0 \) whenever \(t \geq 0 \),
(d) \(f(t) = f(1-t) \) for all \(t \).

In which of these cases is \(V \) a subspace of \(P \)?

2. Suppose that \(m < n \) and that \(y_1, \ldots, y_m \) are linear functionals on an \(n \)-dimensional vector space \(V \). Under what conditions on the scalars \(\alpha_1, \ldots, \alpha_m \) is it true that there exists a vector \(x \) in \(V \) such that \([x, y_j] = \alpha_j \) for all \(j = 1, \ldots, m \)? What does this result say about solutions of linear equations?

3. Let \(T \) be a linear map on \(\mathbb{R}^2 \) with the matrix representation

\[
[T]_\mathcal{A} = \begin{bmatrix} 0 & 2 \\ 2 & -2 \end{bmatrix}
\]

in the standard basis \(\mathcal{A} \) and let

\(\mathcal{B} = \{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \} \).

Find the representation \([T]_\mathcal{B}\), the dual basis \(\mathcal{B}' \), and the matrix \([T']_{\mathcal{B}'}\).

4. What is the Jordan normal form of the differentiation operator on the space \(P_3 \) of polynomials of degree at most 3?