Solutions to Homework # 4.

1. Prove that, for any positive integer n,

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2.$$

Solution. Expand both sides of the identity

$$(1 + x)^n(1 + x)^n = (1 + x)^{2n},$$

using the binomial formula. We get

$$\sum_{j=0}^{n} \binom{n}{j} x^j \sum_{k=0}^{n} \binom{n}{k} x^k = \sum_{\ell=0}^{2n} \binom{n}{\ell} x^\ell.$$

The coefficient of x^n in the left-hand side is equal to

$$\sum_{j+k=n} \binom{n}{j} \binom{n}{k} = \sum_{j=0}^{n} \binom{n}{j} \binom{n}{n-j} = \sum_{j=0}^{n} \binom{n}{j}^2,$$

whereas the same coefficient on the right is $\binom{2n}{n}$. Thus

$$\sum_{j=0}^{n} \binom{n}{j}^2 = \binom{2n}{n}.$$

2. Starting with 0, two players alternately add 1, 2, or 3 to a single running total. The player who first brings the total to at least 1000 wins. Prove that the second player has a strategy to win against any strategy for the first player.

Solution. The winning strategy of the second player is to bring the running total to a multiple of 4. No matter how the first player starts (say, with n_1 between 1 and 3), the second player will respond with $4 - n_1$, and subsequently with $4 - n_2$ in response to n_2 etc. At the second-to-last step, the first player brings the total to a number between 997 and 999, and the second player obtains 1000.

3. At first, a room is empty. Every minute, either one person enters or two people leave. After exactly 3^{1999} minutes, could the room contain $3^{1000} + 2$ people?

Solution. Note that the difference between any two possible numbers of people in the room at any given moment is a multiple of 3. One possible number of people after exactly 3^{1999} is 3^{1999} people (if one person enters every minute). That number is a multiple of 3, but $3^{1000} + 2$ is not. So, the room cannot contain $3^{1000} + 2$ people.

4. Evaluate

$$\int_{0}^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{2}}}.$$
Solution. Rewrite the integral as
\[I = \int_0^{\pi/2} \frac{(\cos x)\sqrt{2}}{(\cos x)\sqrt{2} + (\sin x)\sqrt{2}} \, dx \]
and perform the substitution \(y = \pi/2 - x \). The integral becomes
\[I = \int_0^{\pi/2} \frac{(\sin y)\sqrt{2}}{(\sin y)\sqrt{2} + (\cos y)\sqrt{2}} \, dy. \]
Adding these two expressions, we get
\[2I = \int_0^{\pi/2} \frac{(\cos y)\sqrt{2} + (\sin y)\sqrt{2})\, dy}{(\sin y)\sqrt{2} + (\cos y)\sqrt{2}} = \int_0^{\pi/2} \, dy = \pi/2, \]
hence the value of the integral is \(I = \pi/4 \).

5. Show that \(n^4 - 20n^2 + 4 \) is composite when \(n \) is an integer.

Solution. Note that the polynomial is a difference of squares \((n^2 - 2)^2 - 16n^2\), hence factors as
\[(n^2 - 4n - 2)(n^2 + 4n - 2). \]
We need to rule out the possibility that this factorization is trivial, i.e., one of the factors is \(\pm 1 \), and the other factor is prime. Testing the possibilities \(n^2 \pm 4n - 2 = \pm 1 \), we see that none of these quadratic equations has an integer solution. This shows that the above factorization is always nontrivial, so the resulting number is composite.

6. A restaurant gives one of five types of coupons with each meal, each with equal probability. A customer receives a free meal after collecting one coupon of each type. How many meals does a customer expect to need to buy before getting a free meal?

Solution. Let \(X \) be the random variable corresponding to the number of tries before collecting coupons of all five types. The problem asks to determine the expected value \(E(X) \) of \(X \). Note that \(X = X_1 + \cdots + X_5 \), where \(X_j, j = 1, \ldots, 5 \), denotes the number of tries to get a coupon of type \(j \). By the linearity of expectation,
\[E(X) = \sum_{j=1}^5 E(X_j). \]
The probability of collecting the \(j \)th coupon after \(j - 1 \) distinct coupons have been collected is \(p_j = (n - (j - 1))/n \). So, each \(X_j \) is geometrically distributed with \(E(X_j) = 1/p_j \). Hence
\[E(X) = \sum_{j=1}^5 \frac{5}{5 - (j - 1)} = 11 \frac{5}{12}. \]

7. Someone writes \(n \) letters and writes the corresponding addresses on \(n \) envelopes. How many different ways are there of placing all the letters in the wrong envelopes, each envelope containing exactly one letter?
Solution. Let us count the number N of ways to put at least one letter into the right envelope. Then $n! - N$ is the answer to our question. Let A_i denote all possible placements of letters whereby the ith letter is in the correct ith envelope. By the inclusion-exclusion principle,

$$N = |A_1 \cup \cdots \cup A_n| = \sum_{j=1}^{n} (-1)^{j-1} \sum_{K \subseteq [n], |K| = j} |\cap_{k \in K} A_k|,$$

where $[n]$ denotes the set $\{1, \ldots, n\}$. Note that

$$\sum_{K \subseteq [n], |K| = j} |\cap_{k \in K} A_k| = \binom{n}{j} (n-j)! = \frac{n!}{j!},$$

which corresponds to choosing j letters and placing them into correct envelopes, while the other letters can go anywhere in the remaining envelopes. So, the answer is

$$n! - N = n! + \sum_{j=1}^{n} (-1)^{j} \frac{n!}{j!} = \sum_{j=0}^{n} (-1)^{j} \frac{n!}{j!}.$$

8. Parallel lines are drawn at intervals d on a table. A needle of length $1(< d)$ is thrown at random on the table. What is the probability that the needle will touch one of the parallels?

Solution. Consider the lines as drawn vertically on the table. The needle falls at a certain angle $\theta \in [0, \pi]$ to the horizontal, and with probability one the lower endpoint of the needle falls in between two vertical lines. The horizontal projection of the needle has length $\cos \theta$, and the probability of the needle hitting one line is proportional to its horizontal projection and inversely proportional to the distance d between vertical lines. Averaging over all possible angles 0 to π gives the desired probability p

$$p = \frac{1}{\pi} \int_{0}^{\pi} \frac{\cos \theta}{d} \, d\theta = \frac{2}{\pi d}.$$