1. Given five points in a plane, no three of which lie on a straight line, show that some four of these points form the vertices of a convex quadrilateral.

2. Let \(S \) be the set of all numbers of the form \(2^m3^n \), where \(m \) and \(n \) are integers, and let \(P \) be the set of all positive real numbers. Is \(S \) dense in \(P \)?

3. Let \(\alpha \) and \(\beta \) be given positive real numbers, with \(\alpha < \beta \). If two points are selected at random from a straight line segment of length \(\beta \), what is the probability that the distance between them is at least \(\alpha \)?

4. Prove that there is a constant \(K \) such that the following inequality holds for any sequence of positive numbers \(a_1, a_2, a_3, \ldots \):

\[
\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \cdots + a_n} \leq K \sum_{n=1}^{\infty} \frac{1}{a_n}.
\]

5. Let \(P_1, P_2, \ldots \) be a sequence of distinct points which is dense in the interval \((0, 1)\). The points \(P_1, P_2, \ldots, P_{n-1} \) decompose the interval into \(n \) parts, and \(P_n \) decomposes one of these into two parts. Let \(a_n \) and \(b_n \) be the lengths of these two intervals. Prove that

\[
\sum_{n=1}^{\infty} a_n b_n (a_n + b_n) = 1/3.
\]

6. If \(A \) and \(B \) are square matrices of the same size such that \(ABAB = 0 \), does it follow that \(BABA = 0 \)?

7. Let \(S \) be a set of three, not necessarily distinct, positive integers. Show that one can transform \(S \) into a set containing 0 by a finite number of applications of the following rule: Select two of the three integers, say \(x \) and \(y \), where \(x \leq y \) and replace them with \(2x \) and \(y - x \).

8. Let

\[
\begin{array}{ccc}
 a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{array}
\]

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that \(a_{m,n} > mn \) for some pair of positive integers \((m,n)\).