Solutions to the MATH 118 midterm test.

1. (10pts total; 5 pts each subitem) Suppose \(K(x, y) \) is a continuous compactly supported function on \(\mathbb{R} \times \mathbb{R} \). Define \(T : L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) by

\[
T(f)(x) := \int_{y \in \mathbb{R}} f(y) K(x, y) \, dy.
\]

Show that \(T \) is a linear map and that its adjoint is given by

\[
T^*(g)(x) := \int_{y \in \mathbb{R}} g(y) \overline{K(y, x)} \, dy.
\]

Solution. The map \(T \) is linear, since it respects linear combinations of functions:

\[
T(\alpha f + \beta g)(x) = \int_{y \in \mathbb{R}} (\alpha f(y) + \beta g(y)) K(x, y) \, dy = \alpha \int_{y \in \mathbb{R}} f(y) K(x, y) \, dy + \beta \int_{y \in \mathbb{R}} g(y) K(x, y) \, dy = \alpha (Tf)(x) + \beta (Tg)(x).
\]

To find the adjoint, we form the inner product of \(Tf \) and \(g \) (where both \(f \) and \(g \) are arbitrary), change the order of integration, and rename variables of integration:

\[
\langle Tf, g \rangle = \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} f(y) K(x, y) \, dy \overline{g(x)} \, dx = \int_{y \in \mathbb{R}} f(y) \int_{x \in \mathbb{R}} \overline{K(x, y)} g(x) \, dx = \int_{x \in \mathbb{R}} f(x) \int_{y \in \mathbb{R}} K(y, x) g(y) \, dy \, dx = \langle f, T^* g \rangle.
\]

Since \(f \) and \(g \) are arbitrary, this implies that \((T^* g)(x) = \int_{y \in \mathbb{R}} \overline{K(y, x)} g(y) \, dy \).

2. (10pts total) Show that the sinc function

\[
sinc(x) := \begin{cases} \frac{\sin(x \pi)}{\pi x} & x \neq 0 \\ 1 & x = 0 \end{cases}
\]

solves the refinement equation

\[
\phi(x) = \phi(2x) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \phi(2k - 2x - 1).
\]

Solution. Recall that the Fourier transform of the characteristic function \(\chi_{[-\pi, \pi]} \) of the interval \([-\pi, \pi] \) is (almost) the sinc function:

\[
\mathcal{F}(\chi_{[-\pi, \pi]})(x) = \frac{\sin(\pi x)}{\pi x}.
\]

Then, for any bounded and piecewise smooth function \(\phi \), we have

\[
\phi(x) = \sum_{k \in \mathbb{Z}} \phi(2k - 2x - 1).
\]

To see this, we can use the Parseval's identity

\[
\int_{-\pi}^{\pi} \phi(x) \, dx = \int_{-\pi}^{\pi} \mathcal{F}(\phi)(x) \, dx.
\]

Since \(\mathcal{F}(\phi)(x) = \sum_{k \in \mathbb{Z}} \phi(2k - 2x - 1) \), we have

\[
\int_{-\pi}^{\pi} \phi(x) \, dx = \sum_{k \in \mathbb{Z}} \int_{-\pi}^{\pi} \phi(2k - 2x - 1) \, dx.
\]

This implies that \(\phi(x) = \sum_{k \in \mathbb{Z}} \phi(2k - 2x - 1) \) almost everywhere.
Stretching this function and modulating it (multiplying by exponentials) will produce the desired shifts
\[\frac{1}{2} \int_{-2\pi}^{2\pi} e^{-i\lambda x + ikx/2} \, dx = \frac{2\pi}{\pi(2\lambda - k)} \sin(\pi(2\lambda - k)). \]

Thus we need to solve the following equation on the Fourier domain:
\[\chi[-\pi,\pi](\lambda) = \chi[-2\pi,2\pi](\lambda) \sum_{k \in \mathbb{Z}} \frac{p_k}{2} e^{ik\lambda/2}. \]

So, we must find the Fourier series for \(\chi[-\pi,\pi] \) on the interval \([-2\pi, 2\pi]\). Since
\[\int_{-\pi}^{\pi} e^{-ik\lambda/2} \, d\lambda = \left\{ \begin{array}{ll} 2\pi & \text{if } k = 0 \\ \frac{4\sin(k\pi/2)}{k} & \text{if } k \text{ is even} \\ \frac{4(-1)^{(k-1)/2}}{k} & \text{if } k \neq 0, k \text{ is odd} \end{array} \right. \]

we get
\[\chi[-\pi,\pi](\lambda) = \chi[-2\pi,2\pi](\lambda) \left(\frac{1}{2} + \sum_{k \in \mathbb{Z}} \frac{(-1)^k}{2k + 1} e^{i(2k+1)\lambda/2} \right), \]

hence
\[\phi(x) = \phi(2x) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k + 1)\pi} \phi(2x - 2k - 1). \]

3. (12pts total; 2pts for each subitem) Are the following filters (a) linear (b) time-invariant (c) causal?

1. \((L_1 f)(t) = f(t) - \int_t^2 f(x) \, dx,\)
2. \((L_2 f)(t) := \int_{-\infty}^\infty f(x)e^{-(x-t)^2} \, dx.\)

Solution. The first filter is linear, not time-invariant, and not causal. Indeed, it is a linear combination of the identity map and an integration operator, and both are linear, so the filter is linear as well. It is not time-invariant, which can be seen by applying it to a shift \(f_a \) of an arbitrary function \(f \):
\[
(L_1 f_a)(t) = f_a(t) - \int_t^2 f(x - a) \, dx = f(t) - \int_t^2 f(x - a) \, dx = f(t - a) - \int_t^{t-a} f(x) \, dx \\
= f(t - a) - \int_{t-a}^{t-a} f(x) \, dx \neq f(t - a) - \int_{t-a}^{t-a} f(x) \, dx = (L_1 f)(t - a).
\]

\(L_1 \) is not causal, which can be checked, for example, by applying \(L_1 \) to the function \(f \) which is 0 over \(\mathbb{R}_- \) and 1 over \(\mathbb{R}_+ \): for \(t < 0 \), we get
\[
(L_1 f)(t) = - \int_{t}^{0} dx = -t^2 \neq 0.
\]
The second filter is linear and time-invariant, since it is given explicitly as a convolution with the function e^{-x^2}. Since the support of this function is all of \mathbb{R}, the filter is not causal (causality requires that the support be a subset of \mathbb{R}_+).

4. (8pts total) Let ϕ and ψ be the Haar scaling function and the Haar wavelet, respectively. We denote, as usual,

$$V_j := \text{span}\{\phi(2^j \cdot -k), \ k \in \mathbb{Z}\}, \quad W_j := \text{span}\{\psi(2^j \cdot -k), \ k \in \mathbb{Z}\}.$$

Express the function f given by

$$f(x) := \begin{cases}
2 & 0 \leq x \leq 1/4, \\
-3 & 1/4 \leq x < 1/2, \\
1 & 1/2 \leq x < 3/4, \\
3 & 3/4 \leq x < 1, \\
0 & \text{otherwise}
\end{cases}$$

in terms of its components in V_0, W_0 and W_1.

Solution. We are given coefficients at level 2, i.e., $a^{[2]} = [2, -3, 1, 3]$. Using the wavelet decomposition algorithm for the Haar system, we get

$$a_0^{[1]} = \frac{a_0^{[2]} + a_1^{[2]}}{2} = -\frac{1}{2}, \quad a_1^{[1]} = \frac{a_2^{[2]} + a_3^{[2]}}{2} = 2,$$

$$b_0^{[1]} = \frac{a_0^{[2]} - a_1^{[2]}}{2} = \frac{5}{2}, \quad b_1^{[1]} = \frac{a_2^{[2]} - a_3^{[2]}}{2} = -1,$$

$$a_0^{[0]} = \frac{a_0^{[1]} + a_1^{[1]}}{2} = \frac{3}{4}, \quad b_0^{[0]} = \frac{a_0^{[1]} - a_1^{[1]}}{2} = -\frac{5}{4}.$$

So, the representation of f in terms of its wavelet components from W_0 and W_1 and its coarse component from V_0 is

$$f(x) = \underbrace{\frac{3}{4} \phi(x)}_{\in V_0} - \underbrace{\frac{5}{4} \psi(x)}_{\in W_0} + \underbrace{\frac{5}{2} \psi(2x)}_{\in W_1} - \psi(2x - 1).$$