1. Let \(a_1 = 1 \) and \(a_n = \sqrt{3a_{n-1} + 4} \). Prove that the sequence \(\{a_n\} \) is bounded.

2. Suppose that \(x_1 \in \mathbb{R} \) and \(x_{n+1} = \sqrt{1 + x_n^2} \) for all \(n \in \mathbb{N} \). Show that \(\{x_n\} \) does not converge.

3. Suppose that \(f_1(x) = x \) for \(x \in \mathbb{R} \) and that \(f_{n+1}(x) = (f_n(x))^2/2 \) for \(n \geq 1 \). If \(\lim_{n \to \infty} f_n(x) \) exists, what can the limit equal? For which \(x \) is the sequence \(\{f_n(x)\} \) strictly increasing, constant, or strictly decreasing? Use this information to determine for which \(x \) the limit \(\lim_{n \to \infty} f_n(x) \) exists and how it depends on \(x \).

NB: The metric in Problems 1 - 3 above is the usual metric \(| \cdot | \) on \(\mathbb{R} \). Problem 3 is not compulsory and is included as a challenge problem / preview to sequences of functions.