Approximate low-weight check codes and circuit lower bounds for noisy ground states

Chinmay Nirkhe (UC Berkeley)
Umesh Vazirani (UC Berkeley)
Henry Yuen (U. Toronto)

arXiv:1802.07419
ICALP 2018, TQC 2018
Robustness of proofs

How much of a classical proof does one need to read to ensure that it is correct? For 100% confidence, the whole proof.

This notion was however shattered by the Probabilistically checkable proofs (PCP) theorem [Arora et. al.98, Dinur07].

It states that if one writes the proof down in a special way, then for 99% confidence, only a constant number of bits need to be read!
Does a quantum version of the PCP theorem hold?

Can quantum computation be done at room-temperature?

Do quantum low-density parity-check codes exist?

These questions may share a common answer!
A quantum perspective on the classical PCP theorem

The Local Hamiltonian Problem

Given a local Hamiltonian H, decide if minimum energy $E \leq a$ or $E \geq b$.

Minimum energy

$$E = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \frac{1}{m} \sum_{j=1}^{m} \langle \phi | H_j | \phi \rangle$$

Each H_j acts non-trivially on only a constant number of terms.

$$\|H_j\| \leq 1$$

$$H = \frac{1}{m} \sum_{j=1}^{m} H_j$$
A quantum perspective on the classical PCP theorem

Constraint Satisfaction Problems (CSPs)

$\left| \phi_1 \right\rangle \ | \phi_2 \right\rangle \ | \phi_3 \right\rangle \ | \phi_4 \right\rangle \ | \phi_5 \right\rangle \ | \phi_6 \right\rangle \in \mathbb{C}^2$

Each H_j acts non-trivially on only a constant number of terms.

$\|H_j\| \leq 1$

$H = \frac{1}{m} \sum_{j=1}^{m} H_j$

$E = \inf_{\phi \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{\phi \in (\mathbb{C}^2)^{\otimes n}} \frac{1}{m} \sum_{j=1}^{m} \langle \phi | H_j | \phi \rangle$

H_j can be simultaneously expressed as diagonal matrices on the elements they act non-trivially on.

\Rightarrow

The eigenvectors of H are the computational basis.
PCP theorem rephrased

NP-hardness of CSPs [Cook71, Levin73].
It is NP-hard to estimate the energy E of a CSP to $\pm 1/m$.

PCP theorem [Arora et. al.98, Dinur07].
It is NP-hard to estimate the energy E of a CSP to $\pm 1/4$.

Is there an analogous theorem about the hardness of estimating the energy of a local Hamiltonian problem?
Quantum hardness of LH

LH is QMA-hard [Kitaev99].
It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(1)$.

qPCP conjecture [Aharanov-Naveh02,Aaronson06].
It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(1)$.

NLTS conjecture [Freedman-Hastings14].
There exist local Hamiltonians H such that $\forall \ket{\xi}$ with $E = \braket{\xi|H|\xi} \leq \lambda_{\text{min}}(H) + \epsilon$, $\ket{\xi}$ cannot be generated by a constant-depth circuit.

$NP \neq QMA$
Complexity of quantum states

Depth of minimum generating circuit
Minimum depth of any circuit C with 2-qubit gates s.t. $|\psi\rangle = C |0\rangle^\otimes n$.

Purely quantum notion
Every classical state $x \in \{0,1\}^n$ can be generated by depth 1 circuit: X^x.

If $\text{NP} \neq \text{QMA}$,...
Ground-states $|\xi\rangle$ of QMA-hard local Hamiltonians H cannot be generated by constant-depth circuits.

NLTS conjecture [Freedman-Hastings¹⁴].
There exists local Hamiltonians H such that $\forall |\xi\rangle$ with $E = \langle \xi | H | \xi \rangle \leq \lambda_{\text{min}}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.
The goal of our paper is to understand more about the robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction
 [Not covered in this talk]
Part 1:
Notions of robustness of entanglement
Are these notions the same?

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings14].
There exists local Hamiltonians H such that $\forall |\xi\rangle$ with $E \leq \lambda_{\min}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

No low-error trivial states (NLETS) theorem [Eldar-Harrow17].
There exists Hamiltonians H such that for all ϵ-low-error states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Low-error state
A state $|\xi\rangle$ is a ϵ-low-error state for a local Hamiltonian H, if there exists a subset S of size $\leq \epsilon n$ of the particles and a groundstate $|\phi\rangle \in \mathcal{G}$ such that $\text{Tr}_S (|\xi\rangle\langle\xi|) = \text{Tr}_S (|\phi\rangle\langle\phi|)$.

Intuitively: The "Quantum Hamming Distance" between the two states is small.
Are these notions the same?

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings14]. There exists local Hamiltonians H such that $\forall |\xi\rangle$ with $E \leq \lambda_{\text{min}}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

No low-error trivial states (NLETS) theorem [Eldar-Harrow17]. There exists Hamiltonians H such that for all ϵ-low-error states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Our contribution [Informal]

A simpler construction of a NLETS Hamiltonian that shows low-error is not the same as low-energy.

Intuitively: The “Quantum Hamming Distance” between the two states is small.
Circuit-to-Hamiltonian construction

\[|\psi_0\rangle = |\xi\rangle|0\rangle \]
\[|\psi_1\rangle = A|\psi_0\rangle \]
\[|\psi_2\rangle = B|\psi_1\rangle \]
\[|\psi_3\rangle = C|\psi_2\rangle \]

Together, \{|\psi_t\rangle\} are a “proof” that the circuit was executed correctly.

But, \[|\bar{\psi}\rangle = |\psi_0\rangle|\psi_1\rangle \ldots |\psi_T\rangle\] is not locally-checkable.

Instead, the following “clock” state* is:

\[|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle|\psi_t\rangle \]

*Quantum analog of Cook71-Levin73 Tableau.
Feynman-Kitaev Clock Hamiltonian

Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev99]

Let \(C = C_T C_{T-1} \ldots C_1 \) be a circuit with gates \(\{C_i\} \) and let \(|\psi_0\rangle = |\xi\rangle|0\rangle \otimes n-k \) be an initial state for \(|\xi\rangle \in (\mathbb{C}^2)^\otimes k\).

There is a local Hamiltonian with ground space of:

\[
G = \left\{ |\Psi_\xi\rangle = \frac{1}{\sqrt{T} + 1} \sum_{t=0}^{T} |\text{unary}(t)\rangle \otimes |\psi_t\rangle : |\psi_0\rangle = |\xi\rangle|0\rangle \otimes (n-k), |\psi_t\rangle = C_t|\psi_{t-1}\rangle \right\}.
\]

Used to prove that Local Hamiltonians is QMA-hard [Kitaev99].
Approximate |\text{cat}\rangle \text{ state}

Error states of cat states have $\Omega(\log n)$ circuit complexity.

Let S be a subset of particles of size εn. Then,

$$\text{Tr}_S (|\text{cat}\rangle \langle \text{cat}|) = \frac{|0 \ldots 0\rangle \langle 0 \ldots 0| + |1 \ldots 1\rangle \langle 1 \ldots 1|}{2}.$$

Information theoretic argument shows this state has $\Omega(\log n)$ circuit complexity.

But, cat states are not unique groundstates of local Hamiltonians...

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve the low-error property.
Approximate $|\psi\rangle$ state

$$|\psi_n\rangle = \frac{|0\rangle \otimes n + |1\rangle \otimes n}{\sqrt{2}}$$

Generate the FK clock Hamiltonian for the circuit generating $|\psi\rangle$. Has unique ground state if we restrict input to $|0\rangle \otimes n$.

$$|\Psi\rangle = \frac{1}{\sqrt{n+1}} \sum_{t=0}^{n} |t\rangle \otimes |\psi_t\rangle |0\rangle \otimes (n-t)$$

Intuition: For $t \geq \frac{n}{3}$, the first $\frac{n}{3}$ qubits form a cat state. Enough to prove that error states have $\Omega(\log n)$ circuit complexity.
Approximate $|\psi\rangle$ state

$$|\psi_n\rangle = \frac{|0\rangle \otimes n + |1\rangle \otimes n}{\sqrt{2}}$$

NLETS Theorem [N-Vazirani-Yuen18]

\[\exists \text{ a family of 3-local Hamiltonians } H^{(n)} \text{ on a line, such that for all } \epsilon < \frac{1}{48}, \text{ the circuit depth of any } \epsilon\text{-noisy ground state } \sigma \text{ of } H^{(n)} \text{ is at least } \frac{1}{2} \log \left(\frac{n}{2}\right). \]

Superpolynomial Noisy Ground States [N-Vazirani-Yuen18]

If QCMA \neq QMA, \[\exists \text{ a family of 7-local Hamiltonians } H^{(n)}, \text{ such that for an } \epsilon > 0, \text{ the circuit depth of any } \epsilon\text{-noisy ground state } \sigma \text{ of } H^{(n)} \text{ grows faster than any polynomial of } n. \]

states have $\Omega(\log n)$ circuit complexity.
NLETS but not NLTS

With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local.

Proof:

Smaller than constant fraction of terms will be violated. Can produce constant-depth states for subsection.
NLETS but not NLTS
Low-energy vs low-error

Low-energy
Correct definition for qPCP
Robustness of entanglement at room-temperature

Low-error
Errors attack specific particles
Reasonable model for physical processes, quantum fault-tolerance, noisy channels, noisy adiabatic quantum computation, etc.

\[M(\rho) = ((1 - \epsilon)I + \epsilon N)^\otimes n(\rho) \approx \sum_{S:|S| \leq 2\epsilon n} (1 - \epsilon)^{n - |S|} \epsilon^{|S|} N^S(\rho) \]
Part 2:
Approximate low-weight check codes
The “conjectured” error-correcting zoo

Quantum low-weight check (qLWC) codes [N-Vazirani-Yuen18]
A local Hamiltonian $H = \sum H_j$ is a qLWC if the ground-space \mathcal{G} forms a linear rate and distance code and each Hamiltonian term acts on $O(1)$ particles.

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore]
Linear rate and distance codes with $O(1)$ row- and column-spare parity check matrices exist.

Conjectured: Quantum locally testable codes (qLTC) [Aharanov-Eldar13]
A local Hamiltonian $H = \sum H_j$ is a qLTC with soundness $R(\delta)$ if a state $|\psi\rangle$ distance δn from the groundspace \mathcal{G} has energy $E = \langle \psi | H | \psi \rangle \geq R(\delta) m$.
The “conjectured” error-correcting zoo

Approximate quantum low-weight check (qLWC) codes [N-Vazirani-Yuen18]
A local Hamiltonian $H = \sum H_j$ is an approximate qLWC if the ground-space G forms a linear rate and distance code and each Hamiltonian term acts on $O(1)$ particles and there is an approximate decoding algorithm.

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore]
Linear rate and distance codes with $O(1)$ row- and column-spare parity check matrices exist.

Conjectured: Quantum locally testable codes (qLTC) [Aharanov-Eldar13]
A local Hamiltonian $H = \sum H_j$ is a qLTC with soundness $R(\delta)$ if a state $|\psi\rangle$ distance δn from the groundspace G has energy $E = \langle \psi | H | \psi \rangle \geq R(\delta) m.$
Open Questions

• Can approximate qLWC codes be made geometrically local?
• Do super-positions of low-error states requires large circuit complexity? (vs convex combination)
• How do qLWC codes compare to qLTCs, qLDPCs? Do they offer progress towards the qPCP conjecture?
• Combinatorial NLTS vs standard NLTS

Thanks!
Approximate Error Correcting Codes

A w-local Hamiltonian $H = H_1 + H_2 + \ldots + H_m$ acting on n qubits is a $[[n, k, d]]$ code with error δ if

1. each term H_i acts on at most w qubits

2. Maps Enc, Dec s.t.
$$\langle \Psi | H | \Psi \rangle = 0 \text{ iff } |\Psi \rangle \langle \Psi | = \text{Enc}(|\xi \rangle \langle \xi |) \text{ for some } |\xi \rangle \in (\mathbb{C}^2)^\otimes k$$

3. CPTP error map \mathcal{E} acting on $(d - 1)/2$ qubits
$$\| \text{Dec} \circ \mathcal{E} \circ \text{Enc}(\phi) - |\phi \rangle \langle \phi | \phi \rangle \| \leq \delta$$
Currently...

<table>
<thead>
<tr>
<th>Code</th>
<th>Rate</th>
<th>Distance</th>
<th>Locality</th>
<th>Approximation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS [Folklore]</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n)$</td>
<td>0</td>
</tr>
<tr>
<td>qLDPC [Tillich-Zémor13]</td>
<td>$\Omega(n)$</td>
<td>$O(\sqrt{n})$</td>
<td>$O(1)$</td>
<td>0</td>
</tr>
<tr>
<td>Subsystem [Bacon-Flammia-Harrow-Shi17]</td>
<td>$\Omega(n)$</td>
<td>$O(n^{1-\epsilon})$</td>
<td>$O(1)$</td>
<td>0</td>
</tr>
<tr>
<td>Approx. qLWC [N-Vazirani-Yuen18]</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n)$</td>
<td>$O(1)$</td>
<td>$1/\text{poly}(n)$</td>
</tr>
</tbody>
</table>