
Proceedings of Machine Learning Research vol 65:1–24, 2017

Efficient PAC Learning from the Crowd

Pranjal Awasthi PRANJAL.AWASTHI@CS.RUTGERS.EDU
Rutgers University

Avrim Blum∗ AVRIM@CS.CMU.EDU
Nika Haghtalab† NHAGHTAL@CS.CMU.EDU
Carnegie Mellon University

Yishay Mansour‡ MANSOUR@TAU.AC.IL

Tel-Aviv University

Abstract
In recent years crowdsourcing has become the method of choice for gathering labeled training
data for learning algorithms. Standard approaches to crowdsourcing view the process of acquiring
labeled data separately from the process of learning a classifier from the gathered data. This can
give rise to computational and statistical challenges. For example, in most cases there are no known
computationally efficient learning algorithms that are robust to the high level of noise that exists in
crowdsourced data, and efforts to eliminate noise through voting often require a large number of
queries per example.

In this paper, we show how by interleaving the process of labeling and learning, we can attain
computational efficiency with much less overhead in the labeling cost. In particular, we consider
the realizable setting where there exists a true target function in F and consider a pool of labelers.
When a noticeable fraction of the labelers are perfect, and the rest behave arbitrarily, we show
that any F that can be efficiently learned in the traditional realizable PAC model can be learned
in a computationally efficient manner by querying the crowd, despite high amounts of noise in
the responses. Moreover, we show that this can be done while each labeler only labels a constant
number of examples and the number of labels requested per example, on average, is a constant.
When no perfect labelers exist, a related task is to find a set of the labelers which are good but not
perfect. We show that we can identify all good labelers, when at least the majority of labelers are
good.
Keywords: PAC Learning, Crowdsourcing, Boosting, Learning with Noise

1. Introduction

Over the last decade, research in machine learning and AI has seen tremendous growth, partly due
to the ease with which we can collect and annotate massive amounts of data across various domains.
This rate of data annotation has been made possible due to crowdsourcing tools, such as Amazon
Mechanical TurkTM, that facilitate individuals’ participation in a labeling task. In the context of
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classification, a crowdsourced model uses a large pool of workers to gather labels for a given training
data set that will be used for the purpose of learning a good classifier. Such learning environments
that involve the crowd give rise to a multitude of design choices that do not appear in traditional
learning environments. These include: How does the goal of learning from the crowd differs from
the goal of annotating data by the crowd? What challenges does the high amount of noise typically
found in curated data sets (Wais et al., 2010; Kittur et al., 2008; Ipeirotis et al., 2010) pose to the
learning algorithms? How do learning and labeling processes interplay? How many labels are we
willing to take per example? And, how much load can a labeler handle?

In recent years, there have been many exciting works addressing various theoretical aspects
of these and other questions (Slivkins and Vaughan, 2014), such as reducing noise in crowdsourced
data (Dekel and Shamir, 2009), task assignment (Badanidiyuru et al., 2013; Tran-Thanh et al., 2014)
in online or offline settings (Karger et al., 2014), and the role of incentives (Ho et al., 2013). In this
paper we focus on one such aspect, namely, how to efficiently learn and generalize from the crowd
with minimal cost? The standard approach is to view the process of acquiring labeled data through
crowdsourcing and the process of learning a classifier in isolation. In other words, a typical learning
process involves collecting data labeled by many labelers via a crowdsourcing platform followed
by running a passive learning algorithm to extract a good hypothesis from the labeled data. As a
result, approaches to crowdsourcing focus on getting high quality labels for each example and not
so much on the task further down in the pipeline. Naive techniques such as taking majority votes to
obtain almost perfect labels have a cost per labeled example that scales with the data size, namely
log(mδ ) queries per label where m is the training data size and δ is the desired failure probability.
This is undesirable in many scenarios when data size is large. Furthermore, if only a small fraction
of the labelers in the crowd are perfect, such approaches will inevitably fail. An alternative is to
feed the noisy labeled data to existing passive learning algorithms. However, we currently lack
computationally efficient PAC learning algorithms that are provably robust to high amounts of noise
that exists in crowdsourced data. Hence separating the learning process from the data annotation
process results in high labeling costs or suboptimal learning algorithms.

In light of the above, we initiate the study of designing efficient PAC learning algorithms in a
crowdsourced setting where learning and acquiring labels are done in tandem. We consider a natural
model of crowdsourcing and ask the fundamental question of whether efficient learning with little
overhead in labeling cost is possible in this scenario. We focus on the classical PAC setting of Valiant
(1984) where there exists a true target classifier f∗ ∈ F and the goal is to learn F from a finite
training set generated from the underlying distribution. We assume that one has access to a large
pool of labelers that can provide (noisy) labels for the training set. We seek algorithms that run in
polynomial time and produce a hypothesis with small error. We are especially interested in settings
where there are computationally efficient algorithms for learning F in the consistency model, i.e.
the realizable PAC setting. Additionally, we also want our algorithms to make as few label queries
as possible, ideally requesting a total number of labels that is within a constant factor of the amount
of labeled data needed in the realizable PAC setting. We call this O(1) overhead or cost per labeled
example. Furthermore, in a realistic scenario each labeler can only provide labels for a constant
number of examples, hence we cannot ask too many queries to a single labeler. We call the number
of queries asked to a particular labeler the load of that labeler.

Perhaps surprisingly, we show that when a noticeable fraction of the labelers in our pool are
perfect all of the above objectives can be achieved simultaneously. That is, if F can be efficiently
PAC learned in the realizable PAC model, then it can be efficiently PAC learned in the noisy crowd-

2



EFFICIENT PAC LEARNING FROM THE CROWD

sourcing model with a constant cost per labeled example. In other words, the ratio of the number
of label requests in the noisy crowdsourcing model to the number of labeled examples needed in
the traditional PAC model with a perfect labeler is a constant and does not increase with the size
of the data set. Additionally, each labeler is asked to label only a constant number of examples,
i.e., O(1) load per labeler. Our results also answer an open question of Dekel and Shamir (2009)
regarding the possibility of efficient noise robust PAC learning by performing labeling and learning
simultaneously. When no perfect labelers exist, a related task is to find a set of the labelers which
are good but not perfect. We show that we can identify the set of all good labelers, when at least the
majority of labelers are good.

1.1. Overview of Results

We study various versions of the model described above. In the most basic setting we assume that
a large percentage, say 70% of the labelers are perfect, i.e., they always label according to the
target function f∗. The remaining 30% of the labelers could behave arbitrarily and we make no
assumptions on them. Since the perfect labelers are in strong majority, a straightforward approach
is to label each example with the majority vote over a few randomly chosen labelers, to produce
the correct label on every instance with high probability. However, such an approach leads to a
query bound of O(log m

δ ) per labeled example, where m is the size of the training set and δ is
the acceptable probability of failure. In other words, the cost per labeled example is O(log m

δ ) and
scales with the size of the data set. Another easy approach is to pick a few labelers at random and
ask them to label all the examples. Here, the cost per labeled example is a constant but the approach
is infeasible in a crowdsourcing environment since it requires a single or a constant number of
labelers to label the entire data set. Yet another approach is to label each example with the majority
vote of O(log 1

ε ) labelers. While the labeled sample set created in this way only has error of ε,
it is still unsuitable for being used with PAC learning algorithms as they are not robust to even
small amounts of noise, if the noise is heterogeneous. So, the computational challenges still persist.
Nevertheless, we introduce an algorithm that performs efficient learning with O(1) cost per labeled
example and O(1) load per labeler.

Theorem 3 (Informal) Let F be a hypothesis class that can be PAC learned in polynomial time
to ε error with probability 1 − δ using mε,δ samples. Then F can be learned in polynomial time
using O(mε,δ) samples in a crowdsourced setting with O(1) cost per labeled example, provided a
1
2 + Θ(1) fraction of the labelers are perfect. Furthermore, every labeler is asked to label only 1
example.

Notice that the above theorem immediately implies that each example is queried onlyO(1) times
on average as opposed to the data size dependent O(log(mδ )) cost incurred by the naive majority
vote style procedures. We next extend our result to the setting where the fraction of perfect labelers
is significant but might be less than 1

2 , say 0.4. Here we again show that F can be efficiently PAC
learned using O(mε,δ) queries provided we have access to an “expert” that can correctly label a
constant number of examples. We call such queries that are made to an expert golden queries.
When the fraction of perfect labelers is close to 1

2 , say 0.4, we show that just one golden query is
enough to learn. More generally, when the fraction of the perfect labelers is some α, we show that
O(1/α) golden queries is sufficient to learn a classifier efficiently. We describe our results in terms
of α, but we are particularly interested in regimes where α is a constant.
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Theorem 13 (Informal) Let F be a hypothesis class that can be PAC learned in polynomial time
to ε error with probability 1 − δ using mε,δ samples. Then F can be learned in polynomial time
using O(mε,δ) samples in a crowdsourced setting with O( 1

α) cost per labeled example, provided
more than an α fraction of the labelers are perfect for some constant α > 0. Furthermore, every
labeler is asked to label only O( 1

α) examples and the algorithm uses at most 2
α golden queries.

The above two theorems highlight the importance of incorporating the structure of the crowd
in algorithm design. Being oblivious to the labelers will result in noise models that are notori-
ously hard. For instance, if one were to assume that each example is labeled by a single random
labeler drawn from the crowd, one would recover the Malicious Misclassification Noise of Rivest
and Sloan (1994). Getting computationally efficient learning algorithms even for very simple hy-
pothesis classes has been a long standing open problem in this space. Our results highlight that by
incorporating the structure of the crowd, one can efficiently learn any hypothesis class with a small
overhead.

Finally, we study the scenario when none of the labelers are perfect. Here we assume that the
majority of the labelers are “good”, that is they provide labels according to functions that are all
ε-close to the target function. In this scenario generating a hypothesis of low error is as hard as
agnostic learning1. Nonetheless, we show that one can detect all of the good labelers using expected
O(1ε log(n)) queries per labeler, where n is the target number of labelers desired in the pool.

Theorem 14 (Informal) Assume we have a target set of n labelers that are partitioned into two
sets, good and bad. Furthermore, assume that there are at least n2 good labelers who always provide
labels according to functions that are ε-close to a target function f∗. The set of bad labelers always
provide labels according to functions that are at least 4ε away from the target. Then there is a
polynomial time algorithm that identifies, with probability at least 1 − δ, all the good labelers and
none of the bad labelers using expected O(1ε log(nδ )) queries per labeler.

1.2. Related Work

Crowdsourcing has received significant attention in the machine learning community. As mentioned
in the introduction, crowdsourcing platforms require one to address several questions that are not
present in traditional models of learning.

The work of Dekel and Shamir (2009) shows how to use crowdsourcing to reduce the noise
in a training set before feeding it to a learning algorithm. Our results extend and answer an open
question raised in their work by showing that performing data labeling and learning in tandem can
lead to significant benefits in more general learning settings.

A large body of work in crowdsourcing has focused on the problem of task assignment. Here,
workers arrive in an online fashion and a requester has to choose to assign specific tasks to specific
workers. Additionally, workers might have different abilities and might charge differently for the
same task. The goal from the requester’s point of view is to finish multiple tasks within a given
budget while maintaining a certain minimum quality (Ho et al., 2013; Tran-Thanh et al., 2014).
There is also significant work on dynamic procurement where the focus is on assigning prices to the
given tasks so as to provide incentive to the crowd to perform as many of them as possible within
a given budget (Badanidiyuru et al., 2012, 2013; Singla and Krause, 2013). Unlike our setting, the

1. This can happen for instance when all the labelers label according to a single function f that is ε-far from f∗.
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goal in these works is not to obtain a generalization guarantee or learn a function, but rather to
complete as many tasks as possible within the budget.

The work of Karger et al. (2011, 2014) also studies the problem of task assignment in offline and
online settings. In the offline setting, the authors provide an algorithm based on belief propagation
that infers the correct answers for each task by pooling together the answers from each worker. They
show that their approach performs better than simply taking majority votes. Unlike our setting, their
goal is to get an approximately correct set of answers for the given data set and not to generalize
from the answers. Furthermore, their model assumes that each labeler makes an error at random
independently with a certain probability. We, on the other hand, make no assumptions on the nature
of the bad labelers.

Another related model is the recent work of Steinhardt et al. (2016). Here the authors look at
the problem of extracting top rated items by a group of labelers among whom a constant fraction
are consistent with the true ratings of the items. The authors use ideas from matrix completion to
design an algorithm that can recover the top rated items with an ε fraction of the noise provided
every labeler rates∼ 1

ε4
items and one has access to∼ 1

ε2
ratings from a trusted expert. Their model

is incomparable to ours since their goal is to recover the top rated items and not to learn a hypothesis
that generalizes to a test set.

Our results also shed insights into the notorious problem of PAC learning with noise. Despite
decades of research into PAC learning, noise tolerant polynomial time learning algorithms remain
elusive. There has been substantial work on PAC learning under realistic noise models such as the
Massart noise or the Tsybakov noise models (Boucheron et al., 2005). However, computationally
efficient algorithms for such models are known in very restricted cases (Awasthi et al., 2015, 2016).
In contrast, we show that by using the structure of the crowd, one can indeed design polynomial
time PAC learning algorithms even when the noise is of the type mentioned above.

More generally, interactive models of learning have been studied in the machine learning com-
munity (Cohn et al., 1994; Dasgupta, 2005; Balcan et al., 2009; Koltchinskii, 2010; Hanneke, 2011;
Zhang and Chaudhuri, 2015; Yan et al., 2016). We describe some of these works in Appendix A.

2. Model and Notations

Let X be an instance space and Y = {+1,−1} be the set of possible labels. A hypothesis is a
function f : X → Y that maps an instance x ∈ X to its classification y. We consider the realizable
setting where there is a distribution over X × Y and a true target function in hypothesis class F .
More formally, we consider a distribution D over X × Y and an unknown hypothesis f∗ ∈ F ,
where errD(f∗) = 0. We denote the marginal of D over X by D|X . The error of a hypothesis f
with respect to distribution D is defined as errD(f) = Pr(x,f∗(x))∼D[f(x) 6= f∗(x)].

In order to achieve our goal of learning f∗ well with respect to distribution D, we consider
having access to a large pool of labelers, some of whom label according to f∗ and some who do
not. Formally, labeler i is defined by its corresponding classification function gi : X → Y . We say
that gi is perfect if errD(gi) = 0. We consider a distribution P that is uniform over all labelers and
let α = Pri∼P [errD(gi) = 0] be the fraction of perfect labelers.2 We allow an algorithm to query
labelers on instances drawn from D|X . Our goal is to design learning algorithms that efficiently
learn a low error classifier while maintaining a small overhead in the number of labels. We compare

2. We describe our results in terms of general α, but we are particularly interested in regimes where α is a constant.
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the computational and statistical aspects of our algorithms to their PAC counterparts in the realizable
setting.

In the traditional PAC setting with a realizable distribution, mε,δ denotes the number of samples
needed for learningF . That is,mε,δ is the total number of labeled samples drawn from the realizable
distributionD needed to output a classifier f that has errD(f) ≤ ε, with probability 1−δ. We know
from the VC theory (Anthony and Bartlett, 1999), that for a hypothesis classF with VC-dimension d
and no additional assumptions onF ,mε,δ ∈ O

(
ε−1

(
d ln

(
1
ε

)
+ ln

(
1
δ

)))
. Furthermore, we assume

that efficient algorithms for the realizable setting exist. That is, we consider an oracle OF that for
a set of labeled instances S, returns a function f ∈ F that is consistent with the labels in S, if one
such function exists, and outputs “None” otherwise.

Given an algorithm in the noisy crowd-sourcing setting, we define the average cost per labeled
example of the algorithm, denoted by Λ, to be the ratio of the number of label queries made by the
algorithm to the number of labeled examples needed in the traditional realizable PAC model, mε,δ.
The load of an algorithm, denoted by λ, is the maximum number of label queries that have to be
answered by an individual labeler. In other words, λ is the maximum number of labels queried from
one labeler, when P has an infinitely large support. 3 When the number of labelers is fixed, such as
in Section 5, we define the load to simply be the number of queries answered by a single labeler.
Moreover, we allow an algorithm to directly query the target hypothesis f∗ on a few, e.g., O(1),
instances drawn from D|X . We call these “golden queries” and denote their total number by Γ.

Given a set of labelers L and an instance x ∈ X , we define MajL(x) to be the label assigned to
x by the majority of labelers in L. Moreover, we denote by Maj-sizeL(x) the fraction of the labelers
in L that agree with the label MajL(x). Given a set of classifiers H , we denote by MAJ (H) the
classifier that for each x returns prediction MajH(x). Given a distribution P over labelers and a
set of labeled examples S, we denote by P|S the distribution P conditioned on labelers that agree
with labeled samples (x, y) ∈ S. We consider S to be small, typically of size O(1). Note that we
can draw a labeler from P|S by first drawing a labeler according to P and querying it on all the
labeled instances in S. Therefore, when P has infinitely large support, the load of an algorithm is
the maximum size of S that P is ever conditioned on.

3. A Baseline Algorithm and a Road-map for Improvement

In this section, we briefly describe a simple algorithm and the approach we use to improve over it.
Consider a very simple baseline algorithm for the case of α > 1

2 :

BASELINE: Draw a sample of size m = mε,δ from D|X and label each example x by
MajL(x), where L ∼ P k for k = O

(
(α− 0.5)−2 ln

(
m
δ

))
is a set of randomly drawn

labelers. Let S be the resulting labeled set. Return classifier OF (S).

That is, the baseline algorithm queries enough labelers on each sample such that with probability
1 − δ all the labels are correct. Then, it learns a classifier using this labeled set. It is clear that the
performance of BASELINE is far from being desirable. First, this approach takes log(m/δ) more
labels than it requires samples, leading to an average cost per labeled example that increases with
the size of the sample set. Moreover, when perfect labelers form a small majority of the labelers,

3. The concepts of total number of queries and load may be seen as analogous to work and depth in parallel algorithms,
where work is the total number of operations performed by an algorithm and depth is the maximum number of
operations that one processor has to perform in a system with infinitely many processors.
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i.e., α = 1
2 + o(1), the number of labels needed to correctly label an instance increases drastically.

Perhaps even more troubling is that if the perfect labelers are in minority, i.e., α < 1
2 , S may be

mislabeled andOF (S) may return a classifier that has large error, or no classifier at all. In this work,
we improve over BASELINE in both aspects.

In Section 4, we improve the log(m/δ) average cost per labeled example by interleaving the
two processes responsible for learning a classifier and querying labels. In particular, BASELINE first
finds high quality labels, i.e., labels that are correct with high probability, and then learns a classi-
fier that is consistent with those labeled samples. However, interleaving the process of learning and
acquiring high quality labels can make both processes more efficient. At a high level, for a given
classifier h that has a larger than desirable error, one may be able to find regions where h performs
particularly poorly. That is, the classifications provided by h may differ from the correct label of the
instances. In turn, by focusing our effort for getting high quality labels on these regions we can out-
put a correctly labeled sample set using less label queries overall. These additional correctly labeled
instances from regions where h performs poorly can help us improve the error rate of h in return. In
Section 4, we introduce an algorithm that draws on ideas from boosting and a probabilistic filtering
approach that we develop in this work to facilitate interactions between learning and querying.

In Section 4.1, we remove the dependence of label complexity on (α − 0.5)−2 using O(1/α)
golden queries. At a high level, instances where only a small majority of labelers agree are difficult
to label using queries asked from labelers. But, these instances are great test cases that help us
identify a large fraction of imperfect labelers. That is, we can first ask a golden query on one such
instance to get its correct label and from then on only consider labelers that got this label correctly.
In other words, we first test the labelers on one or very few tests questions, if they pass the tests,
then we ask them real label queries for the remainder of the algorithm, if not, we never consider
them again.

4. An Interleaving Algorithm

In this section, we improve over the average cost per labeled example of the BASELINE algorithm,
by interleaving the process of learning and acquiring high quality labels. Our Algorithm 2 facilitates
the interactions between the learning process and the querying process using ideas from classical
PAC learning and adaptive techniques we develop in this work. For ease of presentation, we first
consider the case where α = 1

2 +Θ(1), say α ≥ 0.7, and introduce an algorithm and techniques that
work in this regime. In Section 4.1, we show how our algorithm can be modified to work with any
value of α. For convenience, we assume in the analysis below that distribution D is over a discrete
space. This is in fact without loss of generality, since using uniform convergence one can instead
work with the uniform distribution over an unlabeled sample multiset of size O( d

ε2
) drawn from

D|X .
We first provide an overview of the techniques and ideas used in this algorithm.

Boosting: In general, boosting algorithms (Schapire, 1990; Freund, 1990; Freund and Schapire,
1995) provide a mechanism for producing a classifier of error ε using learning algorithms that are
only capable of producing classifiers with considerably larger error rates, typically of error p = 1

2−γ
for small γ. In particular, early work of Schapire (1990) in this space shows how one can combine
3 classifiers of error p to get a classifier of error O(p2), for any p < 1

2 .
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Theorem 1 (Schapire (1990)) For any p < 1
2 and distribution D, consider three classifiers: 1)

classifier h1 such that errD(h1) ≤ p; 2) classifier h2 such that errD2(h2) ≤ p, where D2 = 1
2DC +

1
2DI for distributions DC and DI that denote distribution D conditioned on {x | h1(x) = f∗(x)}
and {x | h1(x) 6= f∗(x)}, respectively; 3) classifier h3 such that errD3(h3) ≤ p, where D3 is D
conditioned on {x | h1(x) 6= h2(x)}. Then, errD(MAJ (h1, h2, h3)) ≤ 3p2 − 2p3.

As opposed to the main motivation for boosting where the learner only has access to a learning
algorithm of error p = 1

2 − γ, in our setting we can learn a classifier to any desired error rate p
as long as we have a sample set of mp,δ correctly labeled instances. The larger the error rate p,
the smaller the total number of label queries needed for producing a correctly labeled set of the
appropriate size. We use this idea in Algorithm 2. In particular, we learn classifiers of error O(

√
ε)

using sample sets of size O(m√ε,δ) that are labeled by majority vote of O(log(m√ε,δ)) labelers,
using fewer label queries overall than BASELINE.

Probabilistic Filtering: Given classifier h1, the second step of the classical boosting algorithm
requires distribution D to be reweighed based on the correctness of h1. This step can be done by a
filtering process as follows: Take a large set of labeled samples from D and divide them into two
sets depending on whether or not the instances are mislabeled by h1. Distribution D2, in which
instances mislabeled by h1 make up half of the weight, can be simulated by picking each set with
probability 1

2 and taking an instance from that set uniformly at random. To implement filtering in
our setting, however, we would need to first get high quality labels for the set of instances used for
simulating D2. Furthermore, this sample set is typically large, since at least 1

pmp,δ random samples
from D are needed to simulate D2 that has half of its weight on the points that h1 mislabels (which
is a p fraction of the total points). In our case where p = O(

√
ε), getting high quality labels for such

a large sample set requires O
(
mε,δ ln

(mε,δ
δ

))
label queries, which is as large as the total number of

labels queried by BASELINE.

Algorithm 1 FILTER(S, h)

Let SI = ∅ and N = log
(
1
ε

)
.

for x ∈ S do
for t = 1, . . . , N do

Draw a random labeler i ∼ P and let yt = gi(x)
If t is odd and Maj(y1:t) = h(x), then break.

end
Let SI = SI ∪ {x}. // Reaches this step when for all t, Maj(y1:t) 6= h(x)

end
return SI

In this work, we introduce a probabilistic filtering approach, called FILTER, that only requires
O (mε,δ) label queries, i.e., O(1) cost per labeled example. Given classifier h1 and an unlabeled
sample set S, FILTER(S, h1) returns a set SI ⊆ S such that for any x ∈ S that is mislabeled by
h1, x ∈ SI with probability at least Θ(1). Moreover, any x that is correctly labeled by h1 is most
likely not included in SI . This procedure is described in detail in Algorithm 1. Here, we provide
a brief description of its working: For any x ∈ S, FILTER queries one labeler at a time, drawn
at random, until the majority of the labels it has acquired so far agree with h1(x), at which point
FILTER removes x from consideration. On the other hand, if the majority of the labels never agree
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with h1(x), FILTER adds x to the output set SI . Consider x ∈ S that is correctly labeled by h. Since
each additional label agrees with h1(x) = f∗(x) with probability ≥ 0.7, with high probability
the majority of the labels on x will agree with f∗(x) at some point, in which case FILTER stops
asking for more queries and removes x. As we show in Lemma 9 this happens within O(1) queries
most of the time. On the other hand, for x that is mislabeled by h, a labeler agrees with h1(x)
with probability ≤ 0.3. Clearly, for one set of random labelers —one snapshot of the labels queried
by FILTER— the majority label agrees with h1(x) with a very small probability. As we show in
Lemma 6, even when considering the progression of all labels queried by FILTER throughout the
process, with probability Θ(1) the majority label never agrees with h1(x). Therefore, x is added to
SI with probability Θ(1).

Super-sampling: Another key technique we use in this work is super-sampling. In short, this
means that as long as we have the correct label of the sampled points and we are in the realizable
setting, more samples never hurt the algorithm. Although this may appear trivial at first, it does
play an important role in our approach. In particular, our probabilistic filtering procedure does not
necessarily simulate D2 but a distribution D′, such that Θ(1)ρ2(x) ≤ ρ′(x) for all x, where ρ2
and ρ′ are the densities of D2 and D′, respectively. At a high level, sampling Θ(m) instances from
D′ simulates a super-sampling process that samples m instances from D2 and then adds in some
arbitrary instances. This is formally stated below and is proved in Appendix B.

Lemma 2 Given a hypothesis class F consider any two discrete distributions D and D′ such that
for all x, ρ′(x) ≥ c · ρ(x) for an absolute constant c > 0, and both distributions are labeled
according to f∗ ∈ F . There exists a constant c′ > 1 such that for any ε and δ, with probability
1− δ over a labeled sample set S of size c′mε,δ drawn from D′, OF (S) has error of at most ε with
respect to distribution D.

With these techniques at hand, we present Algorithm 2. At a high level, the algorithm proceeds
in three phases, one for each classifier used by Theorem 1. In Phase 1, the algorithm learns h1
such that errD(h1) ≤ 1

2

√
ε. In Phase 2, the algorithm first filters a set of size O(mε,δ) into the

set SI and takes an additional set SC of Θ(m√ε,δ) samples. Then, it queries O(log(
mε,δ
δ )) labelers

on each instance in SI and SC to get their correct labels with high probability. Next, it partitions
these instances to two different sets based on whether or not h1 made a mistake on them. It then
learns h2 on a sample set W that is drawn by weighting these two sets equally. As we show in
Lemma 8, errD2(h2) ≤ 1

2

√
ε. In phase 3, the algorithm learns h3 on a sample set S3 drawn from

D|X conditioned on h1 and h2 disagreeing. Finally, the algorithm returns MAJ (h1, h2, h3).

Theorem 3 (α = 1
2

+ Θ(1) case) Algorithm 2 uses oracle OF , runs in time poly(d, 1ε , ln(1δ ))

and with probability 1 − δ returns f ∈ F with errD(f) ≤ ε, using Λ = O
(√

ε log
(
m√ε,δ
δ

)
+ 1
)

cost per labeled example, Γ = 0 golden queries, and λ = 1 load. Note that when 1√
ε
≥ log

(
m√ε,δ
δ

)
,

the above cost per labeled sample is O(1).

We start our analysis of Algorithm 2 by stating that CORRECT-LABEL(S, δ) labels S correctly,
with probability 1− δ. This is direct application of the Hoeffding bound and its proof is omitted.

Lemma 4 For any unlabeled sample set S, δ > 0, and S = CORRECT-LABEL(S, δ), with proba-
bility 1− δ, for all (x, y) ∈ S, y = f∗(x).

9
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Algorithm 2 INTERLEAVING: BOOSTING BY PROBABILISTIC FILTERING FOR α = 1
2 + Θ(1)

Input: Given a distribution D|X , a class of hypotheses F , parameters ε and δ.
Phase 1:

Let S1 = CORRECT-LABEL(S1, δ/6), for a set of sample S1 of size 2m√ε,δ/6 from D|X .
Let h1 = OF (S1).

Phase 2:
Let SI = FILTER(S2, h1), for a set of samples S2 of size Θ(mε,δ) drawn from D|X .
Let SC be a sample set of size Θ(m√ε,δ) drawn from D|X .
Let SAll = CORRECT-LABEL(SI ∪ SC , δ/6).
Let WI = {(x, y) ∈ SAll | y 6= h1(x)} and Let WC = SAll \WI .
Draw a sample set W of size Θ(m√ε,δ) from a distribution that equally weights WI and WC .
Let h2 = OF (W ).

Phase 3:
Let S3 = CORRECT-LABEL(S3, δ/6), for a sample set S3 of size 2m√ε,δ/6 drawn from D|X
conditioned on h1(x) 6= h2(x).
Let h3 = OF (S3).

return Maj(h1, h2, h3).

CORRECT-LABEL(S, δ):
for x ∈ S do

Let L ∼ P k for a set of k = O(log( |S|δ )) labelers drawn from P and S ← S ∪{(x,MajL(x))}.
end
return S.

Note that as a direct consequence of the above lemma, Phase 1 of Algorithm 2 achieves error of
O(
√
ε).

Lemma 5 In Algorithm 2, with probability 1− δ
3 , errD(h1) ≤ 1

2

√
ε.

Next, we prove that FILTER removes instances that are correctly labeled by h1 with good prob-
ability and retains instances that are mislabeled by h1 with at least a constant probability.

Lemma 6 Given any sample set S and classifier h, for every x ∈ S
1. If h(x) = f∗(x), then x ∈ FILTER(S, h) with probability <

√
ε.

2. If h(x) 6= f∗(x), then x ∈ FILTER(S, h) with probability ≥ 0.5.

Proof For the first claim, note that x ∈ SI only if Maj(y1:t) 6= h(x) for all t ≤ N . Consider
t = N time step. Since each random query agrees with f∗(x) = h(x) with probability ≥ 0.7
independently, majority of N = O(log(1/

√
ε)) labels are correct with probability at least 1 −

√
ε.

Therefore, the probability that the majority label disagrees with h(x) = f∗(x) at every time step is
at most

√
ε.

In the second claim, we are interested in the probability that there exists some t ≤ N , for
which Maj(y1:t) = h(x) 6= f∗(x). This is the same as the probability of return in biased ran-
dom walks, also called the probability of ruin in gambling (Feller, 2008), where we are given a
random walk that takes a step to the right with probability ≥ 0.7 and takes a step to the left with

10
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the remaining probability and we are interested in the probability that this walk ever crosses the
origin to the left while taking N or even infinitely many steps. Using the probability of return for
biased random walks (see Theorem 15), the probability that Maj(y1:t) 6= f∗(x) ever is at most(

1−
(

0.7
1−0.7

)N)
/

(
1−

(
0.7

1−0.7

)N+1
)
< 3

7 . Therefore, for each x such that h(x) 6= f∗(x),

x ∈ SI with probability at least 4/7.

In the remainder of the proof, for ease of exposition we assume that not only errD(h1) ≤ 1
2

√
ε

as per Lemma 5, but in fact errD(h1) = 1
2

√
ε. This assumption is not needed for the correctness of

the results but it helps simplify the notation and analysis. As a direct consequence of Lemma 6 and
application of the Chernoff bound, we deduce that with high probability W I , WC , and SI all have
size Θ(m√ε,δ). The next lemma, whose proof appears in Appendix C, formalizes this claim.

Lemma 7 With probability 1− exp(−Ω(m√ε,δ)), W I , WC , and SI all have size Θ(m√ε,δ).

The next lemma combines the probabilistic filtering and super-sampling techniques to show that
h2 has the desired error O(

√
ε) on D2.

Lemma 8 Let DC and DI denote distribution D when it is conditioned on {x | h1(x) = f∗(x)}
and {x | h1(x) 6= f∗(x)}, respectively, and let D2 = 1

2DI + 1
2DC . With probability 1 − 2δ/3,

errD2(h2) ≤ 1
2

√
ε.

Proof Consider distribution D′ that has equal probability on the distributions induced by WI and
WC and let ρ′(x) denote the density of point x in this distribution. Relying on our super-sampling
technique (see Lemma 2), it is sufficient to show that for any x, ρ′(x) = Θ(ρ2(x)).

For ease of presentation, we assume that Lemma 5 holds with equality, i.e., errD(h1) is exactly
1
2

√
ε with probability 1 − δ/3. Let ρ(x), ρ2(x), ρC(x), and ρI(x) be the density of instance x in

distributions D, D2, DC , and DI , respectively. Note that, for any x such that h1(x) = f∗(x), we
have ρ(x) = ρC(x)(1 − 1

2

√
ε). Similarly, for any x such that h1(x) 6= f∗(x), we have ρ(x) =

ρI(x)12
√
ε. Let NC(x), NI(x), MC(x) and MI(x) be the number of occurrences of x in the sets

SC , SI , WC and WI , respectively. For any x, there are two cases:

If h1(x) = f∗(x): Then, there exist absolute constants c1 and c2 according to Lemma 7, such that

ρ′(x) =
1

2
E
[
MC(x)

|WC |

]
≥ E[MC(x)]

c1 ·m√ε,δ
≥ E[NC(x)]

c1 ·m√ε,δ
=
|SC | · ρ(x)

c1 ·m√ε,δ

=
|SC | · ρC(x) · (1− 1

2

√
ε)

c1 ·m√ε,δ
≥ c2ρC(x) =

c2ρ2(x)

2
,

where the second and sixth transitions are by the sizes of WC and |SC | and the third transition is by
the fact that if h(x) = f∗(x), MC(x) > NC(x).
If h1(x) 6= f∗(x): Then, there exist absolute constants c′1 and c′2 according to Lemma 7, such that

ρ′(x) =
1

2
E
[
MI(x)

|WI |

]
≥ E[MI(x)]

c′1 ·m√ε,δ
≥ E[NI(x)]

c′1 ·m√ε,δ
≥

4
7 ρ(x)|S2|
c′1 ·m√ε,δ

=
4
7 ρI(x)12

√
ε · |S2|

c′1 ·m√ε,δ
≥ c′2ρI(x) =

c′2ρ2(x)

2
,

11
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where the second and sixth transitions are by the sizes of WI and |S2|, the third transition is by the
fact that if h(x) 6= f∗(x), MI(x) > NI(x), and the fourth transition holds by part 2 of Lemma 6.

Using the super-sampling guarantees of Lemma 2, with probability 1 − 2δ/3, errD2(h2) ≤√
ε/2.

The next claim shows that the probabilistic filtering step queries a few labels only. At a high
level, this is achieved by showing that any instance x for which h1(x) = f∗(x) contributes only
O(1) queries, with high probability. On the other hand, instances that h1 mislabeled may each
get log(1ε ) queries. But, because there are only few such points, the total number of queries these
instances require is a lower order term.

Lemma 9 Let S be a sample set drawn from distribution D and let h be such that errD(h) ≤
√
ε.

With probability 1− exp(−Ω(|S|
√
ε)), FILTER(S, h) makes O(|S|) label queries.

Proof Using Chernoff bound, with probability 1 − exp (−|S|
√
ε) the total number of points in S

where h disagrees with f∗ is O(|S|
√
ε). The number of queries spent on these points is at most

O (|S|
√
ε log(1/ε)) ≤ O(|S|).

Next, we show that for each x such that h(x) = f∗(x), the number of queries taken until a
majority of them agree with h(x) is a constant. Let us first show that this is the case in expectation.
Let Ni be the expected number of labels queried until we have i more correct labels than incorrect
ones. ThenN1 ≤ 0.7(1)+0.3(N2+1), since with probability at least α ≥ 0.7, we receive one more
correct label and stop, and with probability ≤ 0.3 we get a wrong label in which case we have to
get two more correct labels in future. Moreover, N2 = 2N1, since we have to get one more correct
label to move from N2 to N1 and then one more. Solving these, we have that N1 ≤ 2.5. Therefore,
the expected total number of queries is at most O(|S|). Next, we show that this random variable
is also well-concentrated. Let Lx be a random variable that indicates the total number of queries
on x before we have one more correct label than incorrect labels. Note that Lx is an unbounded
random variable, therefore concentration bounds such as Hoeffding or Chernoff do not work here.
Instead, to show that Lx is well-concentrated, we prove that the Bernstein inequality (see Theo-
rem 16) holds. That is, as we show in Appendix D, for any x, the Bernstein inequality is statisfied
by the fact that for any i > 1, E[(Lx−E[Lx])i] ≤ 50(i+ 1)! e4i. Therefore, over all instances in S,∑

x∈S Lx ∈ O(|S|) with probability 1− exp(−|S|).

Finally, we have all of the ingredients needed for proving our main theorem.
Proof of Theorem 3 We first discuss the number of label queries Algorithm 2 makes. The total num-
ber of labels queried by Phases 1 and 3 is attributed to the labels queried by CORRECT-LABEL(S1, δ)

and CORRECT-LABEL(S3, δ/6), which is O
(
m√ε,δ log(m√ε,δ/δ)

)
. By Lemma 7, |SI ∪ SC | ≤

O(m√ε,δ) almost surely. So, CORRECT-LABEL(SI∪SC , δ/6) contributesO
(
m√ε,δ log(m√ε,δ/δ)

)
labels. Moreover, as we showed in Lemma 9, FILTER(S2, h1) queriesO(mε,δ) labels, almost surely.

So, the total number of labels queried by Algorithm 2 is at most O
(
m√ε,δ log

(
m√ε,δ
δ

)
+mε,δ

)
.

This leads to Λ = O
(√

ε log
(
m√ε,δ
δ

)
+ 1
)

cost per labeled example.
It remains to show that MAJ (h1, h2, h3) has error≤ ε onD. Since CORRECT-LABEL(S1, δ/6)

and CORRECT-LABEL(S3, δ/6) return correctly labeled sets, errD(h1) ≤ 1
2

√
ε and errD3(h3) ≤

12
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1
2

√
ε, where D3 is distribution D conditioned on {x | h1(x) 6= h2(x)}. As we showed in Lemma 8,

errD2(h2) ≤ 1
2

√
ε with probability 1 − 2δ/3. Using the boosting technique of Schapire (1990) de-

scribed in Theorem 1, we conclude that MAJ (h1, h2, h3) has error ≤ ε on D.

4.1. The General Case of Any α

In this section, we extend Algorithm 2 to handle any value of α, that does not necessarily satisfy
α > 1

2 + Θ(1). We show that by using O( 1
α) golden queries, it is possible to efficiently learn any

function class with a small overhead.
There are two key challenges that one needs to overcome when α < 1

2 + o(1). First, we can
no longer assume that by taking the majority vote over a few random labelers we get the correct
label of an instance. Therefore, CORRECT-LABEL(S, δ) may return a highly noisy labeled sample
set. This is problematic, since efficiently learning h1, h2, and h3 using oracle OF crucially depends
on the correctness of the input labeled set. Second, FILTER(S, h1) no longer “filters” the instances
correctly based on the classification error of h1. In particular, FILTER may retain a constant fraction
of instances where h1 is in fact correct, and it may throw out instances where h1 was incorrect with
high probability. Therefore, the per-instance guarantees of Lemma 6 fall apart, immediately.

We overcome both of these challenges by using two key ideas outlined below.
Pruning: As we alluded to in Section 3, instances where only a small majority of labelers are
in agreement are great for identifying and pruning away a noticeable fraction of the bad labelers.
We call these instances good test cases. In particular, if we ever encounter a good test case x, we
can ask a golden query y = f∗(x) and from then on only consider the labelers who got this test
correctly, i.e., P ← P|{(x,y)}. Note that if we make our golden queries when Maj-sizeP (x) ≤
1 − α

2 , at least an α
2 fraction of the labelers would be pruned. This can be repeated at most O( 1

α)
times before the number of good labelers form a strong majority, in which case Algorithm 2 suc-
ceeds. The natural question is how would we measure Maj-sizeP (x) using few label queries? In-
terestingly, CORRECT-LABEL(S, δ) can be modified to detect such good test cases by measuring
the empirical agreement rate on a set L of O( 1

α2 log( |S|δ )) labelers. This is shown in procedure
PRUNE-AND-LABEL as part Algorithm 3. That is, if Maj-sizeL(x) > 1−α/4, we take MajL(x) to
be the label, otherwise we test and prune the labelers, and then restart the procedure. This ensures
that whenever we use a sample set that is labeled by PRUNE-AND-LABEL, we can be certain of the
correctness of the labels. This is stated in the following lemma, and proved in Appendix F.1.

Lemma 10 For any unlabeled set S, δ > 0, with probability 1−δ, either PRUNE-AND-LABEL(S, δ)
prunes the set of labelers or S = PRUNE-AND-LABEL(S, δ) is such that for all (x, y) ∈ S,
y = f∗(x).

As an immediate result, the first phase of Algorithm 3 succeeds in computing h1, such that
errD(h1) ≤ 1

2

√
ε. Moreover, every time PRUNE-AND-LABEL prunes the set of labelers, the total

fraction of good labeler among all remaining labelers increase. As we show, after O(1/α) prunings,
the set of good labelers is guaranteed to form a large majority, in which case Algorithm 2 for the
case of α = 1

2 + Θ(1) can be used. This is stated in the next lemma and proved in Appendix F.2.

Lemma 11 For any δ, with probability 1−δ, the total number of times that Algorithm 3 is restarted
as a result of pruning is O( 1

α).
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Robust Super-sampling: The filtering step faces a completely different challenge: Any point that
is a good test case can be filtered the wrong way. However, instances where still a strong majority of
the labelers agree are not affected by this problem and will be filtered correctly. Therefore, as a first
step we ensure that the total number of good test cases that were not caught before FILTER starts is
small. For this purpose, we start the algorithm by calling PRUNE-AND-LABEL on a sample of size
O(1ε log(1δ )), and if no test points were found in this set, then with high probability the total fraction
of good test cases in the underlying distribution is at most ε

2 . Since the fraction of good test cases
is very small, one can show that except for an

√
ε fraction, the noisy distribution constructed by

the filtering process will, for the purposes of boosting, satisfy the conditions needed for the super-
sampling technique. Here, we introduce a robust version of the super-sampling technique to argue
that the filtering step will indeed produce h2 of error O(

√
ε).

Lemma 12 (Robust Super-Sampling Lemma) Given a hypothesis class F consider any two dis-
crete distributionsD andD′ such that except for an ε fraction of the mass underD, we have that for
all x, ρ′(x) ≥ c · ρ(x) for an absolute constant c > 0 and both distributions are labeled according
to f∗ ∈ F . There exists a constant c′ > 1 such that for any ε and δ, with probability 1 − δ over a
labeled sample set S of size c′mε,δ drawn from D′, OF (S) has error of at most 2ε with respect to
D.

By combining these techniques at every execution of our algorithm we ensure that if a good test
case is ever detected we prune a small fraction of the bad labelers and restart the algorithm, and if it
is never detected, our algorithm returns a classifier of error ε.

Theorem 13 (Any α) Suppose the fraction of the perfect labelers is α and let δ′ = cαδ for small
enough constant c > 0. Algorithm 3 uses oracle OF , runs in time poly(d, 1α ,

1
ε , ln(1δ )), uses a

training set of sizeO( 1
αmε,δ′) size and with probability 1−δ returns f ∈ F with errD(f) ≤ ε using

O( 1
α) golden queries, load of 1

α per labeler, and a total number of queries

O

(
1

α
mε,δ′ +

1

αε
log(

1

δ′
) log(

1

εδ′
) +

1

α3
m√ε,δ′ log(

m√ε,δ′

δ′
)

)
.

Note that when 1
α2
√
ε
≥ log

(
m√ε,δ
αδ

)
and log( 1

αδ ) < d, the cost per labeled query is O( 1
α).

Proof Sketch Let B = {x | Maj-sizeP (x) ≤ 1 − α/2} be the set of good test cases and let β =
D[B] be the total density on such points. Note that if β > ε

4 , with high probability S0 includes one
such point, in which case PRUNE-AND-LABEL identifies it and prunes the set of labelers. Therefore,
we can assume that β ≤ ε

4 .
By Lemma 10, it is easy to see that Phase 1 and Phase 3 of Algorithm 3 succeed in producing

h1 and h3 such that errD(h1) ≤ 1
2

√
ε and errD3(h3) ≤ 1

2

√
ε. It remains to show that Phase 2 of

Algorithm 3 also produces h2 such that errD2(h2) ≤ 1
2

√
ε.

Consider the filtering step of Phase 2. First note that for any x /∈ B, the per-point guarantees of
FILTER expressed in Lemma 6 still hold. Let D′ be the distribution that has equal probability on the
distributions induced by WI and WC , and is used for simulating D2. Similarly as in Lemma 8 one
can show that for any x 6∈ B, ρ′(x) = Θ(ρ2(x)). Since D[B] ≤ ε

4 , we have that D2[B] ≤ 1
4

√
ε.

Therefore,D′ andD2 satisfy the conditions of the robust super-sampling lemma (Lemma 12) where
the fraction of bad points is at most

√
ε
4 . Hence, we can argue that errD2(h2) ≤

√
ε
2 .
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Algorithm 3 BOOSTING BY PROBABILISTIC FILTERING FOR ANY α

Input: Given a distribution D|X and P , a class of hypothesis F , parameters ε, δ, and α.
Phase 0:

If α > 3
4 , run Algorithm 2 and quit.

Let δ′ = cαδ for small enough c > 0 and draw S0 of O(1ε log( 1
δ′ )) examples from the distribu-

tion D.
PRUNE-AND-LABEL(S0, δ

′).
Phase 1:

Let S1 = PRUNE-AND-LABEL(S1, δ
′), for a set of sample S1 of size 2m√ε,δ′ from D.

Let h1 = OF (S1).
Phase 2:

Let SI = FILTER(S2, h1), for a set of samples S2 of size Θ(mε,δ′) drawn from D.
Let SC be a sample set of size Θ(m√ε,δ′) drawn from D.
Let SAll = PRUNE-AND-LABEL(SI ∪ SC , δ′).
Let WI = {(x, y) ∈ SAll | y 6= h1(x)} and Let WC = SAll \WI .
Draw a sample set W of size Θ(m√ε,δ′) from a distribution that equally weights WI and WC .
Let h2 = OF (W ).

Phase 3:
Let S3 = PRUNE-AND-LABEL(S3, δ

′), for a sample set S3 of size 2m√ε,δ′ drawn from D
conditioned on h1(x) 6= h2(x).
Let h3 = OF (S3).

return Maj(h1, h2, h3).

PRUNE-AND-LABEL(S, δ):
for x ∈ S do

Let L ∼ P k for a set of k = O( 1
α2 log( |S|δ )) labelers drawn from P .

if Maj-sizeL(x) ≤ 1− α
4 then

Get a golden query y∗ = f∗(x),
Restart Algorithm 3 with distribution P ← P|{(x,y∗)} and α← α

1−α
8

.

else
S ← S ∪ {(x,MajL(x))}.

end
end
return S.

The remainder of the proof follows by using the boosting technique of Schapire (1990) described
in Theorem 1.

5. No Perfect Labelers

In this section, we consider a scenario where our pool of labelers does not include any perfect label-
ers. Unfortunately, learning f∗ in this setting reduces to the notoriously difficult agnostic learning
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problem. A related task is to find a set of the labelers which are good but not perfect. In this section,
we show how to identify the set of all good labelers, when at least the majority of the labelers are
good.

We consider a setting where the fraction of the perfect labelers, α, is arbitrarily small or 0.
We further assume that at least half of the labelers are good, while others have considerably worst
performance. More formally, we are given a set of labelers g1, . . . , gn and a distribution D with an
unknown target classifier f∗ ∈ F . We assume that more than half of these labelers are “good”, that
is they have error of ≤ ε on distribution D. On the other hand, the remaining labelers, which we
call “bad”, have error rates ≥ 4ε on distribution D. We are interested in identifying all of the good
labelers with high probability by querying the labelers on an unlabeled sample set drawn from D|X .

This model presents an interesting community structure: Two good labelers agree on at least
1− 2ε fraction of the data, while a bad and a good labeler agree on at most 1− 3ε of the data. Note
that the rate of agreement between two bad labelers can be arbitrary. This is due to the fact that there
can be multiple bad labelers with the same classification function, in which case they completely
agree with each other, or two bad labelers who disagree on the classification of every instance. This
structure serves as the basis of Algorithm 4 and its analysis. Here we provide an overview of its
working and analysis.

Algorithm 4 GOOD LABELER DETECTION

Input: Given n labelers, parameters ε and δ
Let G = ([n], ∅) be a graph on n vertices with no edges.
Take set Q of 16 ln(2)n random pairs of nodes from G.

1 for (i, j) ∈ Q do
if DISAGREE(i, j) < 2.5ε then add edge (i, j) to G;

end
2 Let C be the set of connected components of G each with ≥ n/4 nodes.
3 for i ∈ [n] \

(⋃
C∈C C

)
and C ∈ C do

Take one node j ∈ C, if DISAGREE(i, j) < 2.5ε add edge (i, j) to G.
end
return The largest connected component of G

DISAGREE(i, j):
Take set S of Θ(1ε ln(nδ )) samples from D.
return 1

|S|
∑

x∈S 1(gi(x) 6=gj(x)).

Theorem 14 Suppose that any good labeler i is such that errD(gi) ≤ ε. Furthermore, assume that
errD(gj) 6∈ (ε, 4ε) for any j ∈ [n]. And let the number of good labelers be at least bn2 c + 1. Then,
Algorithm 4, returns the set of all good labeler with probability 1 − δ, using an expected load of
λ = O

(
1
ε ln

(
n
δ

))
per labeler.

We view the labelers as nodes in a graph that has no edges at the start of the algorithm. In
step 1, the algorithm takes O(n) random pairs of labelers and estimates their level of disagreement
by querying them on an unlabeled sample set of size O

(
1
ε ln

(
n
δ

))
and measuring their empirical

disagreement. By an application of Chernoff bound, we know that with probability 1 − δ, for any

16



EFFICIENT PAC LEARNING FROM THE CROWD

i, j ∈ [n], ∣∣∣∣DISAGREE(i, j)− Pr
x∼D|X

[gi(x) 6= gj(x)]

∣∣∣∣ < ε

2
.

Therefore, for any pair of good labelers i and j tested by the algorithm, DISAGREE(i, j) < 2.5ε,
and for any pair of labelers i and j that one is good and the other is bad, DISAGREE(i, j) ≥ 2.5ε.
Therefore, the connected components of such a graph only include labelers from a single commu-
nity.

Next, we show that at step 2 of Algorithm 4 with probability 1 − δ there exists at least one
connected component of size n/4 of good labelers.

To see this we first prove that for any two good labelers i and j, the probability of (i, j) existing
is at least Θ(1/n). Let Vg be the set of nodes corresponding to good labelers. For i, j ∈ Vg, we have

Pr[(i, j) ∈ G] = 1−
(

1− 1

n2

)4 ln(2)n

≈ 4 ln(2)

n
≥ 2 ln(2)

|Vg|
.

By the properties of random graphs, with very high probability there is a component of size β|Vg| in
a random graph whose edges exists with probability c/|Vg|, for β + e−βc = 1 (Janson et al., 2011).
Therefore, with probability 1− δ, there is a component of size |Vg|/2 > n/4 over the vertices in Vg.

Finally, at step 3 the algorithm considers smaller connected components and tests whether they
join any of the bigger components, by measuring the disagreement of two arbitrary labelers from
these components.,At this point, all good labelers form one single connected component of size
> n

2 . So, the algorithm succeeds in identifying all good labelers.
Next, we briefly discuss the expected load per labeler in Algorithm 4. Each labeler participates

in O(1) pairs of disagreement tests in expectation, each requiring O(1ε ln(n/δ)) queries. So, in
expectation each labeler labels O(1ε ln(n/δ)) instances.
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Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of
some recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Ma-
chine learning, 15(2):201–221, 1994.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Proceedings of the 19th
Annual Conference on Neural Information Processing Systems (NIPS), pages 235–242, 2005.

Ofer Dekel and Ohad Shamir. Vox populi: Collecting high-quality labels from a crowd. In Pro-
ceedings of the 22nd Conference on Computational Learning Theory (COLT), pages 377–386,
2009.

Willliam Feller. An introduction to probability theory and its applications, volume 2. John Wiley
& Sons, 2008.

Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the 22nd Confer-
ence on Computational Learning Theory (COLT), volume 90, pages 202–216, 1990.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory, pages 23–37.
Springer, 1995.

Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333–361,
2011.

Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive task assignment for crowd-
sourced classification. Proceedings of the 30th International Conference on Machine Learning
(ICML), 2013.

Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on amazon mechanical
turk. In Proceedings of the International Conference on Knowledge Discovery and Data Mining
(KDD), pages 64–67. ACM, 2010.

Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs, volume 45. John Wiley &
Sons, 2011.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing sys-
tems. In Proceedings of the 25th Annual Conference on Neural Information Processing Systems
(NIPS), pages 1953–1961, 2011.

David R Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal task allocation for reliable
crowdsourcing systems. Operations Research, 62(1):1–24, 2014.

Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user studies with mechanical turk. In
Proceedings of the SIGCHI conference on human factors in computing systems, pages 453–456.
ACM, 2008.

18



EFFICIENT PAC LEARNING FROM THE CROWD

Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active learning.
Journal of Machine Learning Research, 11:2457–2485, 2010.

Ronald L Rivest and Robert Sloan. A formal model of hierarchical concept-learning. Information
and Computation, 114(1):88–114, 1994.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Adish Singla and Andreas Krause. Truthful incentives in crowdsourcing tasks using regret mini-
mization mechanisms. In Proceedings of the 22nd international conference on World Wide Web,
pages 1167–1178. ACM, 2013.

Aleksandrs Slivkins and Jennifer Wortman Vaughan. Online decision making in crowdsourcing
markets: Theoretical challenges. ACM SIGecom Exchanges, 12(2):4–23, 2014.

Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delinquents: Ad-
versarial crowdsourcing and peer prediction. In Proceedings of the 30th Annual Conference on
Neural Information Processing Systems (NIPS), pages 4439–4447, 2016.

Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R Jennings. Efficient crowdsourcing
of unknown experts using bounded multi-armed bandits. Artificial Intelligence, 214:89–111,
2014.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Paul Wais, Shivaram Lingamneni, Duncan Cook, Jason Fennell, Benjamin Goldenberg, Daniel
Lubarov, David Marin, and Hari Simons. Towards building a high-quality workforce with me-
chanical turk. Presented at the NIPS Workshop on Computational Social Science and the Wisdom
of Crowds, pages 1–5, 2010.

Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from imperfect labelers. In
Proceedings of the 30th Annual Conference on Neural Information Processing Systems (NIPS),
pages 2128–2136, 2016.

Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. In
Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS),
pages 703–711, 2015.

19



AWASTHI BLUM HAGHTALAB MANSOUR

Appendix A. Additional Related Work

More generally, interactive models of learning have been studied in the machine learning commu-
nity. The most popular among them is the area of active learning (Cohn et al., 1994; Dasgupta, 2005;
Balcan et al., 2009; Koltchinskii, 2010; Hanneke, 2011). In this model, the learning algorithm can
adaptively query for the labels of a few examples in the training set and use them to produce an ac-
curate hypothesis. The goal is to use as few label queries as possible. The number of labeled queries
used is called the label complexity of the algorithm. It is known that certain hypothesis classes can
be learned in this model using much fewer labeled queries than predicted by the VC theory. In
particular, in many instances the label complexity scales only logarithmically in 1

ε as opposed to
linearly in 1

ε . However, to achieve computational efficiency, the algorithms in this model rely on
the fact that one can get perfect labels for every example queried. This would be hard to achieve in
our model since in the worst case it would lead to each labeler answering log(dε ) many queries. In
contrast, we want to keep the query load of a labeler to a constant and hence the techniques devel-
oped for active learning are insufficient for our purposes. Furthermore, in noisy settings most work
on efficient active learning algorithms assumes the existence of an empirical risk minimizer (ERM)
oracle that can minimize training error even when the instances aren’t labeled according to the target
classifier. However, in most cases such an ERM oracle is hard to implement and the improvements
obtained in the label complexity are less drastic in such noisy scenarios.

Another line of work initiated by Zhang and Chaudhuri (2015) models related notions of weak
and strong labelers in the context of active learning. The authors study scenarios where the label
queries to the strong labeler can be reduced by querying the weak and potentially noisy labelers more
often. However, as discussed above, the model does not yield relevant algorithms for our setting as
in the worst case one might end up querying for d

ε high quality labels leading to a prohibitively
large load per labeler in our setting. The work of Yan et al. (2016) studies a model of active learning
where the labeler abstains from providing a label prediction more often on instances that are closer
to the decision boundary. The authors then show how to use the abstentions in order to approximate
the decision boundary. Our setting is inherently different, since we make no assumptions on the bad
labelers.

Appendix B. Proof of Lemma 2

First, notice that because D and D′ are both labeled according to f∗ ∈ F , for any f ∈ F we have,

errD′(f) =
∑
x

ρ′(x)1f(x)6=f∗(x) ≥
∑
x

c · ρ(x)1f(x)6=f∗(x) = c · errD(f).

Therefore, if errD′(f) ≤ cε, then errD(f) ≤ ε. Let m′ = mcε,δ, we have

δ > Pr
S′∼D′m′

[∃f ∈ F , s.t. errS′(f) = 0 ∧ errD′(f) ≥ cε]

≥ Pr
S′∼D′m′

[∃f ∈ F , s.t. errS′(f) = 0 ∧ errD(f) ≥ ε].

The claim follows by the fact that mcε,δ = O
(
1
cmε,δ

)
.
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Appendix C. Proof of Lemma 7

Let us first consider the expected size of sets SI , W I , and WC . Using Lemma 6, we have

O(m√ε,δ) ≥
1

2

√
ε|S2|+

√
ε|S2| ≥ E[|SI |] ≥

1

2

(
1

2

√
ε

)
|S2| ≥ Ω(m√ε,δ).

Similarly,

O(m√ε,δ) ≥ E[SI ] + |SC | ≥ E[W I ] ≥
1

2

(
1

2

√
ε

)
|S2| ≥ Ω(m√ε,δ).

Similarly,

O(m√ε,δ) ≥ E[SI ] + |SC | ≥ E[WC ] ≥
(

1− 1

2

√
ε

)
|SC | ≥ Ω(m√ε,δ).

The claim follows by the Chernoff bound.

Appendix D. Remainder of the Proof of Lemma 9

We prove that the Bernstein inequality holds for the total number of queries y1, y2, . . . ,made before
their majority agrees with f∗(x). Let Lx be the random variable denoting the number of queries the
algorithm makes on instance x for which h(x) = f∗(x). Consider the probability that Lx = 2k+ 1
for some k. That is, Maj(y1:t) = f∗(x) for the first time when t = 2k + 1. This is at most the
probability that Maj(y1:2k−1) 6= f∗(x). By Chernoff bound, we have that

Pr[Lx = 2k + 1] ≤ Pr[Maj(y1:2k−1) 6= f∗(x)] ≤ exp

(
−0.7(2k − 1)(

2

7
)2/2

)
≤ exp (−0.02(2k − 1)) .

For each i > 1, we have

E[(Lx − E[Lx])i] ≤
∞∑
k=0

Pr[Lx = 2k + 1](2k + 1− E[Lx])i

≤
∞∑
k=0

e−0.02(2k−1)(2k + 1)i

≤ e0.04
∞∑
k=0

e−0.02(2k+1)(2k + 1)i

≤ e0.04
∞∑
k=0

e−0.02kki

≤ 50(i+ 1)! e4i+0.04,

where the last inequality is done by integration. This satisfies the Bernstein condition stated in
Theorem 16. Therefore,

Pr

[∑
x∈S

Lx − |S|E[Lx] ≥ O(|S|)]

]
≤ exp (−|S|) .

Therefore, the total number of queries over all points in x ∈ S where h(x) = f∗(x) is at most
O(|S|) with very high probability.
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Appendix E. Probability Lemmas

Theorem 15 (Probability of Ruin (Feller, 2008)) Consider a player who starts with i dollars
against an adversary that has N dollars. The player bets one dollar in each gamble, which he
wins with probability p. The probability that the player ends up with no money at any point in the
game is

1−
(

p
1−p

)N
1−

(
p

1−p

)N+i
.

Theorem 16 (Bernstein Inequality) Let X1, . . . , Xn be independent random variables with ex-
pectation µ. Supposed that for some positive real number L and every k > 1,

E[(Xi − µ)k] ≤ 1

2
E[(Xi − µ)2]Lk−2k!.

Then,

Pr

 n∑
i=1

Xi − nµ ≥ 2t

√√√√ n∑
i=1

E[(Xi − µ)2]

 < exp(−t2), for 0 < t ≤ 1

2L

√
E[(Xi − µ)2].

Appendix F. Omitted Proofs from Section 4.1

In this section, we prove Theorem 13 and present the proofs that were omitted from Section 4.1.

Theorem 13 (restated) Suppose the fraction of the perfect labelers is α and let δ′ = Θ(αδ).
Algorithm 3 uses oracleOF , runs in time poly(d, 1α ,

1
ε , ln(1δ )), uses a training set of sizeO( 1

αmε,δ′)
size and with probability 1 − δ returns f ∈ F with errD(f) ≤ ε using O( 1

α) golden queries, load
of 1

α per labeler, and a total number of queries

O

(
1

α
mε,δ′ +

1

αε
log(

1

δ′
) log(

1

εδ′
) +

1

α3
m√ε,δ′ log(

m√ε,δ′

δ′
)

)
.

Note that when 1
α2
√
ε
≥ log

(
m√ε,δ
αδ

)
and log( 1

αδ ) < d, the cost per labeled query is O( 1
α).

F.1. Proof of Lemma 10

By Chernoff bound, with probability ≥ 1− δ, for every x ∈ S we have that

|Maj-sizeP (x)−Maj-sizeL(x)| ≤ α

8
,

where L is the set of labelers PRUNE-AND-LABEL(S, δ) queries on x. Hence, if x is such that
Maj-sizeP (x) ≤ 1 − α

2 , then it will be identified and the set of labelers is pruned. Otherwise,
MajL(x) agrees with the good labelers and x gets labeled correctly according to the target function.
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F.2. Proof of Lemma 11

Recall that δ′ = c·αδ for some small enough constant c > 0. Each time PRUNE-AND-LABEL(S, δ′)
is called, by Hoeffding bound, it is guaranteed that with probability ≥ 1− δ′, for each x ∈ S,

|Maj-sizeP (x)−Maj-sizeL(x)| ≤ α

8
,

where L is the set of labelers PRUNE-AND-LABEL(S, δ′) queries on x. Hence, when we issue a
golden query for x such that Maj-sizeL(x) ≤ 1− α

4 and prune away bad labelers, we are guaranteed
to remove at least an α

8 fraction of the labelers. Furthermore, no good labeler is ever removed. Hence,
the fraction of good labelers increases from α to α/(1 − α

8 ). So, in O( 1
α) calls, the fraction of the

good labelers surpasses 3
4 and we switch to using Algorithm 2. Therefore, with probability 1 − δ

overall, the total number of golden queries is O(1/α).

F.3. Proof of Lemma 12

Let B be the set of points that do not satisfy the condition that ρ′(x) ≥ c · ρ(x). Notice that because
D and D′ are both labeled according to f∗ ∈ F , for any f ∈ F we have,

errD′(f) =
∑
x∈B

ρ′(x)1f(x)6=f∗(x)+
∑
x/∈B

ρ′(x)1f(x) 6=f∗(x) ≥
∑
x/∈B

c·ρ(x)1f(x) 6=f∗(x) ≥ c·(errD(f)−ε).

Therefore, if errD′(f) ≤ cε, then errD(f) ≤ 2ε. Let m′ = mcε,δ, we have

δ > Pr
S′∼D′m′

[∃f ∈ F , s.t. errS′(f) = 0 ∧ errD′(f) ≥ cε]

≥ Pr
S′∼D′m′

[∃f ∈ F , s.t. errS′(f) = 0 ∧ errD(f) ≥ 2ε].

The claim follows by the fact that mcε,δ = O
(
1
cmε,δ

)
.

F.4. Proof of Theorem 13

Recall that δ′ = c · αδ for a small enough constant c > 0. Let B = {x | Maj-sizeP (x) ≤ 1− α/2}
be the set of good test cases and and let β = D[B] be the total density on such points. Note that
if β > ε

4 , with high probability S0 includes one such point, in which case PRUNE-AND-LABEL

identifies it and prunes the set of labelers. Therefore, we can assume that β ≤ ε
4 . By Lemma 10, it

is easy to see that errD(h1) ≤ 1
2

√
ε.

We now analyze the filtering step of Phase 2. As in Section 4, our goal is to argue that errD2(h2) ≤
1
2

√
ε. Consider distributionD′ that has equal probability on the distributions induced byWI andWC

and let ρ′(x) denote the density of point x in this distribution. We will show that for any x /∈ B we
have that ρ′(x) = Θ(ρ2(x)). Since D[B] ≤ ε

4 , we have that D2[B] ≤ 1
4

√
ε. Therefore, D′ and D2

satisfy the conditions of the robust super-sampling lemma (Lemma 12) where the fraction of bad
points is at most

√
ε
4 . Hence, errD2(h2) ≤ 1

2

√
ε.

We now show that for any x ∈ B, ρ′(x) = Θ(ρ2(x)). The proof is identical to the one in
Lemma 8. For ease of representation, we assume that errD(h1) is exactly 1

2

√
ε. Let ρ(x), ρ2(x),

ρC(x), and ρI(x) be the density of instance x in distributions D, D2, DC , and DI , respectively.
Note that, for any x such that h1(x) = f∗(x), we have ρ(x) = ρC(x)(1− 1

2

√
ε). Similarly, for any
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x such that h1(x) 6= f∗(x), we have ρ(x) = ρI(x)12
√
ε. Let NC(x), NI(x), MC(x) and MI(x) be

the number of occurrences of x in the sets SC , SI , WC and WI , respectively. For any x, there are
two cases:

If h1(x) = f∗(x): Then, there exist absolute constants c1 and c2 according to Lemma 7, such that

ρ′(x) =
1

2
E
[
MC(x)

|WC |

]
≥ E[MC(x)]

c1 ·m√ε,δ
≥ E[NC(x)]

c1 ·m√ε,δ
=
|SC | · ρ(x)

c1 ·m√ε,δ

=
|SC | · ρC(x) · (1− 1

2

√
ε)

c1 ·m√ε,δ
≥ c2ρC(x) =

c2ρ2(x)

2
,

where the second and sixth transitions are by the sizes of WC and |SC | and the third transition is by
the fact that if h(x) = f∗(x), MC(x) > NC(x).

If h1(x) 6= f∗(x): Then, there exist absolute constants c′1 and c′2 according to Lemma 7, such that

ρ′(x) =
1

2
E
[
MI(x)

|WI |

]
≥ E[MI(x)]

c′1 ·m√ε,δ
≥ E[NI(x)]

c′1 ·m√ε,δ
≥ 0.5 ρ(x)|S2|

c′1 ·m√ε,δ

=
0.5 ρI(x)12

√
ε · |S2|

c′1 ·m√ε,δ
= c′2ρI(x) =

c′2ρ2(x)

2
,

where the second and sixth transitions are by the sizes of WI and |S2|, the third transition is by the
fact that if h(x) 6= f∗(x), MI(x) > NI(x), and the fourth transition holds by part 2 of Lemma 6.

Finally, we have that errD3(h3) ≤ 1
2

√
ε, where D3 is distribution D conditioned on {x |

h1(x) 6= h2(x)}. Using the boosting technique of Schapire (1990) describe in Theorem 1, we
conclude that MAJ (h1, h2, h3) has error ≤ ε on D.

The label complexity claim follows by the fact that we restart Algorithm 3 at most O(1/α)
times, take an additional O(1ε log( 1

δ′ )) high quality labeled set, and each run of Algorithm 3 uses
the same label complexity as in Theorem 3 before getting restarted.

24


	Introduction
	Overview of Results
	Related Work

	Model and Notations
	A Baseline Algorithm and a Road-map for Improvement
	An Interleaving Algorithm
	The General Case of Any 

	No Perfect Labelers
	Additional Related Work
	Proof of Lemma 2
	Proof of Lemma 7
	Remainder of the Proof of Lemma 9
	Probability Lemmas
	Omitted Proofs from Section 4.1
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Theorem 13


