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Abstract

We study a communication game between a sender and receiver where the sender
has access to a set of informative signals about a state of the world. The sender chooses
one of her signals and communicates it to the receiver. We call this an “anecdote”. The
receiver takes an action, yielding a utility for both players. Sender and receiver both
care about the state of the world but are also influenced by a personal preference so that
their ideal actions differ. We characterize perfect Bayesian equilibria when the sender
cannot commit to a particular communication scheme. In this setting the sender faces
“persuasion temptation”: she is tempted to select a more biased anecdote to influence
the receiver’s action. Anecdotes are still informative to the receiver but persuasion
comes at the cost of precision. This gives rise to “informational homophily” where the
receiver prefers to listen to like-minded senders because they provide higher-precision
signals. In particular, we show that a sender with access to many anecdotes will
essentially send the minimum or maximum anecdote even though with high probability
she has access to an anecdote close to the state of the world that would almost perfectly
reveal it to the receiver. In contrast to the classic Crawford-Sobel model, full revelation
is a knife-edge equilibrium and even small differences in personal preferences will induce
highly polarized communication and a loss in utility for any equilibrium. We show that
for fat-tailed anecdote distributions the receiver might even prefer to talk to poorly
informed senders with aligned preferences rather than a knowledgeable expert whose
preferences may differ from her own because the expert’s knowledge also gives her likely
access to highly biased anecdotes. We also show that under commitment differences
in personal preferences no longer affect communication and the sender will generally
report the most representative anecdote closest to the posterior mean for common
distributions.
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1 Introduction

Economists usually assume that people learn about the world by updating the parameters of
some underlying model as new evidence arrives. Such models can be efficiently communicated
to others: for example, abstracts of academic papers might summarize main results in the
form of model parameters such as the “elasticity of demand” in a certain industry or an
overall toxicity score of a new radiation treatment. This type of communication is very
natural for modeling learning amongst experts who have already agreed on a common set of
models that provide a “language” for their field of study.

However, communication between experts can be incomprehensible to non-experts who
have no understanding of such models. Such agents instead often rely on anecdotal evidence.
Consider, for example, an investor who is trying to decide how much money to invest in
a given mutual fund. An optimal investment decision depends on the state of the future
economy. If the economy is growing quickly, the investor would like to invest a lot of
money; if it is growing slowly or shrinking, she may want to invest less. A typical investor
lacks expertise in economic analysis and so relies on information from other actors, such as
politicians, newspapers or financial analysts. This information is often provided in the form
of anecdotes, say the percent increase in the number of jobs in a given sector this quarter.
In fact, newspaper articles often simply report a selection of related facts on a topic.

In this paper, we model these situations as a communication game between a sender and
a receiver. The receiver (e.g., investor in above example) takes an action. Both the sender
(e.g., politician) and receiver are impacted by this action and how it relates to the state of the
world (for example, the true state of the economy). But they also have personal preferences
such that their ideal action will differ even if they have access to the same information. These
personal preferences are shifts relative to the state of the world. For example, the sender
may be “left-leaning” and prefer an action a bit to the left of the state of the world whereas
the receiver is “right-leaning.”

In our model, only the sender observes informative signals about the state of the world
which we refer to as anecdotes. She can select one of these signals to send to the receiver.
Importantly, we assume throughout that the communication of anecdotes is always truthful:
the sender cannot make up “fake news”, for example. As the sender cares about the action
of the receiver, she faces a persuasion temptation. For example, if the politician would like
to persuade the investor that the economy is booming so that he invests his money in the
stock market, the politician might select a more positive anecdote. The sender must balance
this temptation against the potential information loss incurred by sending unrepresentative
anecdotes. If her communication carries very little information about the state of the world,
the receiver’s action will be poorly correlated with the state of the world which in turn hurts
the sender.

We will analyze the behavior of the sender and the receiver at equilibrium to study the
efficiency and bias of shared anecdotes under this anecdotal communication framework. Our
main result is that, when the sender is unable to commit to a communication strategy, the
tension between persuasion temptation and information loss leads to a partial unraveling
in the communicated anecdote: it is biased to a degree determined by the misalignment in

2



personal preferences. This has implications for homophily: a receiver may prefer an aligned
sender with few anecdotes to an unaligned one with many. In contrast, when the sender can
commit to her communication strategy, she will send the most representative anecdote.

More precisely, we consider a Bayesian sender and receiver. We note that a Bayesian
receiver will anticipate that the sender might communicate a biased anecdote and properly
account for it. We characterize sender and receiver’s best responses in Theorems 1 and 2
and show that a perfect Bayesian equilibrium exists (see Theorem 4).

In equilibrium, the sender will not be able to change the mean posterior beliefs of the
receiver: the receiver will always learn something because anecdotes are always truthful.
However, this does not imply that the sender’s attempts to persuade the receiver are without
costs. In Theorem 3, we characterize perfect Bayesian equilibria and show that there is
monotone mapping between the gap in personal preferences and the bias of the signal the
sender sends. This shows that even for small differences in personal preferences between
sender and receiver the anecdotes that are communicated can be highly biased. In these
cases, the sender will tend to choose anecdotes from the tail of the anecdote distribution.
While this does not succeed in persuading the receiver to take a biased action, it does destroy
precision: anecdotes in the tail are more thinly distributed and hence reveal information that
has high variance about the true state of the world.

This bias in equilibrium gives rise to “informational homophily”. In these cases, receivers
may prefer to communicate with senders with similar personal preferences to eliminate the
loss of information caused by sender’s temptation to persuade. In fact, we show in Propo-
sition 3 that a receiver might sometimes prefer to talk to a sender with access to just a
few signals (or even just one) compared to a well-informed expert who has access to a vast
number of anecdotes but has a different personal preference from the receiver. This will be
the case for fat-tailed distributions (such as the Laplace distribution) because the sender can
more likely access extreme anecdotes which are less informative to the receiver, even after
they have been debiased. This insight can explain why receivers might not seek out or listen
to experts with different backgrounds.

A sender may be able to commit to a communication scheme in settings where her
reputation precedes her, such as a reputable newspaper. When the sender can commit to
a communication scheme, we see a different type of behavior in the equilibrium. In these
cases, senders will send the most informative signal no matter the gap between the personal
preferences. As shown in Theorem 5, this signal also minimizes the cost of the receiver. When
anecdotes follow a single-peaked distribution, such as the normal or Laplace distribution, the
most informative anecdotes are those close to the peak, which (under some mild technical
conditions) the sender approximates through her posterior mean.

Our paper is organized as follows. In Section 3, we introduce our model. In Section 4, we
characterize the best-response behavior. In Section 5, we characterize sender’s and receiver’s
utility. In Section 6, we characterize the perfect Bayesian equilibria and discuss receiver’s
choice between expert and non-expert senders. In Section 7, we consider settings where the
sender can commit and characterize optimal commitments.
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2 Related Work

Our model is related to two strands of literature in economics, namely papers on framing
and papers on selection.

The framing literature allows the sender to send any type of signal. There are subcate-
gories: the Bayesian persuasion literature assumes that the sender can commit to a particular
signaling scheme while the “cheap-talk” literature assumes no such commitment. Kamenica
and Gentzkow [2011] introduce the Bayesian persuasion model where the sender commits to
sending a signal that is consistent with her information in a Bayesian sense. In that model,
as in ours, there is a state of the world distributed according to a common prior. The sender
commits to a signaling scheme, mapping observations about the state of the world to an
arbitrary signal. She then observes the state and transmits the corresponding signal to the
receiver. The receiver then picks an action. The sender’s payoff is a function of the receiver’s
action, and so the sender wishes to “persuade” the receiver to take particular actions. Ka-
menica and Gentzkow [2011] provide a characterization of the optimal signaling scheme. Our
work approaches a similar question for a constrained signaling problem, where the sender’s
signaling scheme is restricted to take the form of sending one of a collection of anecdotes.
This constraint imposes friction that limits the sender’s ability to persuade, and indeed we
find that the optimal choice of the sender under these restrictions will be to communicate as
informatively as possible about the state of the world. Crawford and Sobel [1982] introduced
the “cheap-talk” model where the sender has no commitment power. The sender can again
choose an arbitrary signaling scheme, but is not able to commit to the signaling strategy in
advance. Crawford and Sobel [1982] show that despite the lack of commitment, a non-trivial
amount of information can be communicated at equilibrium, and moreover such equilibria
take the form of sending a coarsening of the signal available to the sender.

Given our restriction that the sender must choose from a set of available anecdotes,
our work fits into the literature on selection. The literature on voluntary disclosure was
introduced by Grossman and Hart [1980], Grossman [1981], and Milgrom [1981]. These
papers consider the setting of a seller who can choose whether to disclose information about
a product to a buyer, and can make this choice based on the information itself. Similar
to our model of communication via anecdotes, the seller in these papers cannot arbitrarily
distort information about the product, but rather simply choose whether or not to reveal it.
Importantly, the seller cannot necessarily commit to their revelation strategy in advance. The
main result is that in every sequential equilibrium, the seller fully discloses her information.
This so-called unraveling is driven by the fact that the seller can not commit to a signaling
scheme.

Milgrom [1981] further analyze a setting where the seller is constrained in the amount of
information she can reveal. Namely, she has access to a set of data points about her product
(akin to our anecdotes) and can only reveal a fixed number of them (e.g., just one as in our
setting). He then shows that the seller always reveals the most favorable information about
the quality of the product. We see a similar unraveling in our setting with an unobserved
signaling scheme – the sender ends up sending an extreme signal, but not necessarily the most
extreme signal (due to the structure of payoffs which differs from that of Milgrom [1981]).
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This contrasts to the setting of an observed signaling scheme, which can be interpreted as
having no unraveling (the sender sends the most informative signal).

There are other settings with partial unraveling. Dye [1985] and Jung and Kwon [1988]
show unraveling breaks down when the receiver is uncertain whether the sender is informed.
Martini [2018] shows unraveling breaks down when information is multi-dimensional. Ali
et al. [2020] describe a disclosure game in which senders (buyers in their setting) gain by
coarsening their information. Fishman and Hagerty [1990] consider a setting, similar to
ours, in which the sender is restricted in the number of signals she can disclose and study
the optimal amount of discretion a designer should permit the sender.

In our paper, as in much of the literature, the unraveling, or partial unraveling, is driven
by a lack of the power to commit on the part of the sender prior to observing the signals.
A recent work also studies the power of the receiver to commit to a mapping from received
information to sender payoff as in mechanism design (the difference being that the sender
is restricted to voluntary disclosure strategies). Hart et al. [2017] define a disclosure game
in which the equilibrium outcome without commitment coincides with the optimal outcome
with commitment.

A related line of work studies the power of commitment for the receiver in persuasion
games with hard information. Glazer and Rubinstein [2004] consider a game of persuasion
where the sender can communicate via cheap talk about a multi-dimensional state of the
world, after which the receiver can verify one of the features before taking a binary action.
They show that commitment does not provide additional power to the receiver: the optimal
action choice rule is implementable at ex post equilibrium. Closer to our model, Glazer and
Rubinstein [2008] show that the same result holds without cheap talk and partial verification.
Instead, each state of the world is associated with a subset of feasible signals, and the sender
always sends exactly one signal before the receiver takes an action. They again find that
the receiver gains no additional benefit from being able to commit. Sher [2011] extends this
latter model to non-binary actions, and shows that the same result holds under a concavity
relationship between receiver and sender utilities. Importantly, in all of these models the
sender’s incentives are purely to persuade, with utility that depends on the receiver’s action
but not the state of the world. In our model the sender has an incentive to inform as well as
to persuade, and we find that even a small desire to persuade can lead to a significant loss
of communication fidelity (and hence welfare) in the absence of commitment.

More generally, this paper complements a long line of work on communication and dis-
closures games (e.g., Milgrom and Roberts [1986], Verrecchia [2001], Di Tillio et al. [2021],
Dziuda [2011], Wolinsky [2003], Chen [2011], Jovanovic [1982], Seidmann and Winter [1997]).

3 Model

We consider a communication game played by two players, a sender and a receiver. The
sender has information about a payoff-relevant state of the world θ ∈ Θ = R drawn from a
common prior, say the danger of COVID-19 for instance. The receiver, in turn, chooses a
payoff-relevant action a ∈ A = R, say when to wear a mask.
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Preferences. Players’ preferences over their actions depend on the state of the world. For
example, if COVID-19 is highly dangerous, both players might desire a higher frequency of
mask-wearing. However, their preferences can differ. Perhaps the sender values global health
more and personal freedom less than the receiver, thereby preferring a higher frequency of
mask-wearing than the receiver in any state of the world. We model this by introducing
personal preferences MR ∈ R and MS ∈ R for the receiver and sender respectively, which
are shifts of the ideal action relative to the state of the world. More formally, the receiver’s
utility is

uR(a, θ) = −(a− (θ +MR))2,

and the sender’s utility is
uS(a, θ) = −(a− (θ +MS))2.

We assume the personal preferences are publicly known and write ∆ = (MS−MR) for the
known difference in personal preferences. Intuitively, ∆ captures the preference misalignment
between sender and receiver.1

Sender’s knowledge. The sender has access to noisy signals about the state of the world
that she can potentially share with the receiver. Given a noise distribution F over the reals,
we model these shareable signals as a set of n samples x1, . . . , xn where each xi = θ+ εi for a
noise parameter εi ∼ F drawn independently. We will write ~x = (x1, . . . , xn) for the profile
of samples which we will refer to as anecdotes from now on. For example, an anecdote might
come in the form of a survey or research paper that the sender has access to. We think of
these anecdotes as immutable facts about the world which the sender can decide to share but
which she cannot otherwise manipulate. For example, the receiver might not know about
the survey or research paper until the sender chooses to reveal it but he can subsequently
look up the survey or paper and fact-check it. While ~x is known only to the sender, we
assume the distribution F as well as the number of anecdotes, n, is common knowledge.2

The sender might have additional information that cannot be easily shared or fact-checked
at low cost. For example, the sender’s knowledge about the state of the world might be
informed by her own detailed research and modeling efforts. We model such side information
by an additional signal. Given a distribution G over the reals, the sender has access to a
signal y = θ + γ for a noise parameter γ ∼ G. Most of our intermediate results hold
for general distributions G. However, we pay special attention to two cases: the foresight
setting where γ = 0 with probability 1, and the sender has full information about the state
of the world; second, the setting with no foresight, where G represents a diffuse prior such
as N(0,∞). In the latter case, signal y reveals no additional information about θ to the

1The assumption that sender’s preference is publicly known is justifiable in settings where the sender is
a known entity, say a politician or newspaper. In such settings, the sender is often communicating with
a known distribution of receiver types – the general public for instance. Our results would follow largely
unchanged if the receiver’s preference is drawn from a known distribution.

2This shuts down a common pathway for partial information transmission: in our model, there is no
uncertainty about how much information the sender has.
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sender. As with ~x, we assume y is private knowledge of the sender but that the distribution
G is common knowledge.

Communication The sender communicates exactly one anecdote in ~x to the receiver
influencing the receiver’s action. While the anecdote is communicated honestly, the sender
can cherry-pick from among the set of anecdotes she has access to. Note that the sender’s
side information y cannot be communicated, only an anecdote. While our anecdotes can not
be manipulated or falsified, they can be selected in a biased manner, as is common in much
public discourse. Politicians and newspapers by-and-large report facts, or else risk being
caught by fact-checkers. However, they have editorial control over the selection of those
facts and can influence the listener this way.

Equilibrium. The sender uses her anecdotes ~x and side information y to form a posterior
belief over the state of the world θ. We will denote by θS(~x, y) the posterior mean of θ given
(~x, y). A strategy for the sender in our game is a communication scheme π : Rn × R → R
that maps every realization of n anecdotes ~x and side information y to a choice of one of
the n anecdotes. In particular, for all ~x and y we have π(~x, y) = xi for some i ∈ [n]. The
receiver then selects action a after observing the revealed signal.

Formally, the timing of our game is as follows. In round 0, nature chooses state θ,
anecdotes x1, . . . , xn, and signal y. Anecdotes ~x and signal y are visible to the sender but
not the receiver. In round 1, the sender selects one of the anecdotes as described above; this
choice is observed by the receiver. In round 2, the receiver selects an action. Payoffs are
then realized as described above. Since the receiver does not observe the choice of nature, a
strategy for the receiver is an action rule α : R→ R that maps the sender’s chosen anecdote
to a choice of action. Given a communication scheme π, we will write Dπ,x for the posterior
distribution of θ given that π(~x, y) = x. We are interested in the perfect Bayesian equilibrium
of the game, that is, strategies for the sender and receiver that maximize payoffs under their
(consistent) beliefs.

Definition 1. A pair of strategies (π∗, α∗), together with a belief function B : R→ ∆(R) for
the receiver mapping every observation to a distribution over the state of the world, form a
perfect Bayesian equilibrium if:

1. For each x, action α∗(x) maximizes expected receiver utility given distribution B(x)
over θ, i.e.,

α∗(x) ∈ arg max
a
{ E
θ∼B(x)

[uR(a, θ)]}.

2. B is the rational belief with respect to π∗. That is, for each x, B(x) = Dπ∗,x is the
posterior distribution of θ given that π∗(~x, y) = x.

3. For each ~x and y, π∗(~x, y) maximizes sender utility given α∗, i.e.,

π∗(~x, y) ∈ arg max
xi∈~x
{E
θ
[uS(α∗(xi), θ) | (~x, y)]}.
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The perfect Bayesian equilibria we consider will not involve zero-probability events, and will
therefore also be sequential equilibria. Given communication scheme π, we denote by απ the
action rule that satisfies requirements (1) and (2) of Definition 1 and call it the best-response
to π.

In Section 7 we will study a variant of the game where the sender can commit to a commu-
nication scheme. A sender may be able to commit in settings where her reputation precedes
her, e.g., in journalism the public generally understands the bias of various newspapers. In
this case an equilibrium does not need to meet requirement (3), i.e., π∗(~x, y) does not need
to maximize expected sender utility given α∗(x). Rather, for every π, we fix a best-response
απ of the receiver. We then require that

3’. π∗ is such that
π∗ ∈ arg max

π
{ E
θ,~x,y

[uS(απ(π(~x, y)), θ)]}.

Diffuse Prior. For tractability, we will make an assumption about the primitives of our
model. Our assumption states that the prior over the state of the world, θ, is diffuse. That
is, the common prior over θ reveals no information about it.

Assumption 1. The prior over θ is diffuse, i.e., it is N(0,∞).

We emphasize that the exact form of the prior over θ is not important as long as it is a
diffuse prior that reveals no information about θ, i.e., its density is almost uniform every-
where. This assumption simplifies our reasoning about sender and receiver posterior means
to show that these means are unbiased estimators of θ. This assumption also emphasizes
the interesting extreme where the receiver, absent communication from the sender, has ab-
solutely no knowledge about the state of the world. We formalize this assumption and its
implications further in Appendix A.

4 Best-Response Characterizations

Communication serves multiple purposes: it both transmits information and influences ac-
tions. When preferences are not aligned, these purposes can be at odds. To transmit as
much information as possible, a sender intuitively wants to send the most accurate anec-
dote, i.e., one that minimizes the variance of the receiver’s posterior. But if the sender wants
to influence the receiver’s action, she might wish to send a slightly biased anecdote, one that
pulls the receiver’s action towards her own personal preference. As we will see, in her best-
response, the sender balances between these objectives by targeting a particular bias in her
communication. The receiver, in turn, chooses an action by debiasing the communication.

To formalize these results, it is useful to introduce the notion of a translation-invariant
communication scheme. Given a profile of anecdotes ~x and a constant δ ∈ R we will write
~x+ δ for the shifted profile of anecdotes (x1 + δ, x2 + δ, . . . , xn + δ).

8



Definition 2. A communication scheme π is translation invariant if π(~x + δ, y + δ) =
π(~x, y) + δ for all ~x, y and all δ ∈ R.

Not all communication schemes are translation invariant. For example, the scheme that
sends the anecdote closest to zero is not translation invariant, nor is the one that sends the
minimum anecdote if that anecdote is irrational and the maximum otherwise. However, in
our world with a diffuse prior, where specific numbers and their properties have no meaning,
most “natural” communication schemes are translation invariant. For example, sending the
minimum anecdote or the median anecdote or the anecdote closest to the posterior mean of
the sender are all translation invariant.3

We can define a similar notion for the receiver’s action rule.

Definition 3. An action rule α is a translation if α(x + δ) = α(x) + δ for all x and all
δ ∈ R.

Note that if action rule α is a translation, then there is a value σ ∈ R such that α(x) = x+σ
for all x. We refer to σ as the shift of α, written σ(α). Action rules that are translations
are also “natural” in our setting. Such rules correspond to a receiver who simply believes
the anecdote she hears is representative of the state, albeit potentially with a shift. These
receivers act as if they know the typical bias of a sender, e.g., a receiver who thinks the New
York Times, being a slightly left-of-center paper, sends anecdotes shifted slightly left.4

To prove that this intuitive form of action rule is in fact a best response to some commu-
nication schemes, we first define the bias of a communication scheme. Given a translation-
invariant communication scheme π, we’ll say the bias of π, β(π), is equal to Eθ,~x,y[π(~x, y)−θ].
For example, if the sender always sends the signal closest to her posterior mean and the sig-
nal distribution is symmetric then the bias is equal to 0. On the other hand, if the sender
always selects the minimum anecdote then the bias is the expected distance of the minimum
anecdote from the state θ.

The best response of a receiver to a translation-invariant communication scheme simply
shifts the received anecdote by the bias to obtain an unbiased estimate of the state (and then
additionally by the receiver’s personal preference) – hence his action rule is a translation.

Theorem 1. For any translation-invariant communication scheme π, the best response of
the receiver to π is a translation with shift MR − β(π).

Proof. Let x = π(~x) and let the belief distribution be B(x) = Dπ,x. Note by definition of
bias, x − β(π) is an unbiased estimator of θ. By Assumptions 1, the receiver’s posterior
mean about the state of the world is simply equal to the value of the unbiased estimator

3As we will see in Section 6, there are perfect Bayesian equilibria in which the sender selects a translation-
invariant communication scheme.

4Similarly, we will see in Section 6, there are perfect Bayesian equilibria in which the receiver’s action
rule is a translation.
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(formalized in Claim 1 in Appendix A). The receiver wishes to maximize

E
θ∼Dπ,x

[uR(α(x), θ)] = E
θ∼Dπ,x

[−(α(x)− (θ +MR))2]

= −(α(x)− (x− β(π) +MR))2 − E
θ∼Dπ,x

[(θ − x+ β(π))2]

where the second equality is the bias-variance decomposition and follows because x − β(π)
is an unbiased estimator of θ. This maximum is achieved for α(x) = x− β(π) + MR, i.e., a
translation of MR − β(π) as claimed.

Note that Theorem 1 characterizes the receiver’s best response among all action rules
to a translation-invariant communication scheme. In other words, the best response to a
translation-invariant scheme is in fact itself a translation.

With the receiver’s action rule in hand, we can similarly ask about the sender’s best
response to an action rule that is a translation. We start by introducing a particular com-
munication scheme where the sender selects a signal that is closest to a shift r from her
posterior mean. We call these targeting schemes. Formally, write θS for the random variable
corresponding to the sender’s posterior mean of θ, and θS(~x, y) for the realization of this
posterior mean given (~x, y).

Definition 4. The targeting scheme with offset r ∈ R is a communication scheme that
always returns the anecdote from ~x that is closest to θS(~x, y) + r.

Note that since θ is drawn from a diffuse prior, we have that θS(~x+ δ, y + δ) = θS(~x, y) + δ,
formalized in Appendix A. Hence a targeting scheme is translation invariant.

We can now explicitly calculate the best response of a sender to an action rule that is a
translation. It is the targeting scheme whose offset negates the shift of the action rule.

Theorem 2. If action rule α is a translation, then the best response of the sender is trans-
lation invariant. More specifically, it is the targeting scheme with offset MS − σ(α).

Proof. Recall that the sender wishes to maximize uS(a, θ) = −(a − (θ + MS))2. Since
a = π(~x, y)+σ(α) from the definition of shift, the sender’s goal is to choose π so that π(~x, y)
maximizes

−E
θ
[(π(~x, y) + σ(α)− (θ +MS))2 | (~x, y)].

This is the expectation of a quadratic loss. Using bias-variance decomposition and the fact
that θS(~x, y) = Eθ[θ | (~x, y)] is an unbiased estimator of θ and the variance of θS(~x, y) is a
constant that is independent of π(·), this goal is achieved by choosing π(~x, y) to maximize

−(π(~x, y) + σ(α)− (θS(~x, y) +MS))2

for each ~x and y. For any realization of ~x and y, this expression is maximized by setting
π(~x, y) as close as possible to θS(~x, y) + MS − σ(α). Since the only constraint on π(~x, y) is
that it be chosen from the profile of anecdotes ~x, the result follows.

We again note that Theorem 2 characterizes the sender’s best-response among all (not neces-
sarily translation-invariant) communication schemes. That is, the best response to an action
rule that is a translation is translation-invariant.
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5 Utility Calculations

Before proving the existence of translation-invariant equilibria in Section 6 we first explore
the sender and receiver utility for such strategy profiles. This allows us to make welfare
statements about these equilibria.

Sender Utility. First we show that the sender’s utility is driven by two components: the
information loss of her scheme and the persuasion temptation she faces. Suppose that the
sender is using communication scheme πS, and the receiver’s action rule α is a best response
to communication scheme πR (which may not be equal to πS). Then we can write the
sender’s expected utility as a function of the variance of her chosen anecdote, the preference
misalignment, and the difference between the true and perceived bias.

Proposition 1. Suppose the receiver’s action rule is a translation that is a best response to
a translation-invariant communication scheme πR. Then the sender’s expected utility from
any communication scheme πS (not necessarily translation-invariant) is

E
[
(πS(~x, y)− (θS(~x, y) + β(πS)))2

]
+ [(MR −MS) + (β(πS)− β(πR))]2 .

Proof. The proof follows by direct manipulations of the sender’s expected utility function.

E
θ,~x,y

[uS(α(πS(~x, y)), θ)] = E
θ,~x,y

[((α(πS(~x, y))− (θ +MS))2]

= E
~x,y

[((α(πS(~x, y))− (θS(~x, y) +MS))2]

= E
~x,y

[(πS(~x, y) + σ − (θS(~x, y) +MS))2]

= E
~x,y

[(πS(~x, y) + (MR − β(πR))− (θS(~x, y) +MS))2]

= E
~x,y

[(πS(~x, y) + (MR − β(πR))− (θS(~x, y) +MS) + β(πS)− β(πS))2]

= E
~x,y

[(πS(~x, y)− (θS(~x, y) + β(πS)) + (MR −MS) + (β(πS)− β(πR)))2]

Let w = πS(~x, y) − (θS(~x, y) + β(πS)) and z = (MR −MS) + (β(πS) − β(πR)) so that the
above expectation is E[(w + z)2] = E[w2 + z2 + 2wz]. Note

E[wz] = z E
~x,y

[(πS(~x, y)− (θS(~x, y) + β(πS)))] = z E
θ,~x,y

[(πS(~x, y)− (θ + β(πS)))]

where the second inequality follows because θS(~x, y) is a valid posterior mean for θ. But
the right-hand side is zero by definition of bias. Therefore E[wz] = 0 and hence the claim
follows.

The first component of this decomposition, E[(πs(~x, y) − (θS(~x, y) + β(πS)))2], is the
variance of the communicated anecdote as θS(~x, y) + β(πS) = E[πs(~x, y)] by the definition of
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bias. We can interpret this variance as the information loss of the communication scheme.
Holding the second component fixed, the sender prefers to minimize this term or, equivalently,
maximize the amount of information she communicates. Such a scheme will have some fixed
bias, e.g., for Gaussian noise distributions, the minimum variance anecdote is the one closest
to the posterior mean which has zero bias. However, this bias impacts the second component
of the sender’s utility too, [(MR−MS) + (β(πS)−β(πR))]2. This component can be thought
of as the persuasion temptation. When the receiver’s perception of the sender’s bias β(πR) is
fixed, the sender best-responds by choosing a slightly more biased scheme, namely one with
β(πS) = β(πR) + (MS−MR), in an attempt to persuade the receiver to take an action closer
to her own personal preference. In a thought experiment, if we hold the first component fixed
and imagine allowing the sender and receiver to successively best-respond to one-another, we
see that there would be complete unraveling to a scheme with the maximum bias. Hence it
is the tension between the information loss and persuasion temptation that results in partial
unraveling.

Receiver Utility With this interpretation in hand, we can show that the receiver utility is
driven by the information loss alone, i.e., the variance of the anecdote chosen by the sender.

Proposition 2. Let π be a translation invariant scheme, and let α be the best response of
the receiver. Then the loss of the receiver is the variance of the anecdote π(~x, y),

E[(π(~x, y)− (θ + β(π)))2].

Proof. From Theorem 1 we see that α(x) = x + MR − β(π), where the sender sends signal
x = π(~x, y) and β(π) is the bias of the scheme π. Thus, we have receiver’s loss (for any fixed
θ) equals

E
~x,y

[(π(~x, y) +MR − β(π)− θ −MR)2] = E
~x,y

[(π(~x, y)− θ − β(π))2]

= E
~x,y

[(π(~x, y)− E
~x,y

[π(~x, y)])2]

since by definition of bias E~x∼Fθ,y∼Gθ [π(~x, y)] = β(π) + θ.

Note that this theorem implies that, if the sender can commit to her strategy and we
impose translation invariance on the sender, the receiver’s action rule will be a translation.
We will explore this further in Section 7.

6 Perfect Bayesian Equilibria

We now characterize and prove the existence of translation-invariant equilibria. We will show
that equilibria must satisfy a particular fixed-point equation that pins down the relationship
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between the preference misalignment and the bias of the sender’s communication scheme.
We then argue this fixed-point equation has a solution which is, in some cases, unique – in
particular for strictly single-peaked and symmetric anecdote distributions. This allows us to
explore comparative statics such as which environments create more biased communication
or higher utility.

6.1 Characterization and Existence

To start, we note an implication of best-response Theorems 1 and 2 is that if we can find
a pair (π, α) that are mutual best-responses among the class of strategies described (i.e.,
targeting schemes and translations, respectively), then they must form a perfect Bayesian
equilibrium of our communication game. We call such an equilibrium translation-invariant.
Translation-invariance is a particularly appealing equilibrium-selection criterion in our model
with a diffuse prior as the communicated anecdote and resulting action of such equilibria
relative to θ are independent of the value of θ in expectation.

Definition 5. A perfect Bayesian equilibrium (π, α) is translation invariant if π is transla-
tion invariant and α is a translation.

We can use the best-response Theorems 1 and 2 to characterize translation-invariant
equilibria. To do so, we need to understand the bias of a targeting scheme or, equivalently,
the target that will result in a given bias.

Definition 6. Given a bias δ ∈ R, we define r(δ) ∈ R to be the value such that the targeting
scheme with offset r(δ) has bias δ, if such a value exists.

We note that the offset and bias of a targeting scheme are not necessarily equal due to
the varying density of the anecdote distribution. It turns out the difference between the
offset and bias is the key desiderata for the sender. In particular, this difference must equal
the preference misalignment in any perfect Bayesian equilibrium.

Theorem 3. A pair (π, α) is a translation invariant perfect Bayesian equilibrium if and only
if there exists some value δ ∈ R such that π is the targeting scheme with offset r(δ), α is a
translation with shift (MR − δ), and

r(δ)− δ = MS −MR.

Proof. Suppose (π, α) is a translation invariant PBE. Then α must be a translation. Define
δ so that MR− δ is the shift of α. Then by Theorem 2 we know that π is a targeting scheme
with offset MS − (MR − δ) = δ + (MS −MR). Moreover, by Theorem 1 we must have that
σ(π) = MR − β(π). Since σ(π) = MR − δ we conclude that β(π) = δ. Since π has offset
δ + (MS −MR), we conclude from the definition of r(δ) that

r(δ) = δ + (MS −MR)

as required.
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The other direction follows immediately from Theorems 1 and 2, because π and α are
best responses to each other. Note that, in Theorem 1, α(x) maximizes the receiver utility
given the belief distribution Dπ,x. Hence, we get that (π, α) belief distribution B(x) = Dπ,x

is a translation invariant PBE.

It remains to show that such equilibria exist, i.e., that the fixed-point equation has a
solution. Note the right-hand side is simply the preference misalignment and is hence fixed
by the primitives of the model. To gain intuition for why the scheme can be selected to
satisfy this equation for an arbitrary constant, consider a Gaussian noise distribution for
anecdotes. Since this is zero-mean, when the offset r is zero, the bias of the scheme δ is
also zero, so the left-hand side can be set to 0. To show it can take an arbitrary positive
value, consider shifting the offset to the right (i.e., making the target more positive). The
bias of the scheme will become positive as well, but as the density of anecdotes is decreasing,
the bias will be smaller than the target. In fact, the decreasing density implies that the
difference between offset and bias must grow as the offset grows. Hence the left-hand side
can take any positive value (a similar argument shows it can take any negative value as well).
The following theorem formalizes this intuition and generalizes it to a broad class of noise
distributions.

Theorem 4. For any n,MS and MR, if Ex∼F [|x−θ|] is bounded then a translation invariant
PBE exists.

Proof. Fix n and MS −MR. Let’s start with finding a condition that pins down the offset
r(δ) of a PBE from Theorem 3. Given an offset r, denote by z the distance between the
target θS(~x, y) + r and the closest anecdote (out of n total anecdotes), where z is positive
if the closest anecdote is larger and negative if the closest anecdote is smaller. Write h(z; r)
for the density of z given r, over all randomness in (θ, ~x, y).

We can now calculate the expected bias δ of a targeted communication scheme with offset
r:

δ = r +

∫ ∞
−∞

zh(z; r)dz (1)

Write H(r) =
∫∞
−∞ zh(z; r)dz. Theorem 3 now implies that to show that a PBE exists,

it suffices to show that there exists a value of r such that

H(r) = −(MS −MR). (2)

We will show (2) in two steps. First, we will show that H(r) → ∞ as r → −∞ and
H(r)→ −∞ as r →∞. We know Ex∼F [|(x− θ)|] is bounded by assumption; say Ex∼F [|(x−
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θ)|] < c0. Then

E
θ,~x,y

[max
i
xi − θS(~x, y)] = E

θ,~x,y
[max

i
xi − θ + θ − θS(~x, y)]

= E
θ,~x,y

[max
i
xi − θ] + Eθ,~x,y[θ − θS(~x, y)]

= E
θ,~x

[max
i
xi − θ] + 0

≤
∑
i

Eθ,xi [|xi − θ|]

≤ nc0

where the second equality is linearity of expectation and the third equality follows because
θS(~x, y) is a valid posterior mean.

Now choose any Z > 0 and suppose r ≥ nc0 + Z. Then∫ ∞
−∞

zh(z; r)dz = E
θ,~x,y

[(argminxi∈~x |xi − r−θS(~x, y)|)− r−θS(~x, y)]

≤ E
θ,~x,y

[max
i
xi − r−θS(~x, y)]

≤ −Z.

So for any Z > 0, we have that H(r) ≤ −Z for all sufficiently large r, and hence H(r)→ −∞
as r →∞. A symmetric argument5 shows that H(r)→∞ as r → −∞.

Next we show that, roughly speaking, if H(r) is discontinuous at some r then the one-
sided limits still exist, and the limit from above will be strictly greater than the limit from
below. To see why, suppose H is not continuous at r0. For each possible realization of
(θ, ~x, y), either z is continuous at r0 or it is not. If not, this means that θS(~x, y) + r0 is
precisely halfway between two anecdotes in ~x, say with absolute distance d > 0 to each, in
which case the limit of z from below is −d (distance to the anecdote to the left) and the limit
of z from above is d (distance to the anecdote to the right). Integrating over all realizations,
we conclude that the one-sided limits of H exist and limr→r−0

H(r) < limr→r+0
H(r).

Now we are ready to prove (2). Since H(r) → −∞ as r → ∞, there must exist some
finite r1 such that H(r1) < −(MS −MR). Choose r2 ≤ r1 to be the infimum over all r′ such
that H(r) ≤ −(MS −MR) for all r ∈ (r′, r1]. That is, (r2, r1] is a maximal (on the left)
interval on which H(r) ≤ −(MS −MR). Note that r2 must be finite, since H(r) → ∞ as
r → −∞.

Suppose for contradiction that H(r2) 6= −(MS −MR). It must then be that H is discon-
tinuous at r2, as otherwise there is an open ball around r2 on which H is either less than or
greater than −(MS −MR), but either way this contradicts the definition of r2.

From the definition of r2 we have that limr→r+2
H(r) ≤ −(MS − MR). So since H is

discontinuous at r2, we know (from our analysis of the directionality of discontinuities of H)

5By taking r = −nc0 − Z and observing E[mini−θ] ≥ −nc0.
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that limr→r−2
H(r) < −(MS −MR). But this then means that there exists some ε > 0 such

that H(r) < −(MS −MR) for all r ∈ (r2 − ε, r2), contradicting our choice of r2.
We conclude that H(r2) = −(MS −MR), so r2 is the desired value of r proving (2).

6.2 Comparative Statics

Having pinned down the equilibria, we can now make qualitative statements about its struc-
ture. In particular, we can reason about which anecdote is selected by the communication
scheme for aligned or extreme misaligned preferences. This then has implications for the
utilities of the sender and receiver in different economic environments.

Throughout the remainder of this section, we make the additional assumption that the
anecdote distribution F is strictly single-peaked and symmetric.

We first consider an environment in which the sender and receiver are completely aligned,
i.e., MS = MR. In this case, Theorem 3 shows that, at equilibrium, the sender must send
the closest signal to some target point, with the additional property that the expectation
of what is sent is precisely equal to that target point. By symmetry, this property always
holds for the unbiased signaling scheme, and hence unbiased communication is supported at
equilibrium.

Corollary 1. Assume that the anecdote distribution F is single-peaked and symmetric. If
MS = MR then there is an unbiased translation invariant PBE, with the sender always
selecting the anecdote closest to θS(~x, y).6

Proof. Since MS = MR, Theorem 3 implies that the equilibrium targeting scheme has offset
r and bias δ where r = δ. From (1), this means that

∫∞
−∞ zh(z; r)dz = 0. By symmetry, this

occurs when r = 0.

In the other extreme, as the preferences of the sender and receiver diverge, the persuasion
temptation of the sender will eventually overwhelm her disutility from information loss.
Thus, fixing the number of anecdotes that the sender knows, a sufficiently extreme sender
will then always send an extreme anecdote. A far-left sender will send the minimum anecdote;
a far-right sender will send the maximum one. The following corollary formalizes this.

Corollary 2. Assume that the anecdote distribution F is single-peaked and symmetric. Then
the sender’s communication scheme at any translation-invariant equilibrium converges to the
minimum scheme as MS −MR → −∞ (in the sense that it is a targeting scheme with offset
that approaches −∞) and converges to the maximum scheme as MS −MR → ∞ (in the
sense that the offset approaches ∞).

6It may be tempting to conjecture that if the sender and receiver are fully aligned, this unbiased scheme
is also the communication scheme that both the sender and receiver prefer. After all, the calculations in
Section 5 show that both sender and receiver prefer schemes that minimize the variance of the selected
anecdote, and the persuasion temptation of the sender disappears under aligned preferences. However, even
for single-peaked and symmetric distributions, this is not always the case: it may be possible to reduce
variance by introducing bias into the communication scheme. We present such an example in Section 7.
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Proof. Consider MS < MR (the other case is analogous). For single-peaked symmetric
distributions we have r < δ < 0 and δ − r = −(MS −MR). This implies r < (MS −MR).
Hence, r → −∞ as (MS −MR)→ −∞.

Even when the sender sends heavily biased anecdotes, the receiver will debias them at
equilibrium. However, this biasing and debiasing will tend to increase the variance of the
received signal, as the sender chooses to communicate anecdotes that are further in the
extreme tail of the signal distribution. The ultimate impact on utility is ambiguous and can
depend on the signal distribution, as we explore in Section 6.3.

6.3 Choosing Between Senders

Our comparative statics allow us to compare the informativeness of signals received from
different possible senders. This raises the natural question of what type of sender a receiver
should listen to for advice. For example, a receiver could choose a very informed sender
with drastically different personal preference, or a much less informed sender with whom
her preferences are aligned. Which communication provides her with better information?
While the more informed sender has more anecdotes to pull from and therefore is in principle
better equipped to advise the receiver, she also selects anecdotes in a more biased way which
reduces precision.

As it turns out, the choice of option that results in higher receiver utility depends on
the distribution from which anecdotes are drawn. We’ll first show that if the anecdotes are
drawn from a Gaussian distribution, then it is preferable to communicate with a sufficiently
informed sender, no matter how great the difference in personal preferences. Intuitively, this
is because even though the more informed sender’s choice of anecdote will be heavily biased,
the information content is still very high after the receiver debiases the anecdote. On the
other hand, this outcome is not universal: if anecdotes are drawn from a Laplace distribution,
then no matter how informed the more-informed sender is, there is a level of difference in
viewpoint such that the receiver would prefer to communicate with the less-informed sender.

The following proposition makes this comparison more precise.

Proposition 3. Consider a receiver with personal preference MR who can choose between
two senders:

a. A poorly-informed sender with access to n0 anecdotes but who shares the same personal
preference as the receiver, or

b. a well-informed expert with access to n > n0 anecdotes and personal preference MS 6=
MR.

If the expert’s anecdotes are drawn from a normal distribution, then for any n0 there exists
n1 such that if n > n1, the receiver will always prefer to talk to the well-informed expert
regardless of MS. In contrast, if the expert’s anecdotes are drawn from a Laplace distribution
then for any n0 ≥ 2 and any choice of n > n0, there exists ∆0 > 0 such that if |MS −MR| >
∆0 the receiver will prefer to talk to the poorly-informed sender.
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Proof. To prove this theorem, we compare the receiver’s loss for the following two schemes
and situations: 1) Sending the minimum/maximum signal out of n → ∞ signals, denoted
by signal Mn 2) Sending the closest out of n0 signals to θ, denoted by Cn0 . By Proposition 2
together with Corollary 2 and Corollary 1, it is enough to compare the variance of Mn to
the variance of Cn0 .

Calculations for the Gaussian distribution. For the case of Gaussian distribution,
let Mn be the minimum of n i.i.d. Gaussian variables with µ = 0 and σ = 1. The
Fisher–Tippett–Gnedenko (FTG) extreme value theorem Fisher and Tippett [1928], Gne-
denko [1943] then implies that

lim
n→∞

Pr [Mn ≤ y] = exp(− exp(an(y − bn)),

for an =
√

2 lnn and bn =
√

2 lnn − ln lnn+ln(4π)

2
√

2 lnn
(from Lemma 1.2.1 Bovier [2005]). This

implies that Mn is distributed as a Gumbel distribution with variance O
(
π2 ln(n)

3

)
and mean

√
2 lnn−Θ( ln lnn√

lnn
). In particular, the variance of the minimum signal tends to 0 as n→∞.

However, for any constant n0, the variance of Cn0 will be some constant Ω(1). Thus, for
sufficiently large n, the variance of Mn will be strictly less than the variance of Cn0 .

Calculations for the Laplace distribution Let Mn be the minimum of n i.i.d. Laplace
variable with µ = 0 and β = 1. Again using Fisher–Tippett–Gnedenko (FTG) extreme value
theorem, we have that

lim
n→∞

Pr [Mn ≤ y] = exp(− exp(an(y − bn)),

where an = 1 and bn = ln n
2
, see Appendix C. This implies that for n→∞, Mn is distributed

as a Gumbel distribution with variance π2/6 and mean ln n
2

+ γ, where γ ≈ 0.5 is the Euler
constant.7

Next, we calculate the variance of Cn, i.e., the signal that is closest to 0 among n i.i.d
Laplace variables with µ = 0 and b = 1. This is equivalent to the variance of Zn =
mini{z1, . . . , zn}, where zi = |xi| and zi is an exponential distribution with pdf exp(−z). It
is well known that the minimum of n exponential variables, Zn, is an exponential variable
with pdf n exp(−nz). Therefore, the variance of Cn

2

∫ ∞
0

n exp(−nz)z2 dz =
2

n2
.

Given these calculations, we note that for any n0 > 1, V ar(Cn0) < V ar(Mn) for the
Laplace distribution. Therefore, the receiver will have strictly higher utility by choosing the
poorly informed sender.

7Mean and variance of the Gumbel distribution with CDF exp
(
− exp

(
−x−µβ

))
are µ+ βγ and π2β2/6,

respectively.
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7 Commitment

So far we have assumed that the sender has no ability to commit to a communication scheme.
However, sometimes commitment is possible. For example, a sender might have a reputation
for a particular type of reporting or a reputable newspaper might commit to always select
an unbiased set of facts for their articles (and might be punished by readers if they are later
found out to have deviated from this scheme). Other examples of commitment include the
interpretation of our model as a behavioral game played between current and future self,
where current self decides which anecdotes to save to memory so that future self makes the
best possible decisions.

We have formally defined the commitment equilibrium in Section 3. Optimal commitment
is weakly advantageous to the sender, given that it is a relaxation of the perfect Bayesian
equilibrium concept. In this section, we consider the implications of commitment on both
the sender and receiver.

As before, Proposition 2 implies that if the sender uses a translation invariant com-
munication scheme π, then the receiver’s best response απ will be a translation. Hence,
we can again focus on translation-invariant commitment equilibria. The following theorem
characterizes the set of such equilibria.

Theorem 5. The sender’s optimal commitment πS is a signaling scheme that minimizes the
variance of the signal sent. That is,

πS ∈ argminπ E
θ,~x,y

[(π(~x, y)− E[π(x, y)])2]

Moreover, this minimizes the receiver’s loss.

Proof. For any committed communication scheme πS, the receiver’s response is a best re-
sponse απS . For translation invariant schemes, the best response απS is responding to
πR = πS. Applying Proposition 1 with πR = πS, we have that the sender’s expected loss
from any given translation-invariant communication scheme πS is

E[(πS(~x, y)− (θS(~x, y) + β(πS)))2] + (MR −MS)2.

Minimizing this loss therefore corresponds to choosing πS that minimizes E[(πS(~x, y) −
(θS(~x, y) + β(πS)))2]. But as discussed immediately following Proposition 1, this is precisely
the variance of the communicated anecdote, as claimed. Moreover, by Proposition 2 this is
also the receiver’s loss. Therefore, the optimal commitment communication also minimizes
the receiver cost.

Theorem 5 implies that under commitment the sender behaves as if her personal prefer-
ence is aligned with the receiver’s personal preference. Commitment removes the sender’s
persuasion temptation: she therefore will implement the socially optimal communication
subject to the constraint that she can only send a single anecdote.
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7.1 Single-peaked and Symmetric Anecdote Distributions

In this section we describe the variance-minimizing signaling scheme for strictly single-peaked
and symmetric anecdote distributions. Intuitively, the sender will choose anecdotes where
the anecdote distribution has maximal density. For single-peaked distributions this will be
exactly the neighborhood around the state of the world θ. This suggests that the sender
should want to send signals that are close to the posterior mean θS, and hence will want to
select a communication scheme with low bias. Theorem 6 below formalizes this insight by
showing that unbiased communication is optimal for the sender as long as (a) the single-
peaked distribution is “well-behaved” and (b) the sender has access to sufficiently many
signals.

We start by defining a well-behaved anecdote distribution.

Definition 7. We say that the noise distribution F is well-behaved if the following holds.

1. The distribution is strictly single-peaked and symmetric with finite variance.

2. Let g(x) = f ′(x)/f(x). That is, g(x) = d log f(x)
dx

. We assume that |g′(x)| ≤ c1 for all x,
and some constant c1 > 0. That is, |g(x)| ≤ c1|x|+ c2

8

3. F has exponential tails. That is, there is a constant Q > 0, such that for x > Q, we
have 1 − F (x) ≤ c3 exp (−|x|) for a constant c3 > 0, and x < −Q we have F (x) ≤
c3 exp (−|x|).

For example, the normal distribution F ∼ N(0, 1) and the Laplace distribution with
density f(ε) = 1

2
exp(−|ε|) are well-behaved. Recall that f(ε) is the density of the signal

distribution at θ + ε, an offset of ε from the true state of the world.

Theorem 6. For any well-behaved signal distribution, the unbiased communication scheme
that sends the closest signal to θS(~x, y) strictly dominates any biased signaling scheme for
sufficiently large n and is optimal among all unbiased signaling schemes.

This result confirms our intuition that the optimal communication scheme sends the
signal closest to the posterior mean. Intuitively, the sender would like to send precisely the
posterior mean to the receiver. However, since she can only send a signal she has to do with
the second-best which is to send the signal closest to the posterior mean. When we interpret
our model as a model of memory where the current self communicates with her future self
by storing a single anecdote in memory we can think of the anecdote closest to the posterior
mean as the “most representative anecdote”.

7.1.1 Overview of Theorem 6

For the proof of Theorem 6 we bound the losses from the biased and unbiased signaling
schemes and show that the unbiased scheme dominates.

8Note that, for x < 1 we bound |g(x)| ≤ c2 and otherwise we can bound |g(x)| ≤ c1.
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Proposition 4. Given any well-behaved noise distribution F , the unbiased targeting com-
munication scheme with δ = r(δ) = 0 which selects the closest signal to the sender’s posterior
mean θS(~x, y) has signaling loss:

1

2n2f(0)2
+ o

(
1

n2

)
(3)

In contrast, the biased communication scheme with bias δ has signaling loss:

1

2n2f(δ(π))2
+ o

(
1

n2

)
(4)

These two bounds together imply that the unbiased communication scheme is asymptot-
ically optimal, and the optimal communication scheme is asymptotically unbiased.

In the rest of the section we provide an overview of the proof of Proposition 4 . The full
proofs are relegated to Appendix D.

Let Xδ = mini |xi− θS(~x, y)− δ| denote the absolute distance of the closest signal to the
shift of the posterior mean, δ+ θS(~x, y). We observe that the signaling loss, Eθ,~x,y[(π(~x, y)−
θS(~x, y)−β(π))], of any translation invariant signaling scheme with bias β(π) = δ is at least
Eθ,~x,y[X2

δ ].

Optimal unbiased scheme. Since the bias of the scheme that sends signal closest to the
posterior mean is itself 0, this is the optimal amongst all unbiased signaling schemes.

When the sender does not have foresight, the posterior mean θS(~x, y) depends on the
realized signals ~x, and this introduces correlation between the signal realizations and the
value of θS(~x, y) + δ. We therefore cannot model Xδ using independent draws from the
signal distribution. Indeed, as we will see in Section 7.2, these correlations can significantly
impact E[X2

δ ] when the number of signals is small.
Our approach is to argue that as n grows large, the impact of these correlations grows

small. Small enough, in fact, that the correlation between θS(~x, y) + δ and the signal closest
to that point becomes small enough that it is dominated by the statistical noise that would
anyway be present if signals were drawn independently of θS(~x). We argue this in three
steps.

Step 1: We argue that it suffices to focus on cases where θS(~x, y) falls within a narrow interval.

Let I = [−n− 1
2

+ε, n−
1
2

+ε] for some ε > 0. Using the law of large numbers, we argue that
θS(~x, y) ∈ I with all but exponentially small probability (in n). The contribution to
E[X2

0 ] from events where θS(~x, y) 6∈ I is therefore negligible and can be safely ignored.
This allows us to assume that θS(~x, y) ∈ I.

Step 2: To reduce the impact of correlation we won’t focus on the exact value of θS(~x), but
rather an interval in which it falls. To this end we partition I into subintervals of width
n−b, where b is chosen so that any given interval is unlikely to contain a signal. One
such subinterval contains the posterior mean θS(~x); call that subinterval C. We then
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consider longer subintervals L and R to the left and right of C, respectively, of width
n−a chosen large enough that we expect many signals to appear in each9. See Figure 1.

We bound the impact of correlation by showing that if we condition on the number
of signals that appear in L and R, then the actual arrangement of signals within
those subintervals (keeping all other signals fixed) has only negligible effect on the
posterior mean. Specifically, given any arrangement of the signals within L and R, the
probability that the posterior mean falls within C remains large. (See Corollary 5 for
more details.)

This implies that there is negligible correlation between the joint density function of a
fixed number of k signals in L ∪ R and the event that θS(~x) ∈ C. We formally show
this in Lemmas 11 and 12 10.

Step 3: The analysis in Step 2 is conditional on the number of signals k that fall in L∪R. We
now show a concentration result on the distribution of k: with high probability, the
number of signals that lie in L ∪ R is close to the expected number of signals in the
interval L∪R without any correlation to the event θS(~x, y) ∈ C. See Appendix D for the
proof, and Lemma 6 for the proof that it suffices to consider only this high-probability
event.

Given this concentration result, we can focus on bounding the expected value of X2
δ ,

the squared distance of the signal closest to θS(~x, y) + δ, given the numbers of signals
in L and R. From the analysis in Step 2, we can view these signals as (approximately)
independently distributed within L and R. We can therefore bound the expected
squared distance between interval C + δ and the closest signal to interval C + δ by
performing an explicit calculation for independent signals. We still do not know the
value of θS(~x) within interval C (and we have not bounded the impact of correlation
on that value), but C is sufficiently narrow that this uncertainty has limited impact on
E[X2

δ ]. We conclude that the impact of correlation on E[X2
δ ] is absorbed in lower-order

terms. This gives us the required results of Proposition 4.

7.2 Discussion

Unbiased communication schemes are not necessarily optimal if the distribution is not single-
peaked and symmetric or with small n in the absence of foresight.

The following example demonstrates that a biased signaling scheme can be optimal even
with single-peaked and symmetric distributions when n is small.

Proposition 5. Suppose n = 3, signals are drawn from a uniform distribution around θ,
and the sender has no foresight. Then at every commitment equilibrium the sender uses a
signaling scheme with non-zero bias.

9For δ 6= 0, we consider L and R to the left and right of C + δ.
10For these lemmas we assume that the density function θS is sufficiently “nice” in C. Refer to Section D.2

for details about this assumption, and why we can make this assumption without loss of generality.
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Figure 1: Intuition for proof of theorem 6

θ

C
width: n−b

L
width: n−a

R
width: n−a

∆
n

≈ n1−a signals ≈ n1−a signals

We assume a < 1 and 1 < b < 2a − 1
2 which ensures that the intervals L and R contain many signals but

the collective influence of these signals on the posterior mean is O(n
1
2−2a) and hence smaller than 1

n . It also
implies that if we consider a posterior that is contained in C then a rearrangement of signals in L or R will
keep the posterior mean within C with high likelihood and the probability of signals drawn from the interval
C goes to 0. For example, a = 4

5 and b = 12
11 satisfy these conditions.

The idea behind Proposition 5 is that, conditional on the value of the sender’s posterior
mean, the conditional density over signal realizations is not necessarily single-peaked. For the
setting of Proposition 5, the optimal unbiased scheme is precisely the one that always returns
the middle signal. However, for uniform distributions, the correlation between the posterior
mean and the minimum and maximum signals is stronger than the correlation between the
posterior mean and the middle signal. One can therefore communicate more information
about the posterior mean through a biased communication scheme that sometimes returns
the minimum signal (or, by symmetry, sometimes returns the maximum signal). The full
proof appears in Appendix B.

Why does bias help? Recall that there is intrinsic error in the sender’s posterior mean.
This variance is unavoidable. But it can introduce correlation with particular samples. This
correlation can be used to help minimize variance between the posterior mean and the signal
passed to the receiver. This is why, for the uniform case, it is helpful to bias toward more
extreme signals: even though they are not more informative than the moderate signals
when it comes to the true state of the world, they are more informative with respect to
the sender’s posterior mean. The interplay between these two sources of errors therefore
introduces incentive for the sender to systematically bias their communication.
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A Diffuse Prior

In this section we discuss our assumption of a diffuse prior and its implications on the
posterior of the agents.

In statistics, it is common to use an improper prior as uninformative priors. The simplest
way to formalize a diffuse prior that reveals no information about θ is to consider the density
to be a constant µ(θ) = c for all θ ∈ R. It is important to note that while µ is not a proper
probability distribution (since

∫
θ
µ(θ)dθ = ∞), it is still possible that the posterior formed

can still be proper and well defined11.

11Also, in a more Frequentist view, µ can be thought of as the likelihood function to capture the absence
of data.
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Claim 1. Given a diffuse prior and ~x ∼ θ + F, y ∼ θ + G, the posterior distribution of the
sender conditioned on ~x, y, is a proper distribution. Moreover, when F and G are symmetric,
the posterior mean θS(~x, y) is an unbiased estimator of θ.

Similarly, given a diffuse prior, a translation invariant signaling scheme π, and a signal
x = π(~x, y). The posterior distribution of the receiver conditioned on π, x, is a proper
distribution. Moreover, the posterior mean θR(π, x) = x− β(π) is an unbiased estimator of
θ.

We prove the following claim below.

Sender’s posterior distribution. Recall that the anecdotes x1, . . . , xn are drawn inde-
pendently from θ+F . Thus the pdf of an anecdote given θ is f(x− θ). Similarly, y is drawn
from γ +G and hence the pdf of y given θ is g(y − θ).

We first observe that in the foresight case, when G = 0, the sender’s posterior is a point
mass at y.

For any G that is a proper distribution, we see that the posterior of θ given y is proper.

µ(θ|y) =
g(y − θ)µ(θ)∫

θ̂
g(y − θ̂)µ(θ̂)dθ̂

=
g(y − θ)∫

θ̂
g(y − θ̂)dθ̂

=
g(y − θ)∫
γ
g(γ)dγ

= g(y − θ)

The first equality is just the definition of a posterior, and the second equality holds since
µ is the diffuse prior with µ(θ) = c for all θ. The third equality does a change of variables
to γ = y − θ̂. Finally, the last step follows because G is a proper distribution. Hence µ(θ|y)
is a proper posterior distribution.

Recall that µ(θ|~x, y) = f̂(~x|y,θ)µ(θ|y)∫
θ̂ f̂(~x|y,θ̂)µ(θ̂|y)dθ̂

, where f̂(~x|θ, y) is the conditional pdf of ~x given

θ, y. That is, we can use µ(θ|y) as a prior. Since µ(θ|y) is a proper distribution, the posterior
µ(θ|~x, y) is also proper.

For the non-foresight case, when G is diffuse, we can use a similar argument as above to
first compute the posterior given x1 and y. We get,

µ(θ|x1, y) =
f(x1 − θ)g(y − θ)µ(θ)∫

θ̂
f(x1 − θ̂)g(y − θ̂)µ(θ̂)dθ̂

=
f(x1 − θ)∫
ε
f(ε)dε

= f(x1 − θ)

This is again by noting that µ(θ) = c , g(y − θ) = c′, and doing a change of variable to
ε = x1− θ̂. Thus µ(θ|x1, y) is a proper posterior distribution because f is proper distribution.
Now using this as a prior, we get that µ(θ|~x, y) is a proper posterior.
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Sender’s posterior mean. We observe that, given a diffuse prior and symmetric noise
distributions F,G, µ(θ|~x, y) = µ(−θ| − ~x,−y). With this, it is easy to see that, for θ = 0,
E~x,y[θS(~x, y)|θ = 0] = 0. Moreover, we show below that θS(~x, y) = θS(~x + t, y + t) − t, and
hence E~x,y[θS(~x, y)|θ] = θ. Thus, the sender’s posterior mean in an unbiased estimator of θ.

We will now see show that µ(θ|~x, y) = µ(θ + t|~x+ t, y + t), and this would imply,

θS(~x, y) =

∫
θ

θ · µ(θ|~x, y)dθ =

∫
θ

θ · µ(θ + t|~x+ t, y + t)dθ = θS(~x+ t, y + t)− t.

We have µ(θ|~x, y) = µ(θ + t|~x+ t, y + t) because,

µ(θ|~x, y) =

∏
i f(xi − θ) · g(y − θ)µ(θ)∫

θ̂

∏
i f(xi − θ̂) · g(y − θ̂)µ(θ̂)dθ̂

=

∏
i f(xi + t− θ − t) · g(y + t− θ − t)µ(θ + t)∫
θ̂

∏
i f(xi + t− θ̂ − t) · g(y − θ̂)µ(θ̂)dθ̂

= µ(θ + t|~x+ t, y + t)

Receiver’s posterior distribution. We show that the receiver’s posterior distribution
given a translation invariant π and x = π(~x, y) is a proper distribution. Let hπ(x|θ) be the
pdf of the signal sent given π and θ. Observe that, by definition of translation invariant,
π(~x − θ, y − θ) = π(~x, y) − θ. Therefore, hπ(x|θ̂) = hπ(x − θ̂|0). Note that, hπ(·|0) only
depends on π, F, and G.

µ(θ|π, x) =
hπ(x|θ)µ(θ)∫

θ̂
hπ(x|θ̂)µ(θ̂)dθ̂

=
hπ(x− θ|0)∫

θ̂
hπ(x− θ̂|0)dθ̂

=
hπ(x− θ|θ = 0)∫

ε
hπ(ε|0)dε

= hπ(x− θ|0)

Receiver’s posterior mean. Given a translation invariant π, for any θ, recall that the
bias β(π) =

∫
x
(x − θ)hπ(x|θ) =

∫
z
zhπ(z|0). Hence we get that the posterior mean of the

sender θR(π, x) is

∫
θ̂

θ̂µ(θ̂|π, x)dθ̂ =

∫
θ̂

θ̂hπ(x− θ̂|0)dθ̂

=

∫
z

(x− z)hπ(z|0)dz

= x−
∫
z

zhπ(z|0)dz

= x− β(π)
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Thus for any θ, translation invariant π, we get Ex[θR(π, x)|θ] = Ex[x−β(π)|θ] = θ (follows
directly from the definition of β(π)). Therefore, the receiver’s posterior mean x− β(π) is an
unbiased estimator of θ.

B Three Uniform Signals

In this section we prove Proposition 5, which is that the optimal signaling scheme may be
biased even for n = 3 signals drawn from a uniform distribution.

Suppose that F is the uniform distribution on [−1/2, 1/2]. For notational convenience,
it will be convenient to assume (as the analyst) that θ = 1/2, so that all samples are drawn
from [0, 1]. Note that, by translation invariance and the diffuse prior on θ, this assumption
is without loss of generality. We also assume that we are in the setting with no foresight,
where signal y reveals no additional information to the sender, so we will tend to drop signal
y from the notation.

Given 3 realized signals x1 ≤ x2 ≤ x3, the sender’s posterior is a uniform distribution on
[x3 − 1/2, x1 + 1/2]. The posterior mean is therefore θS(~x) = x1+x3

2
. In what follows we will

think of x1, x2, x3 as random variables corresponding to the least, middle, and largest signal,
respectively.

Optimal Unbiased Scheme Consider the optimal unbiased scheme, call it π0. By Theo-
rem 2, this scheme sends the closest signal to θS(~x). Since θS is the midpoint of the interval
[x1, x3], and since x2 falls in that interval, the optimal unbiased scheme always sends signal
x2.

Let’s calculate the mean squared error of signal x2 relative to θ. The CDF of x2 is given
by

H(w) = Pr[x2 < w] = w3 + 3w2(1− w)

for w ∈ [0, 1], since the first term is the probability that all three samples are less than w,
and the second term is the probability that two of the three samples are less than w. Now
write d = |θ − x2| = |1/2− x2|, noting that d is a random variable. Then 1 minus the CDF
of d is given by

H̃(z) = Pr[d > z] = Pr
w∼H

[w < (1/2−z)]+ Pr
w∼H

[w > (1/2+z)] = 2 Pr
w∼H

[w < (1/2−z)] = 2H(1/2−z)

for z < 1/2, and H̃(z) = 0 for z ≥ 1/2. Here we used that Prw∼H [w > (1/2 + z)] =
Prw∼H [w < (1/2− z)] by symmetry.
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The total loss of signaling scheme π0 is therefore

E[d2] =

∫ ∞
0

Pr[d2 > z]dz∫ ∞
0

Pr[d >
√
z]dz∫ ∞

0

2H(1/2−
√
z)dz

= 1/20

where the final equality is via numerical calculation.

A Better Biased Scheme We’ll now build a scheme with strictly less loss than π0. Write
πr for the targeting scheme with offset r, which by definition returns whichever of the three
points is closest to θS(~x) + r. We will eventually choose r = 1/5, but for now we’ll proceed
with general r.

Which point does πr return? Write x∗ for the random variable representing the point
that πr returns. Recall that θS(~x) = (x1 + x3)/2, so θS(~x) + r is always closer to x3 than
x1. The distance to point x3 is |θS(~x) + r− x3| = (x3 − x1)/2 + r, and the distance to point
x2 is |θS(~x) + r − x2| = (x3 + x1)/2 + r − x2. So the point x2 will be closest precisely if
x2 > x1 + 2r. To summarize: x∗ = x2 if x2 > x1 + 2r, otherwise x∗ = x3.

As before, let’s work out the CDF for x∗. What is the probability that x∗ < w for some
fixed value of w ∈ [0, 1]? If all three points are less than w (which happens with probability
w3) then x∗ certainly is. On the other hand, if x2 > w, then certainly x∗ > w as well. If
x2 < w and x3 > w (which happens with probability 3w2(1 − w)), then x∗ < w only if
x∗ = x2, which occurs if and only if x2 > x1 + 2r. The conditional probability of that last
event is equivalent to the probability that two random variables, each drawn uniformly from
[0, w], are at least distance 2r apart from each other. So we can write the CDF as

H[w] = Pr[x∗ < w]

= w3 + 3w2(1− w) Pr[|x1 − x2| > 2r | x2 < w]

= w3 + 3w2(1− w) · 2 ·
∫ w−2r

0

1

w
· w − (x+ 2r)

w
dx.

To justify the last equality, consider drawing one point uniformly from [0, w], so with uniform
density 1

w
. What is the probability that a second drawn point is at least 2r larger? If the

first point (call it x) is greater than w − 2r the probability is 0. Otherwise it is w−(x+2r)
w

.
Integrating over x gives the probability of this event. We then double that probability to
account for the possibility that the first point drawn is the larger one.

Now write d = |x∗ − r − θ| = |x∗ − (1/2 + r)|. This will be the distance between the
receiver’s action and θ (where recall we fixed θ = 1/2), if the receiver shifts the received
signal x∗ by r. Note that this may not be the optimal action of the receiver, but the optimal
action performs at least as well as E[d2].
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Now 1 minus the CDF of d is given by

H̃(z) = Pr[d > z] =


H(1/2 + r − z) + 1−H(1/2 + r + z) if 0 < z < 1

2
− r,

H(1/2 + r − z) if 1
2
− r < z < 1

2
+ r,

0 if z > 1
2

+ r.

Note that unlike the case of π0, the fact that r > 0 breaks symmetry in the calculation of
H̃. But the reasoning is the same: d > z precisely if either x∗ is greater than 1/2 + r + z or
x∗ is less than 1/2 + r − z.

Finally, as before, the total loss of the scheme πr is

E[d2] =

∫ ∞
0

Pr[d2 > z]dz∫ ∞
0

Pr[d >
√
z]dz∫ ∞

0

H̃(
√
z)dz

For r = 1/5, this integral evaluates to approximately 0.036, which is less than 1/20.

Intuition and Discussion. Why is πr better than π0? In this case, θS(~x) = (x1 + x3)/2,
so θS(~x) is highly correlated with x1 and x3 and much less correlated with x2. This fact
is specific to the uniform distribution. By selecting the point closest to θS(~x) + 1/5, we
are trading off probability of returning x2 with probability of returning x3. Because of the
improved correlation with x3, the location of x3 is more highly concentrated, given θS(~x),
than the location of x2. So by targeting an “expected” location of x3 relative to θS(~x) (in
this case, θS(~x) + 1/5), we can reduce the variance of the distance to the closest point.

C FTG Theorem for Laplace

We first show that the minimum of n variables drawn from a Laplace distribution is in the
domain of Gumbel extreme type. From Theorem 1.2.9 of Bovier [2005], we see that it is
enough to find a g(t) > 0 such that,

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= e−x

Recall that for the Laplace distribution with µ = 0 and β = 1, F (x) = 1 − 1
2
e−x for

x > 0. Hence by setting g(·) ≡ 1 we get,

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞

e−t−xg(t)

e−t
= e−x
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Moreover, to find the required an, bn for the extreme value theorem for Gumbel, it is
enough to get γn such that,

n(1− F (γn + xg(γn))) = e−x

Thus, by setting γ = ln n
2

we get,

n(1− F (γn + xg(γn))) = n · 1

2
e− ln(n/2) · e−x = e−x,

because F (x) = 1
2
e−x and g ≡ 1.

Finally, we set an = 1/g(γn) and bn = γn, to get an = 1 and bn = ln n
2
.

D Proof of Proposition 4

We start by proving that the that the signaling loss of the unbiased scheme that sends
the anecdote closest to the posterior mean θS(~x, y) is at most 1

2n2f(0)
+ o(1/n2). Later in

Appendix D.3 we bound the signaling loss of a biased scheme.
Let I = [−n− 1

2
+ε, n−

1
2

+ε] + θ. For the remainder of this section we fix θ = 0 for brevity,
but everything holds for any fixed θ. Let P be a partition of I into intervals of length n−b.
For any C ∈ P , we define N(C) = L ∪ R, where L (resp. R) is the neighboring interval of
length n−a to the left of C (resp. to the right of C).

We first consider the “high probability event” that the following desirable properties hold:

1. θS(~x, y) ∈ I and let C ∈ P be the interval with θS(~x, y),

2. C is not weak (see Definition 8), and

3. there are sufficiently many signals in N(C) = L ∪R.

In Section D.1, we bound the signaling loss contributed by this high probability event.
Further, in Section D.2 we bound the loss from the “rare event” that some desirable property
does not hold: we bound the loss from the event when θS /∈ I (in Lemma 4), when C is a
weak interval (in Lemma 5), or when there are very few signals in N(C) (in Lemma 6).

With this we are ready to bound the signaling loss. Recall that the signaling loss of the
unbiased scheme π(·) that sends anecdote closest to θS(~x, y) is E[X2

0 ] = E[(π(~x)−θS(~x, y))2].
Given θS ∈ C, let K0 be the event that there are sufficiently many signals in N(C). We see
that,
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E[X2
0 ] = E[X2

0 · 1{θS /∈ I}] +
∑
C∈WI

E[X2
0 · 1{θS ∈ C}] +

∑
C∈P\WI

E[X2
0 · 1{θS ∈ C}]

=
∑

C∈P\WI

E[X2
0 · 1{θS ∈ C,K0}] (5)

+E[X2
0 · 1{θS /∈ I}] +

∑
C∈WI

E[X2
0 · 1{θS ∈ C}] +

∑
C∈P\WI

E[X2
0 · 1{θS ∈ C,K0}]︸ ︷︷ ︸

rare events

(6)

≤ 1

2n2f(0)2
+ o(1/n2)

This is because by Lemma 3 the term in Eq. (5) is
∑

C∈P\WI
E[X2

0 · 1{θS ∈ C,K0}] ≤
1

2n2f(0)2
+ o(1/n2), and from Lemmas 4, 5, and 6 we see that all terms in Eq. (6) contribute

at most o(1/n2). Thus giving us the required bound on the signaling loss.

D.1 Contribution of the High Probability Event

In this section we explain what the desirable properties are, why they are useful, and bound
the signaling loss contributed by the event that these properties hold.

Property (1): θS(~x, y) ∈ I = [−n− 1
2

+ε, n−
1
2

+ε].

Property (2): Let C ∈ P be the interval with θS(~x, y). We need C to be not weak.
We start with the definition of a weak interval.

Definition 8. Let τ(·) be the pdf of the posterior mean θS(~x, y). We say that an interval

C ∈ P is weak if τ(θ) ≤ c2n
1+1/22e−n

1/22α
for all θ ∈ C. Let WI ⊂ P be the set of all such

intervals C.

By Claim 8 we will see that the probability that θS(~x, y) ∈ C for some weak interval C
is negligible O(n−4logn+1). Moreover, if C is not weak, that is, τ(θ) ≥ c′n1/22n−4 logn+1 then

we get that τ(θ
′
) = τ(θ)(1 +O(n−

1
22 )) for all θ, θ

′ ∈ C by Claim 7.

Property (3): Next we show that there are sufficiently many signals in L and R. We
start by proving the following claim that f(x) = f(0)(1 + O(1/

√
n)) for all x ∈ I =

[−n− 1
2

+ε, n−
1
2

+ε].

Claim 2. Given any well-behaved distribution with pdf f , for all x ∈ I, we have f(x) =
f(0)(1 +O(1/

√
n)).
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Proof. Without loss of generality we assume that x > 0, since f(−x) = f(x). By mean value
theorem we see that f(x) = f(0) + xf ′(x̃) for some x̃ ∈ [0, x]. By our assumption on g′ we
get |g(x)| ≤ cxm for some constants c > 0 and m ≥ 0. This implies |f ′(x)| ≤ cxmf(x) for
all x > 0. Since f is non-increasing in (0,∞) we see that f(x) ≤ f(x̃) ≤ f(0). Moreover,
f ′(x̃) ≤ 0, so we have f ′(x̃) ≥ −cxmf(x). By mean value theorem we have,

f(x) = f(0) + xf ′(x̃)

≥ f(0)− xcx̃mf(x̃) (Since f ′(x̃)/f(x̃) ≥ −cx̃m)

≥ f(0)(1− xcx̃m) (Since f(0) ≥ f(x̃))

≥ f(0)(1− cxm+1) (Since x̃ ≤ x)

Therefore for all x ∈ I we have f(x) ≥ f(0)(1−c(n(− 1
2

+ε)(m+1))). Note that m ≥ 0, hence
we get f(x) = f(0)(1−O(n−1/2+ε)).

Using the above claim that f(x) is approximately f(0) for x ∈ I, we bound the number
of signals in a subset A ⊂ I.

Claim 3. Given any interval A ⊂ I of length `, the expected number signals in A is
n`f(0)(1 − O(n−1)). Let Y (A) be the number of signals in A. For any 0 < ε < 1, we
have

Pr[Y (A) ≤ (1− ε)E[Y (A)]] ≤ exp

(
−ε

2f(0)n`

2

)
.

Proof. Let Yi = 1 if xi ∈ A and 0 otherwise. So we have,
∑n

i=1 Yi = Y (A). By Claim 2 we
have f(x) = f(0)(1 + O(1/

√
n)) for all x ∈ I. Therefore we have Pr[xi ∈ A] =

∫
A
f(x)dx =

f(0)(1 + O(1/
√
n))
∫
A
dx = f(0)(1 − O(1/

√
n))`. Note that, Yi are i.i.d. random variables,

and E[Y (A)] = f(0)(1−O(1/
√
n))n`. By using Chernoff bound we get

Pr[Y (A) ≤ (1− ε)E[Y (A)]] ≤ exp

(
−ε

2f(0)n`(1−O(n−1/2))

2

)
.

We partition the interval I into intervals J of length n−a/M for M = n1/22. Let J denote
the partition. Note that, the size of J is n−1/2+ε+aM .

Lemma 1. Let km = f(0)n1−a/M For each J ∈ J . Let Y (J) be the number signals in

interval J (of length n−a/M). Pr[|Y (J)− km| ≥ ε1km] ≤ exp
(
− ε21f(0)n1−a

3M

)
.

Moreover, the probability that there is a J ∈ J with |Y (J) − km| ≥ n−1/20km is at most

O(exp−n
1/22

)

Proof. By directly invoking Claim 3 on J of length n−a/M we get Pr[|Y (J)−km| ≥ ε1km] ≤
exp

(
− ε21f(0)n1−a

3M

)
. Note that, the size of J is n−1/2+ε+aM . Therefore by union bound, we

get Pr[∃J ∈ J : |Y (J) − km| ≥ ε1km] ≤ (n−1/2+ε+aM) · exp
(
− ε21f(0)n1−a

3M

)
which is at most

O(exp−n
1/20

), for ε1 = O(n−1/22) and M = n1/100.
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We will now only focus on the case where all J ∈ J has sufficiently many signals, which
immediately implies the following Corollary 3. In Lemma 6 we bound the loss of the rare
event that this is not the case.

Corollary 3. Let k0 = f(0)n1−a(1− 2/M), and ε = O(n−1/22). For all C ∈ P, let N(C) =
L ∪ R (of size n−a). Let Y (C) be the number signals in interval N(C). If all J ∈ J have
km(1± ε) signals, then Y (C) has k0(1± ε) signals.

That is, Pr[|Y (C)− k0|εk0] ≤ O(exp−n
1/20

).

Proof. Note that any N(C) ⊂ I of length n−a contains at least M − 2 many intervals
J ∈ J . By Lemma 1, we have that all J ∈ J has at least (1 − ε)f(0)n1−a many signals
with high probability. Therefore N(C) contains at least k0 many signals with probability

1−O(exp−n
1/20

). Note this is regardless of which C ∈ P we are considering.

We will now only consider the event where all the desirable properties hold. For each
C ∈ P \WI , let K0 denote the event that there are k0(1± ε1) signals in N(C).

Lemma 2. Fix any C ∈ P \ WI . The distribution of the random variable X0 · 1(K0)
conditioned on θS ∈ C is stochastically dominated by the exponential distribution with λ =
2nf(0). That is,

Pr[X(0) · 1(K0) > d|θS ∈ C] < exp[−λd].

Proof. For A ⊆ n let KA denote the event that xi ∈ N(C) iff i ∈ A. We also use xA to
denote {xi}i∈A. For all d > n−a + n−b we have Pr[X(0) · 1(K0) > d|θS ∈ C] = 0. For all
d < n−a/2 + n−b, let Bd be the interval of length 2d centered around θS.

We will use the following results/facts:

1. Pr[xA /∈ Bd|KA, θS ∈ C] = Pr[xA /∈ Bd|KA] · Pr[θS∈C|xA /∈Bd,KA]
Pr[θS∈C|KA]

(by Bayes rule)

2. Since f is near uniform in N(C) we have Pr[xA /∈ Bd|KA] ≈ (1− d
n−a

)|A| (by Claim 2)

3. Since redrawing xA ∈ N(C) doesn’t change θS much, we have Pr[θS ∈ C|xA /∈
Bd, KA] ≤ Pr[θS ∈ C ′|KA] where C ′ = C ± |A|n−1−a (by Lemma 11)

4. Pr[KA|θS ∈ C] · Pr[θS∈C′|KA]
Pr[θS∈C|KA]

= Pr[θS∈C′] Pr[KA|θS∈C′]
Pr[θS∈C]

(by Bayes rule)

5. Since C is not weak and hence τ is near uniform in C we have, Pr[θS∈C′]
Pr[θS∈C]

= (1+o(1/
√
n))

(by Claim 7)
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Thus we get,

Pr[X0 > d and K0|θS ∈ C] =
∑
A≈k0

Pr[X0 > d and KA|θS ∈ C]

=
∑
A≈k0

Pr[KA|θS ∈ C] Pr[xi /∈ Bd∀i ∈ A|KA, θS ∈ C]

≤ (1− d/n−a)k0
∑
A≈k0

Pr[θS ∈ C ′] Pr[KA|θS ∈ C ′]
Pr[θS ∈ C]

≤ (1− d/n−a))k0(1 + o(1/
√
n))

Recall that k0 = (1 − ε1)f(0)n1−a(1 − 2/M). Let ε1 = O(n−1/22) and M = n1/22. Since
we can bound 1− x ≤ e−x we get,

Pr[X(0) · 1(K0) > d|θS ∈ C] ≤
(
1 +O(n−1/2)

)
· exp{−2nf(0)(1−O(n−1/22))(1−O(n−1/4)) · d}

We finally bound the cost of the event with all the desirable properties.

Lemma 3. Fix any C ∈ P \WI . Then we have, E[X2
0 · 1(K0)|θS ∈ C] ≤ 1

2n2f(0)2
+ o(1/n2).

Proof. Let Z(λ) be the random variable with exponential distribution. We observe that
E[X2

0 · 1(K0)|θS ∈ C] ≤ E[Z(λ)2] for λ = 2nf(0)(1 − O(n−1/22))(1 − O(n−1/4)), because of
the stochastic dominance proved above in Lemma 2. Moreover, E[Z(λ)2] = 2

λ2
. Hence we

get E[X2
0 · 1(K0)|θS ∈ C] ≤ 1

2n2f(0)2
(1−O(n−1/22))(1−O(n−1/4)) ≤ 1

2n2f(0)2
+ o(1/n2).

In Section D.2 we bound the loss due to the rare events of θS /∈ I, C ∈ WI , and K0, that
is, the number of signals in N(C) is not in (1± ε1)n1−af(0)(M − 2)/M . We show that these
contribute up to o(1/n2) loss.

D.2 Contribution of Rare Events

In this section we bound the loss from the rare events from Eq. (6).

Lemma 4. E[X2
0 · 1{θS /∈ I}] ≤ O

(
exp(−n2εA

2
)
)

for some constant A > 0.

Proof. Recall that θS(~x) is the MMSE estimator and θS − θ∗ →d N (0, CI/n). Hence the
probability that θS /∈ I is at most exp(−n2εA) for some A > 0. Let P = exp(−n2εA). To
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bound E[X2
0 · 1{θS 6∈ I}] we see that,

E[X2
0 · 1{θS 6∈ I}] =

∫ ∞
0

Pr[X2
0 > y ∧ θS 6∈ I]dy

=

∫ 1/P 1/2

0

Pr[θS 6∈ I] Pr[X2
0 > y|θS 6∈ I]dy +

∫ ∞
1/P 1/2

Pr[X2
0 > y ∧ θS 6∈ I]dy

≤ P 1/2 + 2

∫ ∞
1/P 1/2

Pr[Xi > θS +
√
y ∧ θS > 0]dy (For any arbitrary choice of i)

≤ P 1/2 + 2

∫ ∞
1/P 1/2

Pr[Xi >
√
y]dy

≤ P 1/2 + 2

∫ ∞
1/P 1/2

(e−
√
y)dy (Since

∫ ∞
x

f(z)dz < e−x for all x > Q)

≤ P 1/2 + 4(1/P 1/4 + 1) exp
(
−1/P 1/4

)
= O

(
exp(−n

2εA

2
)

)
Recall that, P = exp(−n2εA. So we have P 1/2 = O

(
exp(−n2εA

2
)
)

. Since xe−x is O(e−x)

for x sufficiently large, the term 4(1/P 1/4 + 1) exp
(
−1/P 1/4

)
= O

(
exp

(
− exp(n

2εA
4

)
))

.

For a well-behaved distribution we have 1− F (x) ≤ c3e
−x for all x > Q.

Claim 4. Let TQ be the event that all |xi| > Q. Then E[X2
01(TQ ∧ θS ∈ I)] ≤ o(1/n2).

Proof. Since θS ∈ I = [−n−1/2+ε, n−1/2+ε], and all signals |xi| > Q are outside I, we have
that X0 = mini |xi − θS| ≤ |xi| + n−1/2+ε for all xi. Let t(x) = (|x| + n−1/2+ε)2. Hence we
have,

E[X2
01(TQ ∧ θS ∈ I)] ≤ E[(|x1|+ n−1/2+ε)21(TQ ∧ θS ∈ I)] (For an arbitrary choice of i = 1)

= E[t(x1)1(TQ)|θS ∈ I]

=

∫
x1:|x1|>Q

· · ·
∫
~x−1

t(x1)f(x1)
∏
i 6=1

f(xi)1(|xi| > Q) · 1(θS(~x) ∈ I)d~x

≤
∫
x1:|x1|>Q

· · ·
∫
~x−1

t(x1)f(x1)
∏
i 6=1

f(xi)1(|xi| > Q)d~x

≤
∫
x1:|x1|>Q

t(x1)f(x1)dx1 (2 exp(−Q))n−1 ( By tail bound Assumption of f)

≤ exp

(
−Q(n− 1)

2

)
2

∫ ∞
Q

(x+ n−1/2+ε)2f(x)dx

≤ exp

(
−Q(n− 1)

2

)
·Q ·O(1) ( By tail bound Assumption of f)
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Recall that WI ⊂ P is the set of all intervals C such that τ(θ) < c′n1/22n−4 logn+1 for all
θ ∈ C.

Lemma 5. Then
∑

C∈WI
E[X2

01{θS ∈ C}] ≤ O
(
Q2n−4 logn+1

)
+ o(1/n2).

Proof. Let TQ be the event that there is some |xi| ≤ Q. Since θS ∈ I and there is some

|xi| ≤ Q, we have that X0 ≤ Q+ n−
1
2

+ε. Thus,∑
C∈WI

E[X2
01{θS ∈ C} · 1{TQ}] ≤ (Q+ n−

1
2

+ε)2 Pr[θS ∈ WI ] ≤ (Q+ n−
1
2

+ε)2O
(
n−4 logn+1

)
where the last inequality follows from Claim 8 (proved in section D.4) that Pr[θS ∈ WI ] ≤
O
(
n−4 logn+1

)
.

Moreover, by Claim 4 proved above, we have
∑

C∈WI
E[X2

01{θS ∈ C}·1{TQ}] ≤ E[X2
01(TQ∧

θS ∈ I)] ≤ o(1/n2). Thus proving the lemma.

Lemma 6. Let k0 = f(0)n1−a, ε1 = O(n−1/22). Let K0 be the event such that Y (C) 6=
k0(1±ε1). Then,

∑
C∈P\WI

E[X2
0 ·1{K0 and θS ∈ C}] ≤ (Q+n−1/2)2O

(
exp

(
−n1/20f(0)

))
+

O(exp−Qn) ≤ o(1/n2).

Proof. Consider the case where N(C) doesn’t have k0(1 ± ε1) signals. Let A0 denote that
event. By Claim 4, when all |xi| > Q and θS ∈ I, we bound the expected X2

0 by O(exp−Qn).
If there is even a single |xi| ≤ Q (denoted by the event TQ), then we can bound X2

0 by
(Q + n−1/2+ε)2 because θS ∈ I = [−n−1/2+ε, n−1/2+ε]. By corollary 3, we get that Pr[A0 ∩
TQ ∩ θS ∈ C] ≤ Pr[A0] ≤ exp

(
−n−1/11f(0)n1−a

3M

)
.

E[X2
0 · 1{K0 and θS ∈ C}] ≤ E[X2

0 · 1{A0 and θS ∈ C} · 1{TQ}] + E[X2
0 · 1{A0 and θS ∈ C} · 1{TQ}]

≤ O(exp−Qn) + (Q+ n−1/2+ε)2 exp

(
−n

−1/11f(0)n1−a

3M

)
≤ o(1/n2)

D.3 Loss of Biased Schemes

In this section we that for all sufficiently large n and all δ, E[X2
δ ] ≥ 1

2n2f(δ)2
− o(1/n2). We

focus only on |δ| ≤ 2(log n)2 and δ such that f(δ) ≥ n−1/100 12.

12When f(δ) ≤ n−1/100 we see that E[X2
δ ] ≥ Ω(n

100

n2 ) >> E[X2
0 ].
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Recall P be a partition of I into intervals of length n−b. For any δ, we denote Cδ = C+ δ
for any C ∈ P and N(Cδ) = Lδ ∪ Rδ, where Lδ (resp. Rδ) is the neighboring interval of
length n−a to the left of Cδ (resp. to the right of Cδ).

Similar to the unbiased loss we consider the high probability event where all the following
desirable properties hold:

1. θS(~x, y) ∈ I and let C ∈ P be the interval with θS(~x, y),

2. C is not weak (see Definition 8), and

3. there are sufficiently few signals in N(Cδ) = Lδ ∪Rδ.

We will show that with high probability all the desirable properties hold.
With this we are ready to bound the signaling loss. Recall that the signaling loss of a

biased scheme π with δ(π) = δ is L(π, δ(π)) ≥ L(πδ, δ) = α2 E[X2
δ ]. Given θS ∈ C, let Kδ be

the event that there are sufficiently few signals in N(Cδ) and there are no signals in Cδ. We
see that,

E[X2
δ ] ≥

∑
C∈P\WI

E[X2
δ · 1{θS ∈ C,Kδ}]

≥
∑

C∈P\WI

Pr[{θS ∈ C,Kδ}] · E[X2
δ |θS ∈ C,Kδ]︸ ︷︷ ︸

conditional expectation

(7)

≥ 1

2n2f(δ)2
− o(1/n2)

This is because by Lemma 9 the conditional expectation term in Eq. (7) is E[X2
δ |θS ∈

C,K] ≥ 1
2n2f(δ)2

(1 − o(1)). We note that {~x : ∀Jδ ∈ Jδ with suffiencetly few signals} ⊂ Kδ

for all C ∈ P , and by Lemma 7 we see that Pr[Kδ] ≤ Pr[∃Jδ ∈ Jδ with too many signals] ≤
O(exp{f(δ)n1/20}). By Lemma 5 we bound the probability of C is weak. Thus we have,∑

C∈P\WI

Pr[{θS ∈ C,Kδ}] ≥ Pr[∀Jδ ∈ Jδ with sufficiently few signals, and θS /∈ WI ]

≥ 1−O(exp{f(δ)n1/20})−O(exp{f(δ)n1/55})O(n4 logn−1).

We start by showing a more general version of Claim 2.

Claim 5. Given any well-behaved distribution with pdf f , for all x ∈ I + δ, we have f(x) =
f(δ)(1 +O(1/n)).

Proof. By mean value theorem we see that f(x) = f(δ)+(x−δ)f ′(x̃) for some x̃ ∈ [δ, x]. By
our assumption on g′ we get |g(x)| ≤ cxm for some constant c > 0. This implies |f ′(x)| ≤
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c|x|mf(x) for all x. Since |δ| < 2(log n)2 and x ∈ I + δ, we have |x| ≤ 2(log n)2 + n−1/2+ε.
By mean value theorem we have,

|f(x)− f(δ)| = |(x− δ)f ′(x̃)|
≤ |x− δ|c|x̃|mf(x̃) (Since |f ′(x̃)| ≤ c|x̃|mf(x̃))

≤ c(n−1/2+ε)(2(log n)2 + n−1/2+ε)mf(x̃)

≤ c′(n−1/2+ε)n1/4f(x̃) ( Since (logn)2m = o(n1/4))

≤ f(δ) + c′n−1/4+εf(x̃)

Without loss of generality we assume that x, δ > 0, since f is symmetric. Thus we get
f(x̃i) is between f(x) and f(δ), because f is single-peaked.

Suppose f(x) ≥ f(x̃) ≥ f(δ), then f(x) ≤ f(δ) + c′n−1/4+εf(x̃) ≤ f(δ) + c′n−1/4+εf(x).
So we get f(x)(1− c′n−1/4+ε) ≤ f(δ). Thus, f(x) ≤ f(δ) 1

1−c′n−1/4+ε ≤ f(δ)(1 + c′′n−1/4+ε) for
some constant c′′ > 0.

Similarly if f(x) ≤ f(x̃) ≤ f(δ), then f(x) ≥ f(δ)−c′n−1/4+εf(x̃) ≥ f(δ)−c′n−1/4+εf(δ).
Thus we get, f(x) ≥ f(δ)(1−O(n−1/4+ε)).

Therefore for δ < 2(log n)2 and all x ∈ I + δ we have f(x) = f(δ)(1−O(n−
1
4

+ε)).

Claim 6. Given any interval A ⊂ I + δ of length `, the expected number signals in A is
n`f(δ)(1−O(n−1/4)). Let Y (A) be the number of signals in A. For any 0 < ε1 < 1, we have

Pr[|Y (A)− E[Y (A)]| ≥ ε1)E[Y (A)]] ≤ exp

(
−ε

2
1f(δ)n`

3

)
.

Proof. Let Yi = 1 if xi ∈ A and 0 otherwise. So we have,
∑n

i=1 Yi = Y (A). By Claim 5
we have f(x) = f(δ)(1 + O(n−1/4+ε)) for all x ∈ I + δ. Therefore we have Pr[xi ∈ A] =∫
A
f(x)dx = f(δ)(1+O(n−1/4+ε))

∫
A
dx = f(δ)(1+O(n−1/4+ε))`. Note that, Yi are i.i.d. ran-

dom variables, and E[Y (A)] = f(δ)(1 +O(n−1/4+ε))n`. By using Chernoff bound we get

Pr[Y (A) ≥ (1 + ε)E[Y (A)]] ≤ exp

(
−ε

2
1f(δ)n`(1 +O(n−1/4+ε))

3

)
.

We again partition I + δ into intervals Jδ of size n−a/M . Exactly following Lemma 1 we
see that all Jδ ⊂ I + δ have (1± ε)f(δ)n1−a(1 +O(n−1/4+ε) many signals in Lδ and Rδ.

Lemma 7. Let km = f(δ)n1−a/M . The probability that there is a Jδ ∈ Jδ with more than
(1 + ε)km signals (or less than (1− ε)km is O(exp{ε2f(δ)n1−a/3M}).

Corollary 4. Let kδ = f(δ)n1−a, let k∗ = (1 + ε1)kδ, and k′ = (1 − ε1)kδ(1 − 2/M). Let
Y (Nδ) be the number signals in interval N(Cδ) (of length n−a). Pr[(Y (Nδ) /∈ [k′, k∗]] ≤
exp

(
− ε21f(δ)n1−a

3M

)
.
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Let Kδ denote the event that there are at most (1+ε1)kδ and at least (1−ε1)kδ(1−2/M)
many signals in N(Cδ), and there are no signals in Cδ.

Lemma 8. The distribution of the random variable Xδ conditioned on Kδ, θS ∈ C stochasti-
cally dominates (up to a factor of (1−o(1))) the exponential distribution with λ = 2nf(δ)(1+

O(n−1/10)). That is, for d < n−9/10, Pr[X(δ) > d |Kδ, θS ∈ C] ≥ exp[−λd]Pr[θS∈C\E and Kδ]
Pr[θS∈C]

.

Proof. Let k∗ = (1 + ε1)kδ, and k′ = (1− ε1)kδ(1− 2/M). For all k′ ≤ k ≤ k∗, define Kδ(k)
to be event where #xi ∈ N(Cδ) = k, and there are no signals in Cδ .

For all d < n−a + n−b, let Ed denote the event that ∀x ∈ L, x /∈ Bd, where B(d) is the
interval of length 2d centered around θS + δ.

Pr[X(δ) · 1(Kδ) > d|θS ∈ C]

= Pr[∀xi /∈ Bd,∃x1, x2, . . . , xk′ ∈ L and Kδ|θS ∈ C]

=
k∗∑
k=k′

Pr[∀xi /∈ Bd,∃x1, x2, . . . , xk ∈ L and Kδ(k)|θS ∈ C]

=
k∗∑
k=k′

Pr[∃x1, x2, . . . , xk ∈ L \Bd and Kδ(k)|θS ∈ C]

=
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C] · Pr[∃x1, x2, . . . , xk ∈ L \Bd |Kδ(k), θS ∈ C]

=
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

f(~x[k] |Kδ(k), θS ∈ C)

∫
x̃∈A(~x[k])\(L∪C)

f(x̃ |~x[k], θS ∈ C,Kδ(k))d~x

=
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

f(~x[k] |Kδ(k), θS ∈ C)d~x[k]

=
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

(
f(~x[k]|Kδ(k)) ·

Pr[θS ∈ C |~x[k], Kδ(k)]

Pr[θS ∈ C |Kδ(k)]

)
d~x[k] ( Bayes rule)

We will use Lemma 12 and the fact that τ(θ) is approximately constant in C /∈ WI .

≥
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C] · Pr[θS ∈ C \ E |Kδ(k)]

Pr[θS ∈ C|Kδ(k)]

∫
~x[k]∈L\Bd

f(~x[k]|Kδ(k))d~x[k] (By Lemma 12)

=
k∗∑
k=k′

Pr[θS ∈ C \ E and Kδ(k)]

Pr[θS ∈ C]
Pr[~x[k] ∈ L \Bd|Kδ(k)]

≥
k∗∑
k=k′

Pr[θS ∈ C \ E and Kδ(k)]

Pr[θS ∈ C]
·
(

1− 2d

n−a
(1 +O(1/n1/4))

)k
(By Claim 5)

≥
(

1− 2d

n−a
(1 +O(1/n1/4))

)k∗
Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]

40



We bound
(
1− 2d

n−a

)f(δ)(1+ε1)n1−a
by observing that (1−x) ≥ e−x−x

2
for x < 1/2. We will

choose of ε1 = O(n−1/20) and consider d ≤ n−a−1/20 = n−17/20, this gives us ε3 = O(n−1/20).

Pr[X(δ) · 1(Kδ) > d|θS ∈ C] ≥
(

1− 2d

n−a
(1 +O(1/n1/4))

)k∗
Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]

≥ Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]
exp(−2dn(1 + ε2)f(δ)) exp(−(2d)2n1+af(δ)(1 + ε2))

≥ Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]
exp(−2dn(1 + ε3)f(δ)) (For 2d < n−aε3)

Finally, for each C ∈ P \WI , we bound the loss E[X2
δ · 1{Kδ, θS ∈ C}].

Lemma 9. Let Kδ be the event such that (1 − ε1)(1 − 2/M)kδ ≤ Y (Lδ) ≤ (1 + ε1)kδ, and
no signals in Cδ. Then for all C ∈ P \WI ,

1. for f(δ) > n−1/100, we have E[X2
δ ·1{Kδ, θS ∈ C}] ≥ 1

2n2f(δ)2
(1−o(1))Pr[θS ∈ C \ E and Kδ],

2. for f(δ) ≤ n−1/100, we have E[X2
δ ] ≥ c5

n100

n2 .

Proof. Let Z(λ) be the random variable with exponential distribution. We observe that

E[X2
δ · 1(Kδ)|θS ∈ C] ≥ E[Z(λ)2 · 1{d < (n−9/10)2}] · Pr[θS∈C\E and Kδ]

Pr[θS∈C]
for λ = 2nf(δ)(1 + ε3),

because of the stochastic dominance proved above in Lemma 8. Moreover, E[Z(λ)2 · 1{d <
(n−17/20)2}] = 2

λ2
(1 − O(λn−17/20 exp−λn

−17/20
)). Hence we get E[X2

δ · 1(Kδ)|θS ∈ C] ≥
1

2n2f(δ)2
(1− o(1))Pr[θS∈C\E and Kδ]

Pr[θS∈C]
, for f(δ) ≥ c4n

−1/100 for a constant c4 > 0.

We finish by noting that, for sufficiently large n, when f(δ) = O( 1
n1/100 ), we get E[X2

δ ] ≥
c5(n

1/100

n2 ) >> 1
2n2f(0)2

≥ E[X2
0 ] for a constant c5 > 0.

Proof of Proposition 4 (b). By lemma 9, for a sufficiently large n and any δ < 2(log n)2 and
f(δ) > n−1/100, we have E[X2

δ ] ≥
∑

C∈P\WI
Pr[θS ∈ C]E[X2

δ |θS ∈ C] ≥
∑

C∈P\WI

1
2n2f(δ)2

(1−
o(1))Pr[θS ∈ C \ E and Kδ] .

Given E ⊂ C as the union of first and last kn−1−a+ε length interval, we define 2E ⊂ C
to be the union of the first and last 2kn−1−a+ε intervals. Since Kδ is the event that there are
(1±ε)kδ many signals in N(Cδ) and there are no signals in Cδ, that Pr[θS ∈ C \E] ≥ Pr[θS ∈
C \ 2E|Y (N(Cδ) ∪ Cδ) ∈ (1 ± ε)kδ], this is because if θS ∈ C \ 2E and ~x[k] ∈ N(Cδ) ∪ Cδ
then rearranging the signals ~x[k] by moving the signals in Cδ into N(Cδ) changes θS by at
most kn−1−af(δ). Moreover, we have Pr[Kδ] = Pr[Y (N(Cδ) ∪ Cδ) ∈ (1± ε)kδ] · Pr[Y (Cδ) =
0 |Y (N(Cδ) ∪ Cδ) ∈ (1 ± ε)kδ]. The probability that there are no signals in Cδ (of length
n−12/11) is at least (1−O(n−1/11)). Thus we get,
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E[X2
δ ] ≥

∑
C∈P\WI

1

2n2f(δ)2
(1−o(1))Pr[θS ∈ C \ 2E and Y (N(Cδ) ∪ Cδ) ∈ (1± ε)kδ](1−O(n−1/11))

Let Gδ denote the event that all Jδ ∈ Jδ has (1± ε)kδ/M signals. Thus we get,

E[X2
δ ] ≥

∑
C∈P\WI

1

2n2f(δ)2
(1− o(1))Pr[θS ∈ C \ 2E and Gδ](1−O(n−1/11))

= (1−O(n−1/11)) Pr[Gδ and ∃C ∈ P \WI s.t. θS ∈ C \ 2E]

≥ (1−O(n−1/11))
(

1− Pr[Gδ]− Pr[∃C ∈ P \WI s.t. θS ∈ C \ 2E]
)

≥ (1−O(n−1/11))
(
−Pr[Gδ] + Pr[∃C ∈ P \WI s.t. θS ∈ C \ 2E]

)
Recall that, Pr[θS ∈ I] ≥ (1 − exp(−n2εA), and by Claim 8 (proved in section D.4) we

have Pr[θS ∈ WI ] ≤ O(n−4logn+1). By Lemma 7 we have Pr[Gδ] ≤ O(exp{ε2f(δ)n1−a/3M}).
Hence we get E[X2

δ ] ≥ 1
2n2f(δ)2

(1− o(1)).

D.4 Helpful lemmas to bound the correlation between θS and the
closest signal

In this section we will introduce some helpful lemmas for proving Proposition 4.
In Lemma 10, we characterize the effect of a single signal x on the posterior mean

θS(~x). This lemma directly implies Corollary 5, where we show that if for any signals ~x
rearranging at most k signals in L (and R) to get ~y guarantees that the new posterior mean
is θS(~y) ∈ θS(~x)±O(kn−1−a).

Lemma 10. For any signals ~x observed by the sender we have,∣∣∣∂θS(~x)

∂xi

∣∣∣ ≤ c1V arθ∼DS(~x)[θ] + 2θS(~x)2,

where V arθ∼DS(~x)[θ] is the variance of the sender’s posterior distribution DS(~x).

Proof. Let hS(θ|~x) denote the pdf of the sender’s posterior distribution, h(θ) be the (con-
stant) pdf of the diffuse prior. Note that the pdf of a signal x given that the state of the
world is θ (denoted by f̂(x|θ)) equals f(x − θ), where f is the pdf of F . Recall that when
the sender observes ~x they update their posterior in a Bayesian way. Hence we have,

hS(θ|~x) =

∏
i f̂(xi|θ)h(θ)∫

θ̂

∏
i f̂(xi|θ̂)h(θ̂)dθ̂

=

∏
i f(xi − θ)∫

θ̂

∏
i f(xi − θ̂)dθ̂
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and the sender’s posterior mean is

θS(~x) =

∫
θ
θ
∏

i f(xi − θ)dθ∫
θ

∏
i f(xi − θ)dθ

(8)

We want to understand ∂θS(~x)
∂xi

which is the effect of a single signal xi on the posterior
mean.

We can deduce

∂θS(~x)

∂xi
=

∫
θf ′(xi − θ)

∏
j 6=i f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏

j f(xj − θ)dθ
∫
f ′(xi − θ)

∏
j 6=i f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

=

∫
θg(xi − θ)

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏

j f(xj − θ)dθ
∫
g(xi − θ)

∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2 (9)

where g(y) = f ′(y)
f(y)

.

Using the mean value theorem we can write g(xi−θ) = g(xi)−g′(x̃i)θ for x̃i ∈ [xi−θ, xi].
We then obtain:

∂θS(~x)

∂xi
=

∫
θ (g(xi)− g′(x̃i)θ)

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏

j f(xj − θ)dθ
∫

(g(xi)− g′(x̃i)θ)
∏

j f(xj − θ)dθ(∫ ∏
j f(xj − θ)dθ

)2

= −
∫
θg′(x̃i)θ

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

+

∫
θ
∏

j f(xj − θ)dθ
∫
g′(x̃i)θ

∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2 (10)

Next, we note that for a well behaved distribution, |g′(x̃| ≤ c1. Hence we can bound,
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We can then simplify:

∣∣∣∂θS(~x)

∂xi

∣∣∣ ≤ c1

∫θ θ2
∏

j f(xj − θ)dθ∫
θ

∏
j f(xj − θ)dθ

+

(∫
θ
θ
∏

j f(xj − θ)dθ∫
θ

∏
j f(xj − θ)dθ

)2
 (11)

= c1

(
E

θ∼DS(~x)
[θ2|~x] + E

θ∼DS(~x)
[θ|~x]2

)
= c1

(
V arθ∼DS(~x)[θ] + 2 E

θ∼DS(~x)
[θ|~x]2

)
(12)

Next we bound the shift in θS when rearranging k signals in L (or R) using Lemma 10.
We note that V arθ∼DS(~x)[θ] = O(1/n) and θS ∈ I.

Corollary 5. Assume that the posterior mean θS(~x) lies within the interval C ⊂ I. Consider
a subset of k signals in a subset A of length `. Any rearrangement of these signals within A
changes the posterior mean by O(k`n−1+2ε).

Proof. We prove this by using the mean value theorem on the function θS : Rn → R. Given
~x, consider a subset of signals ~x[k] ∈ A. Let ~y be any vector such that yi ∈ A for all i ∈ [k]
and yi = xi for the rest. By mean value theorem we get for some ~z such that:

θS(~y) = θS(~x) +∇θS(~z) · (~y − ~x)

Note that |yi − xi| ≤ ` for all i ∈ [k] and yi − xi = 0 otherwise. That is, at most k terms
with |yi − xi| 6= 0. Hence we get,

|θS(~y)− θS(~x)| = |∇θS(~z) · (~y − ~x)|

≤
k∑
i=1

c1

(
V arθ∼DS(~x)[θ] + 2θS(~x)2

)
|yi − xi| (By Lemma 10)

= c1O(n−1+2ε)
k∑
i=1

`

Since xi, yi ∈ A we bound |xi − yi| ≤ `. Further, by bounding V arθ∼DS(~x)[θ] by O(1/n),
and θS(~x) by n−1/2+ε, we get θS(~y) = θS(~x)±k`O(n−1+2ε) when rearranging at most k signals
in each A.

Next we show that the density of the posterior mean is nice in the interval C.

Claim 7. Assume that the density function f has exponential (or thinner) tails. Let τ(·)
be the density function of the posterior mean. Then for all θ ∈ C we have τ(θ + ε′) =

τ(θ)
(
1 +O(n−1/22)

)
+O(e−n

1/22α
) for all 0 < ε′ ≤ 1/nb.
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Proof. Fix a posterior mean θ ∈ [−n− 1
2

+ε, n−
1
2

+ε] and consider all the signal draws X(θ) ={
~x|θ(~x) = θ

}
that generate this posterior mean. We know that τ(θ) =

∫
~x∈X(θ)

∏
xi∈~x f(xi)dx.

Now consider θ + ε′. We can couple all the signal realizations in X(θ + ε′) and X(θ) by
considering uniform shifts of the corresponding ~x by ε′. This follows from the assumption of
a diffuse prior, and we get θS(~x+ε′) = θS(~x)+ε′. That is, τ(θ+ε′) =

∫
~x∈X(θ)

∏
xi∈~x f(xi+ε

′)dx.

Next, consider the probability of observing x versus the coupled signal realizations x+ ε′.

∏
xi∈~x

f(xi + ε′) =
∏
xi∈~x

[f(xi) + f ′(x̃i)ε
′] (13)

Recall that, by our assumption on g′ we have |f ′(x)| ≤ c|x|mf(x).

• Note that, for all |xi| < 4(log n)2, we have

|f(xi + ε′)− f(xi)| = |ε′f ′(x̃i)|
≤ |ε′c(|x̃|m)|f(x̃)

≤ |ε′c(|4 log n|2m)|f(x̃)

≤ |c′(n−b+1/22)|f(x̃) (|ε′| ≤ n−12/11 and (log n)2m = o(n1/22)

Note that, wlog we can assume that sign(xi + ε) = sign(xi) because f is symmetric.
Thus we get f(x̃i) is between f(xi) and f(xi+ε

′), because f is single-peaked. If f(xi) ≤
f(x̃i) ≤ f(xi+ε

′) we get 0 ≤ f(xi+ε
′)−f(xi) ≤ c′(n−b+1/22)|f(x̃i) ≤ c′(n−b+ε)|f(xi+ε

′).

Thus, f(xi) ≤ f(xi + ε) ≤ f(xi)
(

1
1−c′(n−b+ε

)
≤ f(xi)(1 + c′′n−b+ε).

Similarly if f(xi) ≥ f(x̃i) ≥ f(xi+ε), then we get f(xi) ≥ f(xi+ε) ≥ f(xi)
(

1
1+c′(n−b+ε

)
≥

f(xi)(1− c′n−b+ε).

• Further, by our assumption that f has exponential tails we have Pr~x[∃xi s.t. |xi| >
4(log n)2] ≤ ne−4(logn)2 = (n−4 logn+1).

If xi ∈ [−4(log n)2, 4(log n)2] for all i, then we bound
∏

xi∈~x f(xi + ε′) =
∏

i f(xi)(1 +

O(n−b+
1
22 )) = (

∏
i f(xi)) (1 + O(n−b+

1
22 ))n = (

∏
i f(xi)) (1 + O(n1−b+ 1

22 )) = (
∏

i f(xi)) (1 +

O(n−
1
22 )) for b = 12/11 .

Hence we get

τ(θ + ε′) =

∫ n1/22α

−n1/22α

(∏
f(xi)

)
(1 +O(n−

1
22 ))1{~x ∈ X(θ̂)}d~x +O(n−4 logn+1)

Therefore, τ(θ+ ε′) = τ(θ)(1 +O(n−
1
22 )) +O(n−4 logn+1) for all 0 < ε′ < 1/nb and θ ∈ C.
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Observe that, if τ(θ) ≥ c′n1/22n−4 logn+1 then we can get τ(θ)(1 +O(n−
1
22 )).

Recall that WI ⊂ P is the set of all intervals C such that τ(θ) < c′n1/22n−4 logn+1 for all
θ ∈ C and some constant c′ > 0. We show that the total probability mass of these intervals
is O(n−4 logn+1).

Claim 8. Pr[θS ∈ WI ] ≤ O(n−4 logn+1).

Proof. This is simply because there are at most 2nb−
1
2

+ε many intervals in C (since each
interval is of size n−b). Therefore,

Pr[θS ∈ WI ] ≤
∑
C∈WI

∫
C

τ(θ)dθ ≤ 2nb−
1
2

+ε
(
n−b · c′n1+1/22−4 logn

)
≤ O(n−4 logn+6/11+ε).

Using Corollary 5 we bound the correlation between the events θS ∈ C and any realization
of k anecdotes in Lδ (and Rδ).

Lemma 11. Fix any C ∈ P \ WI . For A ⊆ [n], |A| = k, let KA denote the event that
xi ∈ Lδ (and Rδ) iff i ∈ A. Let ~s ∈ Lkδ be a set of k (at most c′n1−a) signals in Lδ. Then
Pr[θS ∈ C |KA, ~xA = ~s] ≤ Pr[θS ∈ C ± kn−1−a|KA].

Proof. Let A(~z) = {z̃ ∈ Rn−k : θ(~z ∪ z̃) ∈ C} for any subset of k signals ~z ∈ Lkδ . By
Corollary 5 we know that by changing ~s to any ~z ( in Lδ) for each s̃ ∈ A(~s) θS(s̃, ~z) =
θS(s̃, ~s) +O(kn−1−a+ε). If θS(s̃, ~s) ∈ C then θS(s̃, ~y) ∈ C ± kn−1−a+ε.

This implies, Pr[θS ∈ C|KA, ~xA = ~s] ≤ Pr[θS ∈ C ± kn−1−a+ε|KA, ~xA = ~y] for all ~z ∈ Lkδ .
Hence we get,

Pr[θS ∈ C |KA, ~xA = ~s] ≤ Pr[θS ∈ C ± kn−1−a|KA]

Similarly, we have a lower bound on Pr[θS ∈ C|KA, xA = ~s].

Lemma 12. Fix any C ∈ P \ WI . For A ⊆ [n], |A| = k, let KA denote the event that
xi ∈ Lδ (and Rδ) iff i ∈ A, and no signals in Cδ. Let ~s ∈ Lkδ be a set of k (at most c′n1−a)
signals in Lδ. Then Pr[θS ∈ C|KA, xA = ~s] ≥ Pr[θS ∈ C \E|KA], where E ⊂ C as the union
of the first and last kn−1−a+ε length sub-interval of C.

Proof. Let A(~z) = {z̃ ∈ Rn−k : θ(~z ∪ z̃) ∈ C} for any subset of k signals ~z ∈ Lkδ . By
Corollary 5 we know that by changing ~s to any ~z ( in Lδ) for each s̃ ∈ A(~s) θS(s̃, ~z) =
θS(s̃, ~s) +O(kn−1−a+ε). If θS(s̃, ~s) ∈ C then θS(s̃, ~y) ∈ C ± kn−1−a+ε. Thus, θS(s̃, ~z) ∈ C \E
then θS(s̃, ~s) ∈ C.

This implies, Pr[θS ∈ C|KA, ~xA = ~s] ≥ Pr[θS ∈ C \ E|KA, ~xA = ~z] for all ~z ∈ Lkδ . Hence
we get,

Pr[θS ∈ C |KA, ~xA = ~s] ≥ Pr[θS ∈ C \ E|KA]
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