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1 Motivation
Recall that a set of distributions (p1, · · · , pn) with pi ∈ ∆(Ai) is a mixed Nash equilibrium if for
all i ∈ [n] and p′i ∈ ∆(Ai),

E [ui(a1, · · · , an)] ≥ E
a′i∼p′i

[ui(a1, · · · , ai−1, a
′
i, ai+1, · · · , an)]

where a1 ∼ p1, · · · , an ∼ pn. In this formulation, crucially, each agent samples actions from their
own distribution pi independently; in other words, the set of actions is drawn from the product
distribution p1 × · · · × pn. This requires that there is no coordination, shared understanding or any
other correlation between the agents. However, real-life scenarios often include various forms of
correlation; examples include agents reading the same newspaper, watching the same stock market
history, or sharing cultural norms.

We illustrate the importance of studying such correlations via the traffic light game. Consider
the payoff matrix for two drivers defined as:

go stop
go −100,−100 5, 0

stop 0, 5 0, 0

That is, if one driver goes while the other stops, only the former receives reward 5, while if both
stop, both receive no reward; but if both choose to go, they will collide and receive a large negative
reward. For this game, it is easy to see that there are two pure Nash equilibria (NE): (go, stop) and
(stop, go). Perhaps less obviously, there also exists a mixed Nash equilibrium (MNE), which can be
derived as follows. Suppose the row and column players choose ‘go’ with probability p, q ∈ [0, 1],
respectively. The utility function of the row and column players are

u1(p, q) = −100pq + 5p(1− q) = 5p− 105pq,

u2(p, q) = −100pq + 5q(1− p) = 5q − 105pq,

respectively. Then setting partial derivatives ∂u1

∂p
= 5− 105q = 0 and ∂u2

∂q
= 5− 105p = 0 yields

the solution p = q = 5
105

.
However, all three equilibria are flawed or unsatisfactory. Both pure NE are inherently unfair

since one player always proceeds while the other is stopped. On the other hand, the MNE has a
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large probability to stop both and a nonzero chance to select (go, go) and cause an accident. The
ideal solution seems to be a 50-50 mixture of the two pure NE. Of course, this solution is no longer
Nash as it is not a product distribution, which leads us to the concept of correlated equilibria.

2 Correlated and Coarse Correlated Equilibria

2.1 Correlated Equilibria
We define a correlated equilibrium (CE) as any joint distribution π where if a mediator draws
an action recommendation (a1, · · · , an) ∼ π, and any player i observes their recommendation ai,
their best move will still not deviate from ai. Formally:

Definition 2.1 (Correlated Equilibrium). Denote the action space for player i by Ai and their utility
function by ui : A → R, where A = A1 × · · · × An. A joint distribution π ∈ ∆(A) is a CE if for
all i ∈ [n] and a′i ∈ Ai,

E
a∼π

[ui(a) | ai] ≥ E
a∼π

[ui(a
′
i, a−i) | ai].

Equivalently, for all ai ∈ Ai,

E
a−i∼π(·|ai)

[ui(ai, a−i)] ≥ E
a−i∼π(·|ai)

[ui(a
′
i, a−i)].

In the traffic light game, 1
2
(go, stop) +1

2
(stop, go) is a CE. To see this, suppose the row player

is recommended a1 = ‘go.’ Then the column player must have been recommended ‘stop’ and the
expected utility is 5. In comparison, the expected utility given a2 = ‘stop’ with a′1 = ‘go’ or ‘stop’
is 5, 0, respectively. Now suppose the row player is recommended a1 = ‘stop.’ Then the column
player must have been recommended ‘go’ and the expected utility is 0. On the other hand, the
expected utility given a2 = ‘go’ with a′1 = ‘go’ or ‘stop’ is −100, 0, respectively. In both cases,
the recommended action is still the best action even after taking the recommendation to the other
player into account. The same holds for the column player due to symmetry.

Moreover, it can also be seen that 1
3
(go, stop) +1

3
(stop, go) +1

3
(stop, stop) is a CE. In this

case, if the row player is recommended a1 = ‘go,’ the expected utility is still 5 (the maximum). If
a1 = ‘stop,’ however, the conditional distribution of a2 is 1

2
‘go’+1

2
‘stop’ under which the expected

utility is 0 for a1 = ‘stop’ and −100+5
2

= −47.5 for the alternative a1 = ‘go.’

2.2 Coarse Correlated Equilibria
We also define a closely related but distinct concept. A coarse correlated equilibrium (CCE) is
a joint distribution π where if a mediator draws an action recommendation (a1, · · · , an) ∼ π and
plays on the behalf of each player, no player will opt out. Formally:
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Definition 2.2 (Coarse Correlated Equilibrium). Denote the action space for player i by Ai and
their utility function by ui : A → R, where A = A1 × · · · × An. A joint distribution π ∈ ∆(A) is
a CCE if for all i ∈ [n] and a′i ∈ Ai,

E
a∼π

[ui(a)] ≥ E
a∼π

[ui(a
′
i, a−i)].

Note that this is a weaker notion than CE since the player does not see their recommended
action; any CE is a CCE since for a CE, the player will not opt out even with more information
(i.e., after conditioning on any ai).

We illustrate the difference between CE and CCE with the classic rock-paper-scissors (RPS)
game. This is a zero-sum game with the following payoff matrix for the row player:

R P S
R 0 −1 +1
P +1 0 −1
S −1 +1 0

We claim that the distribution π defined as the uniform mixture of the 6 off-diagonal (non-drawing)
cells, is a CCE but not a CE. First note that if a ∼ π, each player will be recommended a uniform
distribution of actions, so that Ea∼π[u1(a)] = 0 and

E
a∼π

[u1(a
′
1, a−1)] =

1

3
u1(a

′
1, R) +

1

3
u1(a

′
1, P ) +

1

3
u1(a

′
1, S) = 0

for any a′1; the same holds for the column player due to symmetry. Hence π is a CCE.
Now, we show that π is not a CE. Suppose the row player is recommended R. The column

player must have been recommended either P or S, so that

E
a∼π

[u1(a) | a1 = R] =
1

2
u1(R,P ) +

1

2
u1(R, S) = 0.

However, the row player can safely swap to playing S and have positive expected utility:

E
a2∼π

[u1(S, a2) | a1 = R] =
1

2
u1(S, P ) +

1

2
u1(S, S) =

1

2
,

hence π is not a CE.
In fact, it is straightforward to verify the following string of inclusions:

PNE ⊊ MNE ⊊ CE ⊊ CCE

3 Computing Correlated Equilibria with No-regret Dynamics
While an MNE always exists for finite games (or more generally, if the set of actions is compact and
payoffs are continuous), it can generally be hard to compute. Daskalakis et al. [2009] addressed
the complexity of computing Nash equilibria and prove that it is PPAD-complete — a notion
of hardness weaker than NP-completeness that nevertheless implies the problem is very likely
intractable. In contrast, we will see that CE and CCE are easily computed by using any no-regret
algorithm. Specifically, we consider no-regret dynamics, formalized as follows.
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Definition 3.1 (No-regret Dynamics). For time t = 1, · · · , T ,

• Each agent i simultaneously and independently chooses a strategy pti ∈ ∆(Ai) using a no-
regret algorithm.

• For all i, the utility vector ut
i : Ai → R is defined such that ut

i(a) is the expected utility agent
i recieves from playing a when all other agents play according to pt−i:

ut
i(a) = E

a−i∼πt
−i

[ui(a, a−i)], πt
−i =

∏
j ̸=i

ptj.

• Each player observes ut
i (full information) or ut

i(a
t) (partial information) after each round.

Theorem 3.2. Suppose the regret of each player over T rounds is at most ϵT in expectation. Let
πt =

∏
i∈[n] p

t
i and π = 1

T

∑T
t=1 π

t. Then π is an ϵ-approximate CCE, i.e., for all i ∈ [n] and
a′i ∈ Ai,

E
a∼π

[ui(a)] ≥ E
a∼π

[ui(a
′
i, a−i)]− ϵ.

Note that since we are averaging the product distributions πt over time, π is no longer a product
distribution, so this approach only yields a CCE (not an MNE).

Proof. Since ut
i(a) = Ea−i∼πt

−i
[ui(a, a−i)], the left-hand side is equal to

E
a∼π

[ui(a)] =
1

T

T∑
t=1

E
at∼πt

[ui(a
t)] =

T∑
t=1

E
ati∼pt

[ut
i(a

t)].

Similarly, the right-hand side can be rewritten as

E
a∼π

[ui(a
′
i, a−i)] =

1

T

T∑
t=1

E
at∼πt

[ui(a
′
i, a−i)] =

1

T

T∑
t=1

E
at−i∼πt

−i

[ui(a
′
i, a−i)] =

1

T

T∑
t=1

ut
i(a

′
i).

Now due to the assumption on the regret, it must hold that

1

T
E

{ati∼pti}t∈[T ]

[
max
a′i∈Ai

T∑
t=1

ut
i(a

′
i)−

T∑
t=1

ut
i(a

t
i)

]
≤ ϵT

T
= ϵ

from which the assertion follows.

Next, we aim to prove a similar result for CE. To this end, we first give an alternative definition
of CE using swap functions, which formalizes the notion of changing to another action: π ∈ ∆(A)
is a CE if for all i ∈ [n] and all swap functions δ : Ai → Ai,

E
a∼π

[ui(a)] ≥ E
a∼π

[ui(δ(ai), a−i)].

Moreover, we define:
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Definition 3.3 (Swap Regret). The swap regret of actions a1, · · · , aT with respect to a sequence of
utility functions u1, · · · , uT is

max
δ:A→A

T∑
t=1

ut(δ(at))−
T∑
t=1

ut(at).

Then by using a swap no-regret algorithm, we obtain an analogous theorem which allows us to
find CE instead of CCE.

Theorem 3.4. Suppose the swap regret of each player over T rounds is at most ϵT in expectation,
in the dynamics defined in Definition 3.1. Let πt =

∏
i∈[n] p

t
i and π = 1

T

∑T
t=1 π

t. Then π is an
ϵ-approximate CE, i.e., for all i ∈ [n] and δ : Ai → Ai,

E
a∼π

[ui(a)] ≥ E
a∼π

[ui(δ(ai), a−i)]− ϵ.

This shows that to compute (or learn) a Correlated equilibrium, it is sufficient to design algo-
rithms that have no swap-regret. In the next two lectures, we study swap-regret and algorithms for
guaranteeing no-swap regret.
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