
CS272 - Theoretical Foundations of Learning, Decisions, and Games

Lecture 11: Bandits and Intro to Zero-sum Games
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Lecturer: Nika Haghtalab Readings: Section 18.3, 20 Lectures on AGT
Scribe: Hengyu Fu, Hangxin Gan

1 EXP3 algorithm

1.1 Recap: Standard EXP3 (adversarial bandits)
The EXP3 (Exponential-weight for Exploration and Exploitation) algorithm addresses adversarial
multi-armed bandits. Suppose there are n actions and at each round t = 1, . . . , T the learner picks
an action it and incurs a loss ct(it) ∈ [0, 1] assigned by an adversary. The algorithm is shown in
Algorithm 1.

Algorithm 1 Old School EXP3 Algorithm
1: Input: Number of experts n, number of rounds T , exploration parameter γ
2: Initialize: w1

i = 1 for all i ∈ [n]
3: Set learning rate η = γ/n
4: for t = 1, . . . , T do
5: Form normalized weights:

pt(i) =
wt

i∑n
j=1w

t
j

, i = 1, . . . , n

6: Form sampling probabilities:

qt(i) = (1− γ) pt(i) +
γ

n
, i = 1, . . . , n

7: Sample it ∼ qt and observe cost ct(it) ∈ [0, 1]
8: Form unbiased loss estimate:

ĉt(i) =


ct(it)

qt(it)
, i = it,

0, otherwise

9: Update weights:

wt+1
i = wt

i exp
(
−η ĉt(i)

)
= wt

i exp
(
− γ

n
ĉt(i)

)
10: end for
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The following theorem provides the regret guarantee for the standard EXP3 Algorithm.

Theorem 1.1 (Regret Guarantee of Algorithm 1). With a common tuning γ = Θ
(√

n lnn
T

)
, the

expected regret of the EXP3 Algorithm (Algorithm 1) satisfies

E
[ T∑
t=1

ct(it)
]
− min

i

T∑
t=1

ct(i) = O
(√

Tn lnn
)
.

A variant of EXP3 (e.g., EXP3.P / EXP3-IX) uses slightly different scaling and a small bias
in the estimates to obtain high-probability bounds; in expectation the same O(

√
nT lnn) rate is

preserved.
We now present the reward/utility-oriented variant of EXP3, which we will regularly use in

game-theory contexts (Algorithm 2).

Algorithm 2 Old School EXP3 — Reward Version

1: Input: Number of arms n, number of rounds T , exploration parameter γ ∈ (0, 1)
2: Initialize: w1

i = 1 for all i ∈ [n]
3: for t = 1, . . . , T do
4: Compute normalized weights: pt(i) = wt

i/
∑n

j=1w
t
j

5: Set exploration probabilities:

qt(i) = (1− γ) pt(i) +
γ

n

6: Sample it ∼ qt and observe utility ut(it) ∈ [0, 1]
7: Form importance-weighted estimator:

ût(i) =


ut(it)

qt(it)
, i = it,

0, i ̸= it

8: Update weights:
wt+1

i = wt
i exp

(
γût(i)/n

)
9: end for

Theorem 1.2 (Regret Guarantee for Reward Variant). Algorithm 2 guarantees

E
[ T∑
t=1

ut(it)
]
≥ (1− γ) max

j

T∑
t=1

ut(j)− n

γ
lnn.

It follows that REGRET
(
EXP3

)
≤ O

(√
Tn lnn

)
if γ =

√
n lnn
T

.
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2 A Simple EXP3-Style Algorithm with Weaker Guarantees
In homework, you are free to use the above two theorems without proving them from scratch. Their
proofs are very similar to the proof of MWU, so we will not repeat them here. You can refer to Auer
et al. [2002] for a detailed analysis.

Below, we present a similar algorithm—one that differs only in the parameterization of the
update step. We prove that such an algorithm achieves a T 2/3(n lnn)1/3 regret guarantee. While
this is certainly not as good as the regret in the theorems above, presenting this algorithm gives us
an opportunity to review an important algorithm-design approach: reductions!

In what follows, we show that any no-regret algorithm for the full-information setting can be
adapted to the bandit setting as well, albeit with slightly worse regret guarantees. For ease of
presentation, we use the Randomized Weighted Majority (RWM) algorithm, which is no-regret in
the full-information setting. The high-level idea for this algorithm is as follows:

At iteration t,

• Use probabilities suggested by a no-regret algorithm in the full-information setting (such as
RWM). Denote these probabilities by the vector pt.

Sample an expert it from a distribution qt, where qt = (1 − γ) pt + γ( 1
n
, . . . , 1

n
). This is

equivalent to taking it ∼ pt with probability (1− γ) and taking it uniformly from [n] with
probability γ.

• Let the full-information algorithm update the experts’ weights. To do so, the algorithm needs
to see a utility of every expert. So, we construct a utility vector as follows:

ût =

(
0, . . . , 0,

ut(it)

qt(it)
, 0, . . . , 0

)
.

Here ut(it) is the utility of the expert it chosen at time t and qt(it) is the probability of
choosing it. The vector ût is then passed to the full-information algorithm (such as RWM) to
update the weights accordingly. As we will show below, these man-made utilities actually
make sense! That is, they are unbiased estimators for the utility of each expert. The version
of RWM described earlier assumes utilities in the range [0, 1]. Here, the constructed utility
is ut(it)

qt(it)
∈ [0, n/γ]. Therefore, we adapt the regret bound of RWM to scale with this larger

range. This results in the update rule of wt
i(1 + ϵγût(i)/n) — as opposed to wt

i(1 + ϵût(i))
for [0, 1] utilities.)

This high level idea is summarized in the following figure

EXP3 variant
Algorithm

Learner vs
Adversary
it ∼ q t

Random Weighted
Majority for
n experts

ut(it)

q t

ût

p t

Figure 1: High level idea for EXP3 variant

We have the following regret guarantee for the variant of EXP3.
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Algorithm 3 Reduction to MWU

1: Input: Number of arms n, number of rounds T , exploration parameter γ ∈ (0, 1), and parameter
ϵ > 0.

2: Initialize: w1
i = 1 for all i ∈ [n]

3: for t = 1, . . . , T do
4: Compute normalized weights: pt(i) = wt

i/
∑n

j=1w
t
j

5: Set exploration probabilities:

qt(i) = (1− γ) pt(i) +
γ

n

6: Sample it ∼ qt and observe utility ut(it) ∈ [0, 1]
7: Form importance-weighted estimator:

ût(i) =


ut(it)

qt(it)
, i = it,

0, i ̸= it

8: Update weights multiplicatively:

wt+1
i = wt

i

(
1 + ϵγût(i)/n

)
9: end for

Theorem 2.1 (Regret guarantee for Algorithm 3). For ϵ = γ, Algorithm 3 guarantees that

E

[
T∑
t=1

ut(it)

]
≥ (1− γ)2max

j

T∑
t=1

ut(j) − n

γ2
lnn.

It follows that this algorithm has regret
(
T 2/3(n lnn)1/3

)
when γ = (n lnn/T )1/3.

2.1 Proof of Theorem 2.1
We prove the theorem by combining the following facts.

Fact 2.2 (Unbiased estimation). For all j ∈ [n], ût(j) is an unbiased estimator of ut(j):

E
it∼qt

[
ût(j)

]
= ut(j).

Proof.

E
it∼qt

[
ût(j)

]
= qt(j) · u

t(j)

qt(j)
+
(
1− qt(j)

)
· 0 = ut(j).

Let OPTRWM = maxj
∑T

t=1 û
t(j) be the best utility in hindsight according to RWM, and let

OPT = maxj
∑T

t=1 u
t(j) be the true best-in-hindsight utility. Next we show that OPTRWM is at

least as large in expectation.
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Fact 2.3 (OPT in RWM is more competitive than OPT).

E
it∼qt

[OPTRWM] ≥ OPT.

Proof. By Jensen’s inequality and Fact 2.2,

E
it∼qt

[OPTRWM] = E
it∼qt

[
max

j

∑
t

ût(j)

]
≥ max

j
E

it∼qt

[∑
t

ût(j)

]
= max

j

∑
t

ut(j) = OPT.

Fact 2.4 (Regret of RWM under scaling).
T∑
t=1

(
pt · ût

)
≥ (1− ϵ) OPTRWM − n

ϵ γ
lnn.

Proof. This follows from the standard RWM analysis (with utilities instead of costs). The con-
structed utilities lie in

[
0, n

γ

]
rather than [0, 1], leading to the multiplicative scaling in the last

term.

Fact 2.5 (True reward vs. RWM’s expected reward). For each t, if i = it,

ut(i) = ût(i) qt(i) = pt(i) ût(i)
qt(i)

pt(i)
≥ (1− γ) pt(i) ût(i).

Proof. Since qt(i) = (1− γ) pt(i) + γ/n, we have qt(i)/pt(i) ≥ 1− γ.

Proof of Theorem 2.1. Combining the facts, the bandit algorithm’s reward satisfies

E

[
T∑
t=1

ut(it)

]
≥ (1− γ) E

[
T∑
t=1

pt(it)ût(it)

]
(Fact 2.5)

≥ (1− γ)(1− ϵ) E [OPTRWM] − (1− γ)
n

ϵ γ
lnn (Fact 2.4)

≥ (1− γ)2 OPT − n

γ2
lnn, (Fact 2.3), set ϵ = γ

which proves the claim.

3 Game Theory

3.1 Preliminaries
We introduce the setting of a game of m players.

• An m-player normal-form game has players 1, . . . ,m with action sets A1, . . . , Am.

• For pure profile (a1, . . . , am), player i receives utility ui(a1, . . . , am).

• A mixed strategy for player i is a distribution pi ∈ ∆(Ai). The expected utility under mixed
strategies (p1, . . . , pm) is

Ui(p1, . . . , pm) = Eaj∼pj

[
ui(a1, . . . , am)

]
.
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3.2 Two-player Zero-sum Games
For two players, the game is zero-sum if u1(a1, a2) = −u2(a1, a2) for all outcomes. Represent the
row player’s payoffs by a matrix U = [uij]. If the row player uses distribution p and the column
player uses q, the expected payoff to the row player is

p⊤Uq,

and the column player’s payoff is −p⊤Uq.

Example: Rock–Paper–Scissors

Below is the payoff matrix of Rock–Paper–Scissors (row player payoff). Rows are row player’s
actions; columns are column player’s actions.

Table 1: Rock–Paper–Scissors payoff matrix (row player).

Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

This is a zero-sum matrix: each entry is the negative of the corresponding column-player payoff.

3.3 The Minimax Theorem
We introduce the minimax theorem in zero-sum games.

Theorem 3.1 (The Minimax Theorem). For every finite two-player zero-sum game with payoff
matrix U ,

max
p

min
q

p⊤Uq = min
q

max
p

p⊤Uq.

Proof via No-Regret Learning. The inequality “≤” is immediate: The player going second does a
better job of achieving their objective since they can adapt to the strategy of the first player.

For the reverse inequality, we will prove this via online learning. We consider a T -step
interactions, where at time t, the row player player strategy pt and the column player plays qt. The
row player uses a no-regret algorithm, i.e., give the history of distributions q1, . . . , qt−1 that the
column player has played so far, the row player runs a no-regret algorithm to choose pt in order
to maximize utilities it receives U(pt, qt) in a no-regret manner. Then the column player chooses
qt = argminq U(pt, qt). Let p̄ = (1/T )

∑T
t=1 p

t and let q̄ = (1/T )
∑T

t=1 q
t. Then we have

max
p

min
q

U(p, q) ≥ min
q

U(p̄, q) (1)

= min
q

1

T

T∑
t=1

U(pt, q) (2)
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≥ 1

T

T∑
t=1

min
q

U(pt, q) (3)

=
1

T

T∑
t=1

U(pt, qt) (By Def of qt) (4)

≥ 1

T
max

p

T∑
t=1

U(p, qt)− Regret

T
(By pts being no-regret) (5)

≥ max
p

U(p, q̄)− Regret

T
(6)

≥ max
p

min
q

U(p, q)− Regret

T
(7)

(8)

Note that because the game is finite, the row player indeed has a no-regret algorithm with regret
O
(√

T ln(n)
)

. So, as T → ∞, Regret
T

→ 0. This yields the proof.
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