
CS272 - Theoretical Foundations of Learning, Decisions, and Games

Lecture 10: Bandits and Partial Feedback
September 30, 2025

Lecturer: Nika Haghtalab Readings: not specified
Scribe: Kazusato Oko

1 Follow the Perturbed Leader (continued)
In this lecture, despite the title, we mainly continue the analysis of the Follow the Perturbed Leader
(FTPL) algorithm from the previous class. We begin by restating the FTPL algorithm, the theorem
to be proved, and the lemma established in the previous lecture.

Algorithm 1 Follow the Perturbed Leader (FTPL)
input: total number of rounds T and perturbation parameter ϵ
for t = 1, 2, . . . , T do

sample c0 ∼ Unif([0, 2ϵ−1]n)
xt = argminx∈X

∑t−1
τ=0 c

τ · x
end for

For an adaptive adversary, it is important to re-draw c0 at every step to prevent the adversary
from inferring c0 based on the algorithm’s past actions. For an oblivious adversary, we could draw
c0 once before the for-loop and reuse it throughout, while still obtaining the same regret bound.

Theorem 1.1. Assume that X is a domain of Rn such that maxx,x′∈X ∥x − x′∥1 ≤ D, and that
the cost functions satisfy max1≤t ∥ct∥1 ≤ 1, and that c0 is sampled from Unif([0, 2ϵ−1]n). Then,
Algorithm 1 (FTPL) achieves

E[Regret] ≤ 2D

ϵ︸︷︷︸
①

+
TϵD

2︸ ︷︷ ︸
②

. (1)

By taking ϵ = 2√
T

, we have E[Regret] ≤ 2D
√
T .

Lemma 1.2. Algorithm 1 (FTPL) gives us the following guarantee for any x ∈ X , the regret with
respect to x is

Regret(x) :=
T∑
t=1

ct · xt −
T∑
t=1

ct · x ≤ c0 · (x− x1)︸ ︷︷ ︸
①

+
T∑
t=1

ct · (xt − xt+1)︸ ︷︷ ︸
②

. (2)

1

Eq. (1) can be decomposed into ① the perturbation term and ② the stability term. The former
corresponds to the degradation in prediction caused by c0, while the latter corresponds to the re-
duction of xt − xt+1 due to the perturbation. The proof proceeds by evaluating the two terms on
(2) of Lemma 1.2. The terms ① and ② in (2) correspond respectively to the two terms in (1).

Proof of Theorem 1.1. We first evaluate ①. From maxx,x′∈X ∥x − x′∥1 ≤ D. Moreover, c0 ∼
Unif([0, 2ϵ−1]n), which implies ∥c0∥∞ ≤ 2ϵ−1, we obtain

(① of (2)) = c0 · (x− x0) ≤ ∥c0∥∞∥x− x0∥1 ≤
2D

ϵ
. (3)

On the other hand, for ②, it suffices to prove ct · E[(xt − xt+1)] ≤ ϵD
2

for all t = 1, 2, . . . , T . To
this end, let us recall the definitions of xt and xt+1:

xt = argmin
x∈X

t−1∑
τ=0

cτ · x = argmin
x∈X

[(
t−1∑
τ=1

cτ + c0

)
· x

]
,

xt+1 = argmin
x∈X

t∑
τ=0

cτ · x = argmin
x∈X

[(
t−1∑
τ=1

cτ + (c0 + ct)

)
· x

]
.

Here, observe that the distributions of c0 and c0 + ct have significant overlap. As a result, xt when
c0 = c coincides with xt+1 when c0 + ct = c, which allows us to cancel out most of xt − xt+1.

𝑐!

𝑐!

𝑐"

𝑐"#$

𝑐%

𝑐&𝑐$

𝐵(0, 2𝜖#$)0

𝐵(𝑐", 𝑐" + 2𝜖#$)

Figure 1: An illustration of the vector decomposition of the cost. In particular, when we re-center
at
∑t−1

τ=1 c
τ , the distributions of c0 and c0 + ct become the uniform distributions over B(

#»
0 , 2

»

ϵ−1)

and B(ct, ct + 2
»

ϵ−1), respectively, and these distributions largely overlap.

To formalize this, for a, b ∈ Rn we introduce B(a, b) := { x ∈ Rn | ai ≤ xi ≤ bi (i =
1, . . . , n) }. Moreover, for a scalar p, we use #»p to denote the vector (p, . . . , p)⊤ ∈ Rn. We denote
B(

#»
0 , 2

»

ϵ−1)\B(ct, ct+2
»

ϵ−1) by the blue, B(ct, ct+2
»

ϵ−1)\B(
#»
0 , 2

»

ϵ−1) by the red, and B(
#»
0 , 2

»

ϵ−1)∪
B(ct, ct + 2

»

ϵ−1) by the purple. Looking at Figure 1, c0 follows the uniform distribution over

2

B(
#»
0 , 2

»

ϵ−1) (blue + purple), while c0 + ct follows the uniform distribution over B(ct, ct + 2
»

ϵ−1)
(red + purple). Then,

E[xt] = Pr[c0 ∈ purple] E[xt | c0 ∈ purple] + Pr[c0 ∈ blue] E[xt | c0 ∈ blue] (4)
E[xt+1] = Pr[c0 + ct ∈ purple] E[xt+1 | c0 + ct ∈ purple]

+ Pr[c0 + ct ∈ red] E[xt+1 | c0 + ct ∈ red] (5)

Note that the probability density is identical for both distributions at every point in their support.
Combining this with the fact that xt when c0 = c is equal to xt+1 when c0 + ct = c, we obtain
Pr[c0 ∈ purple] = Pr[c0 + ct ∈ purple], and E[xt | c0 ∈ purple] = E[xt+1 | c0 + ct ∈ purple].
Therefore,

(4) − (5) = Pr[c0 ∈ blue] E[xt | c0 ∈ blue]− Pr[c0 + ct ∈ red] E[xt+1 | c0 + ct ∈ red] (6)

Here, we use the fact that the blue and purple regions, or the non-overlapping regions, are relatively
small. Because of the symmetry, we have Pr[c0 ∈ blue] = Pr[c0 + ct ∈ red], so we focus on the
blue region. That is decomposed as

(blue region) = B(
#»
0 , 2

»

ϵ−1) \B(ct, ct + 2
»

ϵ−1) =
n⋃

i=1

(B(
#»
0 , 2

»

ϵ−1) ∪ {x ∈ Rn | 0 ≤ xi ≤ cti}).

Each set B(
#»
0 , 2

»

ϵ−1) ∪ { x ∈ Rn | 0 ≤ xi ≤ cti } occupies a fraction of cti × ϵ
2

of the entire
B(

#»
0 , 2

»

ϵ−1). Therefore, comparing the volumes,

(blue region)

B(
#»
0 , 2

»

ϵ−1)
≤

n∑
i=1

cti ×
ϵ

2
= ∥ct∥1

ϵ

2
≤ ϵ

2
,

where we applied the assumption that ∥ct∥1 ≤ 1. The LHS is equal to Pr[c0 ∈ blue], so we have
that

Pr[c0 ∈ blue] = Pr[c0 + ct ∈ red] ≤ ϵ

2
.

Combining this with ∥ct∥∞ ≤ 1 and maxx,x′∈X ∥x− x′∥1 ≤ D, (6) is further bounded by

c0 · ((4) − (5)) =
ϵ

2
∥ct∥∞ max

x,x′∈X
∥x− x′∥1 ≤

ϵD

2
.

Therefore,

(② of (2)) ≤ (T − 1)
ϵD

2
≤ TϵD

2
. (7)

Now, (3) and (7) bound the regret to any x, and thus we obtain the desired bound (1).

3

Historical remarks. The FTPL algorithm in the online learning setting and its guarantee for
linear costs were introduced by Kalai and Vempala [2005]. In general, algorithmic gaps exist
between offline and online learning; for example, there are classes where ERM is efficient but
no oracle-efficient online algorithm exists [Hazan and Koren, 2016]. However, when smoothness
constraints are imposed on the adaptive adversary, an FTPL-based online algorithm achieves no-
regret guarantees with polynomial-time complexity [Haghtalab et al., 2024].

2 Partial Feedback
In the setting we have studied so far, at each time t we can observe the costs cti of all experts.
An example of this is classification, where given (xt, yt) we can check for each hi(x

t) whether it
matches yt.

On the other hand, there are cases where not all cti are observable.

• Online routing. We aim to find the shortest travel time from point A to point B. Here, the
travel time of each path is determined by traffic. However, the traffic is only revealed for the
path that is actually selected and traversed.

• Pricing. We aim to set a price for an item and sell it at the highest possible price. For
example, suppose we set the price to $3 and the item is sold. However, we do not know
whether it would have sold at $10 as well.

From now on, we consider online learning with partial information, as described above. For-
mally, suppose there is a known family of experts E1, . . . , Em, and when we choose j ∈ [m], the
observable costs are {cti | i ∈ Ej}. The case m = 1, E1 = [n] corresponds to full information (our
previous setting), while the case m = n, Ei = {i} corresponds to multi-armed bandits. For the
lectures, we will focus on the multi-armed bandit setting. Though, this abstraction is more general
and allows us to study other intermediate settings as well (e.g., in the homeworks and optional
readings).

3 Multi-Armed Bandits
From here, we turn to the setting of multi-armed bandits. In the full-information case, the regret
was

√
T log n, but how does the dependence on n and T change in the case of multi-armed bandits?

When designing efficient algorithms, two key considerations arise:

• How to choose an expert? That is, we must balance exploring new possibilities (explo-
ration) with exploiting those that have proven useful in the past (exploitation).

• How to update an expert’s weight? Since different experts are selected with different prob-
abilities, the penalization when updating the weights has to take into account the likelihood
of being picked.

At the end of the lecture, we introduce the "old school" Exponential Weights for Exploration
and Exploitation (EXP3) algorithm [Auer et al., 2002]. The proof will be deferred to next week.

4

Algorithm 2 Exponential Weights for Exploration and Exploitation (EXP3)
input: total number of rounds T and exploration parameter γ
initialize: weights w1

i = 1 for all i = 1, . . . , n
for t = 1, 2, . . . , T do

define probability distribution qti = (1− γ)
wt

i∑n
j=1 w

t
j
+ γ

n
for all j

sample expert it ∼ qt and observe cost ctit
update weight wt+1

j = wt
j · exp

(
γĉtj/n

)
for all j, where ĉtj = 0 for all j ̸= it, with ĉtit =

ct
it

qt
it

.
end for

References
Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-

armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis with adaptive adver-
saries. Journal of the ACM, 71(3):1–34, 2024.

Elad Hazan and Tomer Koren. The computational power of optimization in online learning. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 128–
141, 2016.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

5

	Follow the Perturbed Leader (continued)
	Partial Feedback
	Multi-Armed Bandits

