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1 Follow the Perturbed Leader (continued)

In this lecture, despite the title, we mainly continue the analysis of the Follow the Perturbed Leader
(FTPL) algorithm from the previous class. We begin by restating the FTPL algorithm, the theorem
to be proved, and the lemma established in the previous lecture.

Algorithm 1 Follow the Perturbed Leader (FTPL)
input: total number of rounds 7" and perturbation parameter e
fort=1,2,...,T do
sample ¢ ~ Unif ([0, 2¢1]")
2t = argmingey S ¢ - @
end for

For an adaptive adversary, it is important to re-draw c” at every step to prevent the adversary
from inferring ¢ based on the algorithm’s past actions. For an oblivious adversary, we could draw
" once before the for-loop and reuse it throughout, while still obtaining the same regret bound.
Theorem 1.1. Assume that X is a domain of R™ such that max, ,cx ||x — 2’|y < D, and that
the cost functions satisfy maxy<; ||c'||; < 1, and that ¢° is sampled from Unif ([0, 2¢~1]"). Then,
Algorithm 1 (FTPL) achieves
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By taking € = \%, we have E[Regret] < 2D+/T.

Lemma 1.2. Algorithm I (FTPL) gives us the following guarantee for any x € X, the regret with
respect to x is
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Eq. (I)) can be decomposed into @ the perturbation term and @ the stability term. The former
corresponds to the degradation in prediction caused by ¢, while the latter corresponds to the re-
duction of 2! — z'*! due to the perturbation. The proof proceeds by evaluating the two terms on
(2) of Lemma The terms @ and @ in (2)) correspond respectively to the two terms in ().

Proof of Theorem([I.1} We first evaluate @. From max, ,cx ||z — 2|y < D. Moreover, ¢ ~
Unif ([0, 2¢71]™), which implies ||°||.. < 2¢7!, we obtain
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On the other hand, for @), it suffices to prove ¢’ - E[(z! — z'™)] < L forallt = 1,2,...,T. To
this end, let us recall the definitions of x* and z!*':
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Here, observe that the distributions of ¢ and c° + ¢! have significant overlap. As a result, z* when

® = ¢ coincides with 2T when ¢ + ¢! = ¢, which allows us to cancel out most of 2t — ™.

B(ct,ct + 2¢71)

Figure 1: An illustration of the vector decomposition of the cost. In particular, when we re-center
—_— . . . . . . . =d -
at Zizll ¢, the distributions of ¢ and ® + ¢’ become the uniform distributions over B(0,2¢ 1)

and B(c!, ' + 2;1) ), respectively, and these distributions largely overlap.

To formalize this, for a,b € R™ we introduce B(a,b) := {z € R" | a; < x; < b; (i =
1, = ,nﬁ. Moreover, f(ifl scalar p, we use P to de_n())te the _\)/ectgr) (p,...,p)" € R", V_&fe dgl)ote
B(0,2¢ M)\ B(c!, c'+2¢71) by the blue, B(c!, ¢! +2¢ 1)\ B( 0, 2¢ 1) by the red, and B(0,2¢ 1)U
B(d, " + 2;1) ) by the purple. Looking at Figure , ¥ follows the uniform distribution over

2



B( 0,2 ) (blue + purple), while ¢® + ¢! follows the uniform distribution over B(c', ¢! + 2¢~ )
(red + purple). Then,

E[z] = Pr[c® € purple] E[z" | ® € purple] + Pr[c® € blue] E[z" | ® € blue] 4)
E[z""!] = Pr[c” + ¢ € purple] E[zT! | &® + ¢! € purple]
+ Pr[c® + ¢! € red] E[z'*! | ° + ¢ € red] (5)

Note that the probability density is identical for both distributions at every point in their support.
Combining this with the fact that 2* when ¢ = cis equal to 2" when ® 4 ¢! = ¢, we obtain
Pr[c® € purple] = Pr[c® + ¢! € purple], and IE[ t] 0 € purple] = E[zt | ® + ¢ € purple].
Therefore,

@ — @) = Pr[c € blue] E[z | * € blue] — Pr[c® + ¢! € red] E[z'™ | * + ' €red]  (6)

Here, we use the fact that the blue and purple regions, or the non-overlapping regions, are relatively
small. Because of the symmetry, we have Pr[c” € blue] = Pr[c + ¢! € red], so we focus on the
blue region. That is decomposed as

(blueregion):B(O 2¢ )\B(c c+ 2 ):O(B(O 2e” )U{xeR”]O<x1§ct})

Each set B(0,2¢ 1)U {z € R* | 0 < z; < ¢!} occupies a fraction of ¢! x 5 of the entire

B(ﬁ), 2¢~1). Therefore, comparing the volumes,
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where we applied the assumption that ||cf||; < 1. The LHS is equal to Pr[c® € blue], so we have
that

Pr[c” € blue] = Pr[c” + ¢ € red] <

l\')lm

Combining this with ||c’||oc < 1 and max, ey ||z — 2|1 < D, (6) is further bounded by

(@~ @) = Sl ma e~ < S
Therefore,
@ of @) < <T—1>§ < TZD. (7)
Now, (3) and (7)) bound the regret to any x, and thus we obtain the desired bound (). O



Historical remarks. The FTPL algorithm in the online learning setting and its guarantee for
linear costs were introduced by Kalai and Vempala [2005]]. In general, algorithmic gaps exist
between offline and online learning; for example, there are classes where ERM is efficient but
no oracle-efficient online algorithm exists [Hazan and Korenl, 2016]. However, when smoothness
constraints are imposed on the adaptive adversary, an FTPL-based online algorithm achieves no-
regret guarantees with polynomial-time complexity [Haghtalab et al., 2024]].

2 Partial Feedback

In the setting we have studied so far, at each time ¢ we can observe the costs c§ of all experts.
An example of this is classification, where given (x!,y") we can check for each h;(z") whether it
matches /.

On the other hand, there are cases where not all cﬁ are observable.

* Online routing. We aim to find the shortest travel time from point A to point B. Here, the
travel time of each path is determined by traffic. However, the traffic is only revealed for the
path that is actually selected and traversed.

* Pricing. We aim to set a price for an item and sell it at the highest possible price. For
example, suppose we set the price to $3 and the item is sold. However, we do not know
whether it would have sold at $10 as well.

From now on, we consider online learning with partial information, as described above. For-
mally, suppose there is a known family of experts E1, ..., E,,, and when we choose j € [m], the
observable costs are {c} | i € E;}. The case m = 1, E; = [n] corresponds to full information (our
previous setting), while the case m = n, E; = {i} corresponds to multi-armed bandits. For the
lectures, we will focus on the multi-armed bandit setting. Though, this abstraction is more general
and allows us to study other intermediate settings as well (e.g., in the homeworks and optional
readings).

3 Multi-Armed Bandits

From here, we turn to the setting of multi-armed bandits. In the full-information case, the regret
was +/1"log n, but how does the dependence on n and 7" change in the case of multi-armed bandits?
When designing efficient algorithms, two key considerations arise:

* How to choose an expert? That is, we must balance exploring new possibilities (explo-
ration) with exploiting those that have proven useful in the past (exploitation).

* How to update an expert’s weight? Since different experts are selected with different prob-
abilities, the penalization when updating the weights has to take into account the likelihood
of being picked.

At the end of the lecture, we introduce the "old school" Exponential Weights for Exploration
and Exploitation (EXP3) algorithm [Auer et al., 2002]]. The proof will be deferred to next week.
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Algorithm 2 Exponential Weights for Exploration and Exploitation (EXP3)

input: total number of rounds 7" and exploration parameter ~y
initialize: weights w} = 1foralli =1,...,n
fort=1,2,...,Tdo

define probability distribution ¢! = (1 — )

w;

n t
i1 wj

t
1

+ = for all j

sample expert i' ~ ¢' and observe cost ¢!,
q ;

t
Cit

update weight w§+1 = w} - exp (76§ /n) for all j, where ¢i = 0 forall j # 4', with ¢, = &
end for '
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